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Mehmet Ufuk Dalmış, Suzan Vreemann, Thijs Kooi, Ritse M. Mann, Nico Karssemeijer, Albert Gubern-
Mérida, “Fully automated detection of breast cancer in screening MRI using convolutional neural networks,”
J. Med. Imag. 5(1), 014502 (2018), doi: 10.1117/1.JMI.5.1.014502.



Fully automated detection of breast cancer in
screening MRI using convolutional neural networks
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Abstract. Current computer-aided detection (CADe) systems for contrast-enhanced breast MRI rely on both
spatial information obtained from the early-phase and temporal information obtained from the late-phase of
the contrast enhancement. However, late-phase information might not be available in a screening setting,
such as in abbreviated MRI protocols, where acquisition is limited to early-phase scans. We used deep learning
to develop a CADe system that exploits the spatial information obtained from the early-phase scans. This system
uses three-dimensional (3-D) morphological information in the candidate locations and the symmetry information
arising from the enhancement differences of the two breasts. We compared the proposed system to a previously
developed system, which uses the full dynamic breast MRI protocol. For training and testing, we used 385
MRI scans, containing 161 malignant lesions. Performance was measured by averaging the sensitivity values
between 1/8—eight false positives. In our experiments, the proposed system obtained a significantly (p ¼ 0.008)
higher average sensitivity (0.6429� 0.0537) compared with that of the previous CADe system (0.5325�
0.0547). In conclusion, we developed a CADe system that is able to exploit the spatial information obtained
from the early-phase scans and can be used in screening programs where abbreviated MRI protocols are
used. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.014502]
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1 Introduction
Breast magnetic resonance imaging (MRI) is known for its high
sensitivity in detecting breast lesions. It has been shown that
lesions that are occult in mammography and ultrasonography
can be detected in breast MRI.1 In a typical breast MRI acquis-
ition protocol, after an initial T1-weighted (T1w) MRI scan
is obtained, a contrast agent is administered to the patient to
enhance lesions, and, subsequently, several postcontrast T1w
MRI scans are obtained. Lesions become visible in the subtrac-
tion volume obtained from precontrast and the first postcontrast
volumes, which are referred to as early-phase scans. The addi-
tional T1w scans obtained after the first postcontrast MRI are
used for evaluating contrast enhancement dynamics of a lesion
in the late phase, which provides adjunct information for distin-
guishing the benign structures from the malignant ones.2

Despite the higher sensitivity of breast MRI, mammography
remains as the standard modality for general screening of
women for breast cancer since high cost of breast MRI limits its
widespread use. One of the cost-increasing factors is the acquis-
ition of several scans obtained for a single breast MRI study. To
decrease the cost and be able to facilitate the application of this
imaging modality in screening, abbreviated breast MRI proto-
cols have been suggested,3,4 where the late-phase T1w acquis-
itions of the full DCE-MRI protocol are not obtained to reduce
the protocol time. In a simple abbreviated protocol, evaluation of
an enhancing structure is based only on morphological informa-
tion obtained from the early-phase scans. Additionally, a quick
reading protocol was suggested for the abbreviated protocols

since interpretation of high-dimensional images is time consum-
ing for radiologists. In this quick reading protocol, maximum-
intensity projection (MIP) images of the first postcontrast
subtraction volumes are used. The radiologist initially decides
on the presence of suspicious regions based on the MIP image.
Then, in case of a positive decision, the three-dimensional (3-D)
subtraction volume is also inspected for a final conclusion. This
reading method reduces the reading time from a reported aver-
age of 4.7 min5 to <1 min.3,4 However, this quick reading pro-
tocol may increase reading errors. Such reading errors are not
uncommon even when a full diagnostic breast MRI protocol is
used. Several studies6–8 showed that up to 56% of the cancer
lesions detected in MRI could have been detected in earlier
MRI scans, but they were misinterpreted or overlooked by the
readers. Studies on abbreviated protocols indicate that reading
errors may occur more often when a quick reading protocol is
used, as it was found that some lesions were missed due to the
use of MIP images as a first step in the reading workflow.3,4

Computer-aided detection (CADe) systems9–12 have been
developed to aid radiologists reading breast MRI. These systems
have the potential to reduce reading time and prevent reading
errors since they are able to detect lesions that were misinter-
preted or overlooked by radiologists during breast MRI screen-
ing.13 However, current breast MRI CADe algorithms rely on
the full breast MRI protocol including the temporal information
from the late-phase scans, in addition to the morphological
information obtained from the early-phase scans. This is an
important limitation since it limits their applicability on screen-
ing programs using an abbreviated breast MRI protocol where
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only early-phase scans are available and assessment is based
only on morphology. Moreover, it is questionable whether these
existing CADe systems are able to fully exploit the morphologi-
cal information. In a previous study,14 where 395 lesions were
included from 325 patients, it was shown that the performance
of the computer-aided diagnosis system mainly relied on the
dynamic features, whereas in clinical assessment, morphology
is the most vital information and dynamic information is
auxiliary. Automatic evaluation of lesion morphology in a con-
ventional CADe system is difficult since it requires design of
specific features to be extracted from images. Furthermore,
designing such features is known to be the most difficult part
and main performance limiting factor of conventional computer
vision systems. Recently, popular deep-learning methods tackle
this difficulty by learning such features automatically based on
examples, instead of using human-engineered features, often
using convolutional neural networks (CNN). This approach
turned out to be a ground-breaking success in computer vision
compared with the traditional methods.5,15 In accordance to the
mentioned advances in the computer vision field, medical image
analysis has also extensively benefited from the deep neural
networks16 in various domains, such as ophthalmology,17

dermatology,18 histopatohology,19 brain,20 and prostate21 and
breast22 MRI. Therefore, in this study, we focused on developing
a CADe system, which relies on exploiting the spatial informa-
tion available in the early-phase MRI volumes using a deep-
learning approach. For this purpose, we developed a fully auto-
mated lesion detection pipeline consisting of several deep learn-
ing components. To our knowledge, this is the first application
of deep learning to fully automated lesion detection in breast
MRI.

We compared the proposed CADe system with a previously
developed CADe system that uses the full dynamic breast MRI
protocol (early and late-phase scans).11,13 We used the same
training and test sets as in the study by Gubern–Mérida et al.,13

which allowed us to make a direct comparison with the results
presented in our previous work. The test set included lesions
visible in prior examinations that were assessed as negative
during screening practice. We report the performance of the pro-
posed CADe system individually for screening-detected lesions
and for lesions that were visible but missed in the prior MRI
examinations, as well as for the overall dataset.

2 Materials and Methods

2.1 Dataset

The training dataset was composed of breast MRI scans of 201
women, who underwent MRI for various reasons, including

screening and preoperative staging. About 87 of the MRI scans
contained a total of 95 visible malignant lesions. The average
effective radius of the lesions was 10.8 mm with a standard
deviation of 6.2 mm and a range of 2.5 to 29.8 mm. The remain-
ing 114 MRIs were considered normal since they were scored
as either BI-RADS 1 (n ¼ 87) or BI-RADS 2 (n ¼ 27) by the
radiologists. For the women with normal MRI scans, at least
2 years of follow-up were available with no signs of breast
cancer, and no previous history of breast cancer or breast surgery
was reported.

The testing dataset was composed of MRI scans of women
participating in a high-risk screening program between 2003 and
2014. Of the 160 women in the test set, 120 had normal MRI
scans with no signs for malignancy. These women had no
history of breast cancer or surgery and had at least 2 years of
follow-up with no signs of breast cancer (BI-RADS 1 or 2). The
remaining 40 women were diagnosed with breast cancer
detected on MRI, with a total of 42 malignant lesions. These
women also had MRI examinations performed one year earlier,
which were classified as negative (BI-RADS 1 or 2). After
detection of the cancers, these prior-negative MRI scans were
re-evaluated retrospectively by two radiologists in consensus.
In 24 of these prior scans, lesions were detected retrospectively,
whereas lesions were not visible in the remaining 16 scans. Of
the 24 lesions (of 24 scans) that were detected in the prior-neg-
ative scans, 11 lesions were classified as “visible” (BI-RADS 4/
5) and 13 lesions were classified as “minimal sign” (BI-RADS
2/3) by the two radiologists in consensus. The visible lesions are
referred to as “prior-visible” lesions, whereas the lesions with
minimal signs are referred to as “prior-minimal sign.” In total,
we had 66 lesions in the testing dataset (42 screening-detected,
11 prior-visible, and 13 prior-minimal sign). The lesions in this
dataset were smaller than the ones in the training dataset since
these lesions were detected in a high-risk screening program.
The average effective radius of the lesions in this dataset was
4.8 mm with a standard deviation of 2.5 mm and a range of 2.0
to 15.8 mm. In Fig. 1, we provided a few examples to these
lesions.

The MRI scans included in this study were obtained from 1.5
or 3 Tesla Siemens scanners using a dedicated bilateral breast
coil. A gradient-echo dynamic sequence was performed to
obtain a T1w MRI before the administration of a contrast-agent
[Gd-DOTA (Dotarem, Guerbet, France), at a dose ranging from
0.1 to 0.2 mmol∕kg]. Within 2 min after the administration of
the contrast agent, the first postcontrast T1w scan was obtained,
which was followed by three to five additional T1w scans.
Acquisitions were either in transversal or coronal planes with
pixel spacing in 0.664- to 1.5-mm range and slice thickness in
1- to 1.5-mm range. Other MRI acquisition parameters were

Fig. 1 A few examples of lesions that were detected in the screening program.
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1.71 to 4.76 ms for echo time, 4.56 to 8.41 ms for repetition
time, and 10 deg to 25 deg for flip angle.

2.2 Annotation

All lesions were annotated by radiologists in an in-house devel-
oped dedicated breast MRI workstation, which includes a semi-
automated tool “smart opening”23,24 for lesion segmentation.
With this tool, a 3-D lesion segmentation is obtained after the
annotator places a seed-point at the center of a lesion. Annota-
tors were able to add more seed-points when the result was not
satisfactory especially for the large lesions. Each lesion was
classified by the annotators as mass or nonmass. Motion-
corrected subtraction volumes were used in this process.11

2.3 Preprocessing

For each MRI examination, postcontrast T1w volumes were reg-
istered to the precontrast T1w volume to correct for motion
using the Elastix toolbox.25 Subsequently, the subtraction vol-
ume was obtained by subtracting the precontrast image from the
motion-corrected first postcontrast image. The relative enhance-
ment (RE) volume was also obtained, which is computed by
normalizing the subtraction intensities relative to the precontrast
intensities using the following equation:

EQ-TARGET;temp:intralink-;e001;63;483RE ¼ I1 − I0
I0

; (1)

where I0 and I1 are the intensity values in precontrast and
motion-corrected first postcontrast images, respectively.

2.4 Automated Lesion Detection

The automated lesion detection system developed in this study,
as shown in Fig. 2, uses two images as inputs: the precontrast
T1w volume and the RE volume. Given these inputs, the lesions
are detected in three steps. Initially, the breast is segmented
based on the precontrast T1w image, and subsequently, this seg-
mentation mask is applied to the RE image. At the second step, a
candidate detection algorithm uses the RE image to search for
possible candidate locations within the segmented breast. Here,
we define the term “candidate” as a voxel or location, which is
expected to represent a lesion in its local neighborhood in the
breast MRI volume. At the final step, the candidates are classi-
fied to reduce the false positives of the previous stage.

2.4.1 Breast segmentation

A fully automated breast segmentation method based on deep
learning22 was used in this study to segment the breasts in

MRI volumes. This method is based on a two-dimensional
(2-D) U-net architecture.26 U-net is a fully convolutional net-
work, which produces “dense prediction.” In the other words,
for each pixel or voxel in the input image, U-net generates a
likelihood value, which is a useful property for segmentation
or detection problems. In a U-net, this is achieved using the
de-convolutional part of the network that comes after the con-
volutional part, where the output of the convolutional part is
up-sampled. Each axial slice is provided individually to this
algorithm to generate the corresponding likelihood map, where
a voxel value in this map indicates the likelihood of the voxel to
belong to the breast. The final segmentation for an axial slice is
obtained by thresholding the likelihood values at 0.5. The 3-D
segmentation of the breasts is obtained by combining these 2-D
segmentation slices into a 3-D volume.

2.4.2 Candidate detection

To detect candidate locations, we followed a similar approach as
the one used to segment the breasts. We trained a two-level
version of the same U-net that was used in the breast segmen-
tation algorithm, using axial slices to identify the voxels that
belong to a lesion. For this purpose, the lesion segmentations
manually generated by the radiologists were used as the ground-
truth. About 20% of the training dataset was separated at the
patient level to be used as a validation set. The U-net was trained
in batches of 40 randomly selected axial slices: 20 slices con-
taining a segmented lesion and 20 slices without a segmented
lesion. The slices for each batch were randomly selected from
the entire dataset, where the total number of slices containing a
segmented lesion was 4106. The loss function used during train-
ing was the log of the absolute value of the differences between
the target and output likelihood values, averaged over the breast
region of the given slice. We used Glorot-uniform initialization27

for weights of the U-net and RMSProp28 for gradient-descent
optimization. The initial learning rate was set as 0.001 and it
was divided by 10 at each 1000 iteration. We continued training
until the loss in the validation set was stable. The resulting
trained U-net, given an MRI axial slice, outputs a likelihood
map for each voxel of the given MRI slice to belong to a lesion.
An example result for an MRI slice is given in Fig. 3.
Subsequently, we obtained a likelihood volume for each MRI,
combining these 2-D likelihood maps. The final candidates
were obtained by applying a local maxima algorithm11 on the
likelihood volumes.

2.4.3 Candidate classification

In the first candidate detection stage, a set of candidates was
obtained based on 2-D shapes and patterns since the U-net

Fig. 2 Pipeline for the proposed CADe system. It uses two inputs: the precontrast volume to be used in
breast segmentation, and the registered first postcontrast RE volume. Lesion candidates which are
detected in the segmented breast region are classified in the last step.
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was applied in a slice-by-slice basis. In the second and final step,
the likelihood for each candidate is further refined to reduce
false positives. For this purpose, we employed a 3-D CNN that
uses two types of information available in the RE volumes: 3-D
spatial (morphological) information in the local region around
the candidate, and the information arising from the asymmetry
between the enhancements of the two breasts.

In previous work,29–31 it has been shown that lesion detection
accuracy can be improved by taking symmetry information of
the contralateral breast into account. In Refs. 30 and 31, this
symmetry information was incorporated in a patch-based
scheme. We followed a similar approach to exploit the sym-
metry information in a patch-based fashion. For each candidate
location in a breast, we computed the corresponding location in
the contralateral breast, using the breast masks obtained in the
breast segmentation stage. As shown in Fig. 4, we initially com-
puted the center of gravity (CoG) for each breast. We considered
the CoG of a breast as the origin of a 3-D coordinate system
for the given breast. The coordinate systems for right and left
breasts were mirrored with respect to the median plane. The
location of the candidate in this coordinate system was applied
to the coordinate system of the contralateral breast to find the
corresponding location of the candidate.

For each candidate, a patch of 39 × 39 × 39 voxels around
the candidate location and a patch of the same size around
the corresponding location in the contralateral breast were
extracted. These two patches were input to a 3-D CNN, which
was trained to classify positive and negative candidates. The
selection of the patch size was based on the consideration to
include sufficient contextual information while keeping the

computational complexity at a reasonable level. The use of
an odd number was for practical reasons, to include regions
around the candidate in a symmetric way. The architecture of
the CNN used for this purpose is shown in Fig. 5. For each of
the two inputs, we used two convolutional layers of 5 × 5 × 5
with rectified linear unit (ReLu) transfer functions, each
followed by a maxpooling layer of size 2 × 2 × 2. This was
followed by a fully connected (dense) layer with a ReLu
transfer function. These two streams corresponding to the two
inputs shared the same weights, and they were combined to be
input to a second dense layer with a ReLu transfer function.
A final dense layer with softmax transfer function was used to
compute the final likelihood values.

We used a validation set to determine the hyperparameters of
the network and the training process and to monitor the perfor-
mance during training. For this purpose, 20% of the training
dataset was randomly selected at the case level. Area under the
ROC curve (AUC) was used to measure the performance in this
set. We used Glorot-uniform initialization27 for weights of the
network and RMSProp28 for gradient-descent optimization.
Drop-out was applied to the last dense layer with a rate of 0.85
and a starting learning rate of 0.001 was selected. At each batch
we used 32 positive and 32 negative candidates, which were ran-
domly selected from the entire dataset. As the training contin-
ued, the learning rate was dropped by half when the performance
in the validation set did not improve further for 50 epochs, where
each epoch consisted of eight batches. The training was stopped
when the performance in the validation set was not improved in
the last 200 epochs. The final model was selected as the model
resulting in the highest area under the ROC curve (AUC) on

Fig. 3 U-net candidate detection example for an MRI slice. (a) The corresponding slice in the breast-
segmented RE volume. (b) Corresponds to the lesion likelihood map for the same slice, output by
the candidate detection U-net. Contours on both images represent the segmented lesion for this slice.

Fig. 4 Given a location (x1, y1, z1) in the coordinate system of one breast, the corresponding location
ðx1; y1; z1Þs in the contralateral breast was identified. Each coordinate system had the origins at CoG of
the breast and they were mirrored to each other along the medial plane.
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the validation set. For data augmentation, we applied random
translations (maximum five voxels in each direction), rotations
and mirroring to the input patches.

2.5 Experiments and Evaluation Method

2.5.1 Experiments

We compared the proposed CADe system to an existing CADe
system.11 This system uses the full dynamic breast MRI proto-
col: the precontrast and all registered postcontract images.
It consists of the following steps: breast segmentation, candidate
detection, and false positive reduction. For breast segmentation,
an atlas-based method was used. For the first stage detection, a
likelihood map of the MRI was produced using a voxel classi-
fier, which was trained using several RE and blob feature maps.
Using this likelihood map, candidates were extracted using the
local maxima algorithm, which was also used in the presented
study. Finally, false positives were reduced in a second-stage
classifier, which used both morphological and contrast-dynam-
ics information. Note that this system was trained and tested on
the same datasets as the ones used to evaluate the presented
pipeline.

To study the effect of symmetry information on the perfor-
mance of the proposed CADe system, we trained another 3-D
CNN that only uses the candidate patch coming from the suspi-
cious breast as an input. The input for the contralateral patch and
its corresponding stream was removed from the CNN and train-
ing was performed using the same hyperparameters. We refer to
this system as CAD-WoS, where WoS stands for “without
symmetry information.”

We reported the performance of the proposed system for dif-
ferent lesion types (mass-like and nonmass-like lesions) and for
different lesion subsets (screening-detected, prior-visible, and
prior-minimal sign lesions).

We used the Titan X graphical processing unit (GPU) of
NVIDIA® for deep-learning experiments.

2.5.2 Evaluation method

A candidate was considered as a true positive when its location
is within the manually segmented volume of a lesion, and it was
considered as a false-positive otherwise. When multiple candi-
dates hit the segmented volume of a lesion, the candidate with
the highest likelihood was chosen. We used free-response oper-
ating characteristic (FROC) analysis to assess the performance
of the evaluated systems. For each threshold level on the final
likelihood values of the candidates, the average number of false
positives in normal images in the test set was computed. To
obtain a final performance metric for the system, we used
the computation performance metric (CPM),32 where sensitivity
values at 1/8, 1/4, 1/2, 1, 2, 4, and 8 false positives per scan
were averaged.33–37

Statistical comparison between two FROC curves was per-
formed using the bootstrapping method.38 We sampled cases
1000 times with replacement and constructed the FROC curves
for the two systems based on these samples. For each boot-
strapped curve, we computed the difference between CPM
values (Δ CPM). The p value for a statistical comparison was
defined as the number of the negative or zero valued Δ CPM’s
divided by the number of samples, 1000. We used Bonferroni
correction for three comparisons. The difference between two
CPM values was considered as significant when the p value
was <0.05∕3.

3 Results
The FROC plots for the proposed CADe system with and with-
out symmetry information, and for the previous CADe system
are given in Fig. 6. The CPM value obtained by the proposed
CADe system was 0.6429� 0.0537, which was significantly
higher than the CPM value of 0.5325� 0.0547 obtained by the
previous CADe system (p ¼ 0.008). The CPM value obtained
by the CADe-WoS was 0.5804� 0.0572. The differences in
CPM values between the previous CADe system and the
CADe-WoS system, and between the proposed CADe system

Fig. 5 The CNN used in the study. There are one convolutional, one max-pooling, and one dense layer
for each input, where the weights are shared. After the two streams are concatenated, an additional
dense layer and a final softmax layer are used to obtain lesion likelihood values (L) for each candidate.
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and CADe-WoS system were not statistically significant
(p > 0.05∕3).

The FROC plots for different lesion subsets are given in
Fig. 7. Corresponding CPM values are given in Table 1.

CPM values increased in all lesion subsets compared with
the CPM values obtained by the previous CADe system. We
observed the most remarkable performance improvement
compared with the previous CADe system in the prior-visible

Fig. 6 FROC plots for the proposed CADe system, CADe-WoS system, and the previous CADe system.

Fig. 7 Comparison of performances of the two CADe systems in different lesion subsets: (a) screening-
detected, prior-visible, and prior-minimal sign lesions and (b) mass and nonmass lesions.
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lesions (CPM increase from 0.4675 to 0.6623) and in the
nonmass lesions (CPM increase from 0.4935 to 0.5844).

4 Discussion
In this study, we developed a fully automated CADe system for
breast MRI using deep learning. Our purpose was to exploit
the spatial information obtained in the early-phase as much as
possible, without using the temporal information from the late-
phase of the contrast enhancement. We followed a deep-learning
approach since deep learning has advantages over the conven-
tional computer vision methods, such as using automatically
learned features rather than handcrafted features to evaluate
spatial information. The proposed CADe system obtained
a CPM score of 0.6429, which was significantly (p ¼ 0.008)
higher than the CPM score of 0.5325 obtained by the previous
CADe system that used the full dynamic breast MRI protocol.

The developed CADe system uses symmetry information
arising from the differences between the contrast enhancements
of the two breasts of the same woman, in addition to the
3-D morphological information in the candidate regions. A pre-
vious study that used symmetry information for automatically
detecting lesions in breast MRI had shown its benefit for
DCIS lesions.29 Different than the referred study, we used sym-
metry information in a deep-learning scheme using a similar
method as employed for mammography images,30 albeit in 3-D.
Our results showed that symmetry information contributes to
improve the overall performance of the CADe system (CPM
values of 0.6429 and 0.5804 with and without using symmetry
information, respectively). This was expected since symmetry
information is also used by the radiologists to assess lesions
and it is stated in the guidelines.2 The performance of the CADe
system without symmetry information was still higher than
the performance of the conventional CADe system that uses
the full dynamic breast MRI protocol.

The CNN architecture we used in the candidate classification
stage was not very deep, including two convolutional layers with
5 × 5 × 5 sized filters and three dense layers. This is similar to
the LeNet5,39 which was developed for handwritten digit recog-
nition, except that we used a 3-D CNN. In our experiments, we
found that it was essential to limit the complexity of the model to
prevent overfitting, even when a high drop-out rate was used for
regularization. This may be related to the limited amount of data
used for training. Deeper networks are useful in natural images
as they include complex hierarchical relations that require many
layers of representations. Although this may not be the case for
medical images, in particular for MRI scans, more complex and

deeper models may still be useful in the presence of a large
amount of data.

To reflect a real screening situation, we evaluated the perfor-
mance of the developed CADe system on a test set including
cancer and normal cases from woman participating in a high-
risk screening program with MRI. However, the training set
did not include screen-detected cancers because we did not
have them available at the time of the study. Occurrence of
malignant lesions in screening breast MRI scans is much less
frequent compared with the diagnostic MRI scans. The test
set included lesions that were visible or had minimal signs in
prior scans, which allowed us to test the performance of the sys-
tem for lesions that were overlooked or misinterpreted by the
radiologists. The most remarkable increase in detection perfor-
mance was observed in lesions visible in prior MRI scans (see
Fig. 7 and Table 1). The proposed CADe system was able to
detect 60% more lesions compared with the conventional
CADe system at the threshold equivalent to 1 false positive per
scan. This suggests that the proposed CADe system might be
more useful to prevent reading errors.

We also tested the performance of the proposed CADe sys-
tem individually for mass-like and nonmass-like lesions (see
Fig. 7 and Table 1) within the screening-detected subset of
the test set. We observed a performance increase in the detection
of both lesion types. However, the detection performance for
nonmass lesions was still lower than that for the mass lesions.
More training data of nonmass lesions and the development of
dedicated algorithms may be needed to increase detection per-
formance for such lesions.

Our study has some limitations. We did not evaluate how the
addition of contrast dynamic information may improve the per-
formance of the presented CADe system. Although contrast
dynamic information from the late-phase may not be available
in a screening setting, fast MRI acquisition protocols make it
possible to obtain dynamic contrast uptake information in the
early-phase of the acquisition, which does not cause an increase
in the duration of the breast MRI. It should be investigated in a
further study whether the addition of such early-phase dynamic
information can increase the detection performance of a CADe
system. Additionally, we assumed that the two breasts have the
same (mirrored) shapes to identify corresponding locations in
the contralateral breasts. Although this assumption holds for
most of the cases, some patients may have asymmetric breast
shapes. In the future, we will investigate more advanced regis-
tration methods that take into account the differences in shapes
between the right and left breasts of a given woman.

In conclusion, we developed a CADe system for breast MRI
that uses only the early-phase of the acquisition without using
dynamic information from the late-phase T1w acquisitions. To
fully exploit the spatial information obtained in the early-phase,
we used 3-D morphology of the candidate regions and sym-
metry between the enhancements of two breasts of the patient,
using a deep-learning approach. The proposed CADe system
significantly outperformed a conventional CADe system which
uses the full dynamic breast MRI protocol. The developed
CADe system can be used in abbreviated MRI protocols that
have been suggested for MRI screening programs.
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Dalmış et al.: Fully automated detection of breast cancer in screening MRI using convolutional neural networks



cofounder and shareholder of QView Medical ScreenPoint
Medical BV (Nijmegen, The Netherlands).

Acknowledgments
This work was funded by the European 7th Framework Program
grant VPH-PRISM (FP7-ICT-2011-9, 601040). We gratefully
acknowledge the support of NVIDIA® Corporation with the
donation of the Titan X GPU used for this research.

References
1. C. D. Lehman et al., “Cancer yield of mammography, MR, and US in

high-risk women: prospective multi-institution breast cancer screening
study,” Radiology 244(2), 381–388 (2007).

2. C. Kuhl, “The current status of breast MR imaging part I. Choice of
technique, image interpretation, diagnostic accuracy, and transfer to
clinical practice,” Radiology 244(2), 356–378 (2007).

3. C. K. Kuhl et al., “Abbreviated breast magnetic resonance imaging
(MRI): first postcontrast subtracted images and maximum-intensity
projection—a novel approach to breast cancer screening with MRI,”
J. Clin. Oncol. 32(22), 2304–2310 (2014).

4. V. L. Mango et al., “Abbreviated protocol for breast MRI: are multiple
sequences needed for cancer detection?” Eur. J. Radiol. 84(1), 65–70
(2015).

5. C. D. Lehman et al., “Accuracy and interpretation time of computer-
aided detection among novice and experienced breast MRI readers,”
Am. J. Roentgenol. 200(6), W683–W689 (2013).

6. S. Vreemann et al., “The performance of MRI screening in the detection
of breast cancer in an intermediate and high risk screening program,” in
Annual Meeting of the Int. Society for Magnetic Resonance in Medicine
(2016).

7. E. B. Pages et al., “Undiagnosed breast cancer at MR imaging: analysis
of causes,” Radiology 264(1), 40–50 (2012).

8. K. Yamaguchi et al., “Breast cancer detected on an incident (second or
subsequent) round of screening MRI: MRI features of false-negative
cases,” Am. J. Roentgenol. 201(5), 1155–1163 (2013).

9. D. M. Renz et al., “Detection and classification of contrast-
enhancing masses by a fully automatic computer-assisted diagnosis
system for breast MRI,” J. Magn. Reson. Imaging 35(5), 1077–1088
(2012).

10. A. Vignati et al., “Performance of a fully automatic lesion detection sys-
tem for breast DCE-MRI,” J. Magn. Reson. Imaging 34(6), 1341–1351
(2011).

11. A. Gubern-Mérida et al., “Automated localization of breast cancer in
DCE-MRI,” Med. Image Anal. 20(1), 265–274 (2015).

12. Y.-C. Chang et al., “Computerized breast lesions detection using
kinetic and morphologic analysis for dynamic contrast-enhanced MRI,”
Magn. Reson. Imaging 32(5), 514–522 (2014).

13. A. Gubern-Mérida et al., “Automated detection of breast cancer in
false-negative screening MRI studies from women at increased risk,”
Eur. J. Radiol. 85(2), 472–479 (2016).

14. M. U. Dalmış et al., “A computer-aided diagnosis system for breast
DCE-MRI at high spatiotemporal resolution,” Med. Phys. 43(1),
84–94 (2016).

15. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature
521(7553), 436–444 (2015).

16. G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal. 42, 60–88 (2017).

17. V. Gulshan et al., “Development and validation of a deep learning algo-
rithm for detection of diabetic retinopathy in retinal fundus photo-
graphs,” JAMA 316(22), 2402–2410 (2016).

18. A. Esteva et al., “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature 542(7639), 115–118 (2017).

19. B. E. Bejnordi et al., “Deep learning-based assessment of tumor-asso-
ciated stroma for diagnosing breast cancer in histopathology images,” in
IEEE 14th Int. Symp. on Biomedical Imaging (ISBI) (2017).

20. M. Ghafoorian et al., “Location sensitive deep convolutional neural
networks for segmentation of white matter hyperintensities,” Sci. Rep.
7, 5110 (2016).

21. A. Mehrtash et al., “Classification of clinical significance of MRI pros-
tate findings using 3D convolutional neural networks,” Proc. SPIE
10134, 101342A (2017).
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