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Abstract. Based on the fifth version MOD09A1 product of NASA LP DAAC (Land Processes
Distributed Active Center) from 2001 to 2016, an enhanced vegetation index (EVI) time series
dataset in the Qinling Mountains was reconstructed; it was used to extract the plant phenological
parameters of the region by employing the maximal slopes of the alteration method and threshold
method. The results show that the Whittaker filter method was better than other methods for the
reconstruction of shrubland, farmland, and forest in the Qinling Mountains. Based on the recon-
structed EVI, the characteristics of vegetation coverage, the start of growth season (SOG), the
end of growth season (EOG), and the length of growth season (LOG) in the Qinling Mountains
were all analyzed. There was an increasing trend of vegetation coverage in most regions (about
89.93% of the monitored areas) over the Qinling Mountains in the past decades, and the average
phenological distribution pattern in the Qinling Mountains was closely related to the local hydro-
thermal conditions. From the high altitude mountainous areas to the farming areas, the SOG was
gradually postponed, the EOG was gradually earlier, and the LOG gradually shortened.
Furthermore, the time series variation of SOG, EOG, and LOG from 2001 to 2016 in the
Qinling Mountains was also studied. The variation showed that the SOG shifted earlier,
which was more prominent in high-altitude areas, while, for some southern and northern
foothills altitude below 500 m and a few areas of the eastern Funiu Mountains, the SOG
was delayed. The EOG shifted later, which was more apparent in the northern Qinling foothills
and mid- to low-altitude areas of the eastern ranges, and the LOG was extended. Finally, the
studies of correlation analysis between the plant phenology and a temperature threshold of 10°C
showed that global warming was the major factor affecting the phytophenology of the Qinling
Mountains, and the effects were concentrated mainly in the 1000- to 2000-m zones of the
southern and northern Qinling Mountains. Moreover, the northern Qinling foothills showed
a greater response to accumulated temperature than the southern foothills, and the low-altitude
area of the eastern Funiu Mountains exhibited the lowest correlation with the accumulated tem-
perature. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.12.022202]
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1 Introduction

Phenology refers to periodic changes of organisms after their long-term adaptation to climate
conditions, thereby developing corresponding growth and development cycles. Phenology is the
most intuitive indicator for the response of ecosystems to climate change. By studying forest
phenology, we can understand the influences of climate change on the species composition and
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physiology of trees and on forest productivity, which are of vital importance for the conservation
of biodiversity. As such, phenology is a hot topic in geology research, particularly large-scale
vegetation surveillance, which is a key field in phenology that addresses a crucial scientific
question of ecological and environmental studies.1,2 Common methods of phenology surveil-
lance include ground observation, remote sensing, and model-based surveillance. Among
them, ground observation has high time precision and is easy to operate for small-scale
phenology studies, but it has difficulty revealing phenology conditions at a regional scale.
Satellites remote sensing technology can remedy defects of ground observation. Atzberger
and Eilers,3 Beck et al.,4 Chen et al.,5 Sakamoto et al.,6 Yves and Sobrino,7 Wang et al.,8

White et al.,9 and Zhang et al.10 used satellites data to monitor the vegetation activity and phe-
nology over different areas. Since the threshold method was reported to extract phytophenolog-
ical parameters in 1990,11 remote sensing-based phenology surveillance has been applied in a
variety of fields, including biodiversity, land cover classification, estimation of crop yield, and
biomass assessment. Correspondingly, phenology has become an effective tool for studying ter-
restrial ecosystems. Many studies have been devoted to investigating approaches for extracting
phenological parameters based on remote sensing data, such as the normalized difference veg-
etation index (NDVI)-based threshold method and the maximal slope of alteration method that
are indicative of vegetative types. Meanwhile, the relationship between the phenological infor-
mation of remote sensing monitoring and the actual observation data of terrestrial stations has
received increasing attention. It was reported that, through the use of ground observation data as
well as NVDI datasets of Landsat and MODIS, different sources of remote sensing results could
be used to describe the observation data of ground phenology in an area.12 A study by Kross
et al.13 indicated that an NDVI dataset with a time resolution of 10 or 15 days was suitable for
extracting phenological information from ground vegetation. Atkinson et al.14 compared four
models for smoothing satellite sensor time-series data to estimate vegetation phenology. It
has been demonstrated that over the last several decades, the plant growth seasons in the northern
hemisphere have gradually extended, which leads to an increase in carbon sequestration in high-
latitude areas.15 In China, many studies show similar trends in most regions using ground obser-
vation and satellite monitoring, Fang et al.16 and Zheng et al.17 discussed the effect of global
warming on plant phenological changes, and the results show that the response of ahead (or
delay) of phenophase to increasing (or decreasing) of temperature was nonlinear. Zhang,18

Lu et al.,19 Li et al.,20 He et al.,21 Fang et al.,22 Zhong et al.,23 Wang et al.,24 and Xie
et al.25 studied the trend of plant phenology and its responses to climatic change over different
areas in China.

The Qinling Mountains lie in central China and are at the ecological transition belt between
the warm temperature zone and subtropical zone. The mountain range, which is the geological
boundary between southern and northern China, has two very different definitions. In the broad
definition, the Qinling Mountains join the Kunlun Mountains in the west, connect the Minshan
Mountains in the north, and travel eastward through Gansu, southern Shaanxi, to reach the Funiu
Mountains in Henan in the east; in the narrow definition, Qinling refers to mountains between the
Wei River and Han River in Shaanxi Province. In recent years, progressive urbanization and
increased human activity have aggravated vegetation degeneration in some areas.26,27

Although the alpine vegetation that is present at altitudes above 2800 m is barely affected
by any human activity, it is highly impacted by climate change. Thus far, considerable effort
has been dedicated to examining the phytophenological responses in areas of different altitudes
in the Qinling Mountains,28–30 and vegetation degeneration, its causes, and spatiotemporal
changes of phenology in the Qinling Mountains have been analyzed. However, although spa-
tiotemporal changes of phenology have been examined in the Qinling Mountains, there has been
no thorough investigation into the causes of phenological changes and the resultant responses to
climate change, which is due to the short or overly macroscopic time series. Here, we utilized
satellite data from 2001 to 2016 to extract the phenological changes of different altitudes in the
Qinling Mountains. In addition, we employed a biological threshold temperature of 10°C to
analyze the causes of the phenological changes. As such, the study provides crucial evidence
to understand the phytophenological response features at different altitudes that are under the
dual influence of human activity and climate change.
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2 General Conditions of the Study Region

The Qinling Mountains in a broad sense include 43 counties in Gansu, Shaanxi, and Henan
provinces.31 It stretches over 700 km, and there are many interconnected mountains, including
Xiaolong Mountain, Taibai Mountain, Xiong’er Mountain, Huashan Mountain, and the Funiu
Mountains. Overall, the orientation of the Qinling Mountains matches well with the 0°C iso-
therm of January. With an annual average temperature of 12°C to 14°C and precipitation of
700 to 900 mm, the mountain range has a rich coverage of vegetation, including forest and
grassland in the high-altitude areas and farmland in low-altitude valleys. The central hills
boast extraordinary altitude differences that accommodate a spectrum of vegetation types,
which are the farming area (altitude 200 to 700 m), deciduous broad-leaved forest belt (altitude
700 to 1300 m), deciduous oak forest belt (altitude 1300 to 2300 m), birch forest belt (altitude
2300 to 2800 m), coniferous forest belt (altitude 2800 to 3200 m), and alpine shrub-meadow belt
(above altitude 3200 m). The coniferous forest belt, which represents the high-altitude limit of
the forest, is dominant with Farges’ fir (Abies fargesii) forest and Shaanxi larch (Larix potaninii
var. chinensis) forest. In addition, there is a little distribution difference spectrum of vegetation
types between the southern and northern Qinling hills, which is attributed to the relevant climate
differences.32 To improve validation accuracy, nine classical ecological sample plots were
selected based on high-resolution land use data (Fig. 1) and ground survey data to represent
the various vegetation types of the forest, shrubland, and farmland (Table 1). Among these,

Fig. 1 Topographic map and land use types of the Qinling Mountains.

Table 1 Ecological types of the sample plots in the Qinling Mountains.

No. Location Ecological type Classical vegetation Altitude (m)

1 Huashan Shrubland Vitex, wild jujube, shrubs 1694

2 Lantian Shrubland Vitex, wild jujube, shrubs 520

3 Foping Shrubland Vitex, wild jujube, shrubs 852

4 Zhenping Shrubland Azalea, sea bilberry, Chinese red pine forest 1094

5 Zhouzhi Farmland Dry farming with two harvests per year,
deciduous fruit trees, shelter forests of aspen,
willow, and Chinese scholar trees

463

6 Shanyang Farmland Dry and irrigated farming with two harvests per year 783

7 Ninqiang Forest Chinese red pine forest 787

8 Ninshan Forest Chinese red pine forest, Chinese red birch forest,
Chinese hemlock forest, Farges’ fir forest

2630

9 Fengxian Forest Deciduous oak tree 1576
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Ninshan, with an altitude of 2630 m, is a national field observation station of a coniferous forest
of the Qinling ecological system (Table 1).

3 Data and Methods

3.1 Satellite Data

The fifth version MOD09A1 product from 2001 to 2016 was provided by NASA LP DAAC
(Land Processes Distributed Active Archive Center); it included surface albedo bands 1 to 7, day
of year (DoY) data, an 8-day time resolution, and a 500-m spatial resolution. In this study, the
MODO09A1 product was used to generate pixels with the best observation quality in an 8-day
interval. After atmospheric correction, the Qinling Mountains were found to be located in the
H26V5 and H27V5 tiles. From 2001 to 2016, a total of 736 MOD09A1 images were generated,
and all were subject to SIN GRID projection. To remove the influences of nonforest areas, we
used the MOD12Q1 land cover data of 2012 to reveal that forest and farmland accounted for over
95% of the total area.

The linear tendency method was used for the trend analysis; when B > 0, an increase of time
T was associated with an increase of X; the value of B indicated the rate (or tendency) of ascent
or descent [Eq. (1)]:

EQ-TARGET;temp:intralink-;e001;116;501B ¼
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where B is the slope of linear tendency, x is parameter of phenology, t is the year of phenology,
and n ¼ 15.

The coefficient of variation (Cv) was used to evaluate the time series stability; it indicated a
degree of dispersion such that the lower the Cv, the lower the fluctuation [Eq. (2)]:

EQ-TARGET;temp:intralink-;e002;116;399Cv ¼
1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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i¼1 ðxi − xÞ2
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r
; (2)

where Cv is the coefficient of enhanced vegetation index (EVI) variation, xi is the EVI of the i
year, and x is the average of EVI from 2001 to 2016.

The correlation coefficient (R) reflected the ability of the reconstructed time series curve to
retain the features of the corresponding original curve; the greater the value is, the higher the
reconstruction fidelity [Eq. (3)]:

EQ-TARGET;temp:intralink-;e003;116;294R ¼
P

n
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p : (3)

The standard error of the regression estimate (regression mean squared error, RMSE) was
employed to describe the differential level between the individual time series; the lower the value
is, the greater the representatively of the fitted value [Eq. (4)]:

EQ-TARGET;temp:intralink-;e004;116;210RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðEVIpi − EVIoiÞ2

n

s
; (4)

where EVIpi is reconstruction series data, EVIoi is original series data, and n is the number of
samples.

3.2 Calculation of the Vegetation Index

This study analyzed the MODIS MOD13Q1 product with a 16-day interval, and it showed that
when the NDVI of the high-vegetation coverage areas in the Qinling Mountains approached 0.8,
the fluctuation decreased, which indicated that the chlorophyll responses of the vegetation
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reached saturation. This result was consisted with the previous report.33 Fortunately, the EVI
avoids the saturation issue of high-vegetation coverage areas and reduces the background noises
of the atmosphere and soil. In addition, the EVI uses a time resolution of 8 days, which is con-
siderably better than the 16-day resolution. As such, we utilized interactive data language along
with the MRT tool of MODLAND to write the batch program, whereby the reflectivity data and
DoY bands in the MODIS tiles of H26V5 and H27V5 were pieced together and projected.
Correspondingly, the data were converted to coordinate projections of latitude and longitude
in the WGS-84 coordinate system. The EVI was calculated using Eq. (5):

EQ-TARGET;temp:intralink-;e005;116;640EVI ¼ 2.5 � ρNIR − ρRED
ρNIR þ 6 � ρRED − 7.5ρBLUE þ 1

(5)

in which ρ1, ρ2, and ρ3 represent the reflection values of the infrared, red, and blue bands, respec-
tively, after atmospheric correction from the MODIS sensor, G (¼2.5) represents the gain factor,
L (¼1) represents the soil-adjusted index, and C1 (¼6.0) and C2 (¼7.5) describe the influences
of the blue-band correction on the red band. To further improve time precision, the DoY values
of pixels were interpolated into day values during reconstruction of the time series, thereby
avoiding the fluctuation of crests and troughs around the 8-day intervals.

3.3 Reconstruction of the EVI Time Series

To minimize the influences of random factors on the time series, a time series reconstruction was
needed.34–39 Common algorithms for this purpose include the filter smoothing method (e.g., the
Savitzky–Golay filter40 and Whittaker filter),30 the function fitting method [also known as asym-
metric Gaussian (AG)], double logistic (DL) function-fitting, and the frequency-domain trans-
formation method [e.g., harmonic analysis of time series (HANTS), and wavelet analysis].
Different methods have different requirement stringencies on the original time series and are
therefore suitable for different environmental conditions. In the Qinling Mountains, where
there are considerable levels of data noise, the Whittaker, DL, HANTS, and AG methods
were chosen to reconstruct the time series. Afterward, the resulting fidelity and antijamming
capability were analyzed for individual sample plots to determine the optimal approach for
each ecological type.

3.3.1 Quantitative comparison of the reconstruction algorithms

Based on the correlation performance and RMSE values of the four methods that were used to
reconstruct the time series of shrubland, farmland, and forest (Fig. 2) from 2001 to 2016, the
results showed that the Whittaker method exhibited a better correlation performance than the DL
and AG methods, whereas the HANTS method showed a relatively poor outcome. Also, an
examination of the RMSE values showed that the Whittaker method showed the lowest deviation

Fig. 2 The (a) correlation performances and (b) RMSE values of the Whittaker, DL, HANTS, and
AG methods for the time series reconstruction of three ecological types in the Qinling Mountains.

Wang et al.: Spatiotemporal variations of forest phenology in the Qinling Mountains. . .

Journal of Applied Remote Sensing 022202-5 Apr–Jun 2018 • Vol. 12(2)



between the reconstructed and original EVI values, indicating that this method generated the best
fitting performance, better than DL and AG, and the HANTSmethods displayed a relatively poor
outcome.

3.3.2 Comparison of the time series curves of several reconstruction algorithms

Figure 3 showed the comparison of the time series curves of original EVI data from 2014 to 2016
reconstruction data derived from the four methods. The results showed that, in the shrub-land,
the Whittaker, DL, AG, and HANTS methods displayed similar levels of fitting, but, in the peak
value, the Whittaker method showed clearly superior antijamming performance over the other
methods, as it delivered better fitting outcomes at points with considerable noise levels. In the
farmland sample plots, the HANTS, AG, and DL methods generated fitting results that were
relatively high in the early growth phase, although in the middle and peak growth stages, all
four methods produced consistent fitting results that matched the original EVI time series curves.

Fig. 3 The reconstructed EVI curves of the sample plots of (a) shrubland, (b) farmland, and
(c) forest.
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All three filtering methods except the Whittaker displayed excessive fitting in the crest period of
2016 and produced a single peak, whereas Whittaker-based fitting generated a dual-peak curve
that was consistent with the original data. In the forest sample plots, the four methods generated
similar fitting results in the early growth phase and end of growth season (EOG), but the HANTS
produced relatively high fitting results in the crest period of 2014 to 2015 due to noise inter-
ference, as did the AG and DL in 2016. By contrast, the Whittaker generated a curve that was
consistent with the original EVI time series curve.

In general, the Whittaker method displayed the most stable performance among the four
methods and is suitable for use in the Qinling Mountains, which is consistent with the finding
by Atkinson.14

3.4 Extraction of Phenological Parameters

The methods to extract phenological parameters include the threshold method,40 maximal slope
of alteration,41 and the logistics function method.42,43 The Qinling Mountains have extraordinary
altitude differences, application of the threshold method alone may not adequately reflect topo-
logical influences. To avoid this problem, the threshold method was also used with the maximal
slop of alteration to extract the phenological parameters. First, the Whittaker filter was employed
to reconstruct the daily means of EVI data from 2001 to 2016; then the differences between
adjacent points were calculated to generate an EVI difference curve. Subsequently, the maximal
change value of the upswing (or downswing) curve is taken as the EVI threshold of the SOG (or
EOG). Finally, year-by-year sequences of daily values were compared with the corresponding
threshold value to generate the SOG and EOG, which were subtracted to generate the length of
growth season (LOG).

3.5 Accuracy Validation of the Phenological Extraction in the Qinling Mountains

A traditional and straightforward approach to validating the accuracy of the phenological extrac-
tion is to adopt the occurrence dates of a given phenological phenomenon as the validation data.
In an area of limited size, there is a certain level of similarity in the plant phenophase of a par-
ticular vegetation type. The Qinling Botanic Garden of Xi’an is located in the northern foothills
of the mountain range and is representative of the local phenology. We therefore acquired typical
phenological data of woody plants in the Xi’an station during 1963 to 2008 and adopted the daily
average of their peak leafing period as the SOG and their leaf color-change period as the EOG. It
was discovered that the peak leafing period was predominantly concentrated in the first 10 days
of April (the 95th to 100th days of each year), whereas all the color-change periods were in the
first 10 days of November (the 300th to 310th days). With regard to multiyear trends, it was
reported that the peak leafing period advanced earlier by 1.5 day∕year and the color-change
period was postponed by 1 day∕year.24,44 These findings overall were corroborated by the results
derived from the satellite data.

4 Results and Discussion

4.1 Characteristic of Vegetation Cover Changes of the Qinling Mountains From
2001 to 2016

The vegetation cover changes and spatial distribution of vegetation variability (Fig. 4) of the
Qinling Mountains from 2001 to 2016 (Fig. 4) showed that, during this period, except for a few
zones that displayed a decreased trend, the mountain range overall manifested increased veg-
etation coverage; the areas showing increased (or decreased) vegetation coverage accounted
for 89.93% (and 11.07%) of the total area, respectively. Among the areas showing increased
coverage, 38.57% displayed significant differences (P < 0.05). Notably, the southeastern part
of the Qinling Mountains, where the vegetation cover had originally been low, registered a
more prominent ascending trend than other parts. This phenomenon could be explained by
the unfavorable local conditions that initially prompted policies of returning farmland to forest
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and grassland and culminated in a remarkable rise in forest concentrations. We then interro-
gated the vegetation cover data by incorporating the altitude factor and discovered that areas
with increased vegetation coverage were mainly the deciduous broadleaf forest belt, with an
altitude of 800 to 1500 m. These forests had vegetation coefficients of variation between 0.02
and 0.6 [Fig. 4(b)], indicating considerable spatial variation. Among these forests, those in
high-altitude zones or valleys that were the least impacted by human activity showed the
highest vegetation stability. On the other hand, the mixed farmland-forest vegetation in the
shallow mountains of northern Qinling and the surrounding areas of the mountainous residen-
tial communities, which were highly influenced by human presence, exhibited apparent
variations [Fig. 4(b)]. Furthermore, the alpine coniferous forests also exhibited a relatively
high coefficient of variation as they accommodated great concentrations of Chinese larches
(Larix chinensis) and Farges’ firs (Abies fargesii), which are highly sensitive to climate
change.

4.2 Spatial Distribution of the Phenological Average Value Over Qinling
Mountains from 2001 to 2016

The spatial distribution of the phenological average value over the Qinling Mountains from 2001
to 2016 is shown in Fig. 5. The data showed that from the alpine areas to farmland areas, the
SOG was gradually postponed (decreased in value), the EOG was gradually advanced (decreased
in value), and the LOG was gradually shortened. These trends echoed the topography of the
Qinling Mountains. The shallow mountainous areas of the northern and southern Qinling foot-
hills and farmland area of the Funiu Mountains had relatively early SOG dates, which began
during the first 10 days of March. By contrast, the SOG of the alpine boreal zones was relatively
late and began between the 120th and 135th days of the year. The EOG dates mostly appeared
between the 270th to 310th days of the year. The EOG was relatively early in the alpine boreal
zones but relatively late in the shallow mountainous areas (commonly after the 300th day of the
year). The LOG was generally between 150 and 200 days∕year and was relatively long in the

Fig. 4 The multiyear trends and spatial distribution of coefficients of variation of vegetation
cover in the Qinling Mountains from 2001 to 2016. (a) Vegetation cover and (b) coefficient of
variation.
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low-altitude areas (over 180 days) but was relatively short in the high-altitude forest areas
(between 150 and 170 days). The results also showed that both the SOG and LOG displayed
apparent changes in response to rising altitude. However, the areas that were under strong human
influence, such as the shallow mountainous areas of the northern Qinling foothills and the sur-
rounding areas of the mountainous residential communities, exhibited no clear correlation
between the altitude and phenological changes.

4.3 Interannual Variation of the Phenological over Qinling Mountains

The spatial distribution of the multiyear means of the SOG, EOG, and LOG in the Qinling
Mountains from 2001 to 2016 is shown in Fig. 6. The results show that the SOG dates in
the Qinling Mountains advanced earlier, including 23.45% of the pixels having P values
<0.01 (Fig. 7), and about 95% of the study region showed an advancement of 1 to
2 days∕year [Fig. 6(a)], which was more apparent in the high-altitude areas. Nevertheless,
an SOG delay was found in the southern and northern low-altitude foothills and the central
area of the Funiu Mountain, which overall matched the scope under significant human
interference.

Fig. 5 Spatial distribution of the multiyear means of the forest phenology data in the Qinling
Mountains from 2001 to 2016: (a) SOG, (b) EOG, and (c) LOG.
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The EOG dates in the Qinling Mountains were delayed [Fig. 6(b)], including 21.45% of the
pixels having P values <0.01 (figure not shown here). An EOG delay was apparent (2 to
3 days∕year) in the northern foothills and eastern mid- to low-altitude areas in the Qinling
Mountains [Fig. 6(b)].

Fig. 6 Spatial distribution of the phytophenological trends in the Qinling Mountains from 2001 to
2016: (a) SOG, (b) EOG, and (c) LOG.

Fig. 7 Significance test results of the SOG trends in the Qinling Mountains from 2001 to 2016.
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During the 2001 to 2016 period, the LOG overall displayed an extending trend in the forest
areas of the Qinling Mountains [Fig. 6(c)], including 70% of the areas that were prolonged by 1
to 3 days∕year; in areas with a prolonged LOG, 51% of the pixels had P values <0.01 (figure not
shown here). These areas with extended LOGs were mainly distributed in the central and eastern
mid- to low-altitude regions. However, ∼30% of the areas in the Qinling Mountains witnessed a
shortened LOG (−1 to 0 days∕year), mainly in low-altitude areas that are vulnerable to the in-
fluence of human activity.

4.4 Correlation Between the Phytophenology of the Qinling Mountains and the
Threshold Temperature of 10°C

Environmental and climate alterations are the major factors contributing to phytophenological
changes. Hydrothermal variations were investigated in the Qinling Mountains, showing that the
mountain range was experiencing rising temperatures (measured in the spring or as a multiyear
average)45–49 and reduced precipitation50,51 and that these changes mainly took place in the
southern and northern foothills. An annual accumulated temperature above 10°C is a critical
temperature for the majority of plant growth; usually there was an accumulation of daily average
temperature above 10°C, which was defined as an active accumulated temperature. In this study,

Fig. 8 Significance test results of the correlation analysis between the active accumulated temper-
ature and the phenological parameters: (a) SOG, (b) EOG, and (c) LOG.
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the annual accumulated temperature above 10°C was analyzed to understand the real reason of
the variation of phenological changes in the Qinling Mountains from 2001 to 2016.

The active accumulated temperature above 10°C, annual precipitation, and sunshine duration
from 2001 to 2016 at 55 stations across the Qinling Mountains was analyzed. Furthermore, the
means of the SOG, EOG, and LOG within a 5-km diameter range of each station were extracted.
A correlation analysis was then performed for the two groups of data. The results showed that
active accumulated temperature exhibited a higher correlation with the SOG, EOG, and LOG
than the precipitation and sunshine duration; the three climate parameters had an order of
response to the phenological indices of ≥10°C accumulated temperature > precipitation > sun-
shine duration. This was consistent with a previous study,52 and, collectively, the findings sup-
port that global warming is a main factor impacting the phytophenogical changes in the Qinling
Mountains. Among the three phenological parameters, the SOG overall showed a negative cor-
relation with the ≥10°C accumulated temperature [Fig. 8(a)]. There were 13 stations approved by
significant testing, mainly distributed in the counties of the northern foothills (e.g., Qianyang,
Fengxiang, Qishan, Fufeng, and Huayin) and southern foothills (e.g., Mianxian, Chenggu,
Yangxian, Shiquan, Zhen’an, Liuba, Danfeng, and Shangnan), where the altitude is 1000 to
2000 m and the annual mean of the ≥10°C accumulated temperature is 4000 to 4500°C. In
these areas, the rising temperature clearly advanced the SOG. By contrast, the SOG was poorly
correlated with the ≥10°C accumulated temperature in the alpine areas, where the annual accu-
mulated temperature was below 4000°C, as well as in the areas that were under significant human
influence, where the annual accumulated temperature was above 4800°C. In general, the rising
temperature showed no apparent effect on the SOG in these areas.

Both the EOG [Fig. 8(b)] and LOG [Fig. 8(c)] overall exhibited a positive correlation with
the ≥10°C accumulated temperature. The LOG showed a higher correlation with the accumu-
lated temperature than the EOG, with 14 stations approved by significant testing. These sta-
tions matched well with the stations where the SOG was significantly correlated with the
accumulated temperature. Together, these results indicated that the areas with a greater
response to the ≥10°C accumulated temperature were distributed in the southern and northern
foothills, where the altitude was between 1000 and 2000 m and the annual accumulated tem-
perature was between 4000°C and 4500°C, and that the northern foothills displayed greater
responsiveness than the southern foothills. In addition, the alpine areas (with an accumulated
temperature of <4000°C) had complicated responses to the phenological changes, which might
be attributed to the extraordinary sensitivity of Chinese larches (Larix chinensis) and Farges’
firs (Abies fargesii) to temperature changes. The phenological indices in the alpine areas
showed no apparent responses to the active accumulated temperature as the climate parameter
grew slowly in the alpine areas. Last, stations in the Funiu Mountains in the east, where the
annual accumulated temperature is over 4900°C, also displayed a poor correlation with the
threshold temperature, indicating that this region was not significantly impacted by this tem-
perature condition.

5 Summary and Conclusions

In this study, the C5 MOD09A1 product from 2001 to 2016 provided by NASA LPACC was
used to rebuild the EVI time series. Four reconstruction methods were compared; the maximal
slop of alteration method and the threshold method were employed to extract the phenological
parameters in the Qinling Mountains.

The results showed that the Whittaker filter was better in the reconstruction of sample plots
for shrubland, farmland, and forest than the DL, AG, and HANTS methods. Additionally, the
reconstructed curves of the Whittaker filter displayed the lowest deviation from the original EVI
data in all three vegetation types in the Qinling Mountains.

There was an increasing trend of vegetation coverage in most regions (about 89.93% of the
monitored areas) from 2001 to 2016, and only 11.07% of the study region showed decreased
trends. The coefficients of vegetation variation were between 0.02 and 0.6, and the forests that
were less affected by human activity showed the highest vegetation stability. The mixed farm-
land-forest vegetation in the shallow hills of the northern Qinling Mountains and the surrounding
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areas of mountainous residential communities obviously exhibited alterations with the extraor-
dinary impact of human activity.

The average variation of phenological parameters in the Qinling Mountains indicated that, as
the altitude decreased (from the alpine areas to the farmland districts), the SOG was gradually
delayed, the EOG was gradually advanced, and the LOG was gradually shortened. These trends
were consistent with the local topographical and thermal conditions. Within the Qinling
Mountains, the shallow mountainous areas and farmland area of the Funiu Mountains had rel-
atively early SOG dates, which began in the first 10 days of March. By contrast, the SOG of the
alpine boreal zones started between the 120th and 135th days of the year. The EOG dates typ-
ically started between the 270th and 310th days of the year, which was relatively early for the
alpine boreal zones but relatively late in the shallow mountainous areas (typically after the 300th
day of the year). The LOG typically lasted between 150 and 200 days∕year and was relatively
long in the long-altitude areas (over 180 days) but was relatively short in the high-altitude forest
areas (between 150 and 170 days).

Time series variation of phenological from 2001 to 2016 showed that the SOG in the Qinling
Mountains was earlier, which was more obvious in high-altitude areas (about 1 to 2 days∕year),
and, for altitude below 500 m, there was a little delay, mostly in the southern and northern foot-
hills and the eastern Funiu Mountains. The EOG showed a delaying trend, which was clear
(postponed by 2 to 3 days∕year) in the northern slope of Qinling and the eastern mid-to-
low-altitude areas. The LOG overall showed a trend of extended duration, with 87.5% of the
forest areas showing a change in the duration of the growth season by −1 to 2 days∕year.

The correlation analysis between the climate parameters (i.e., the active accumulated temper-
ature, precipitation, and sunshine duration) and phenological indices (the SOG, EOG, and LOG)
in 55 stations across the Qinling Mountains during the 2001 to 2016 period showed that, for the
three climate parameters, the active accumulated temperature had the highest correlation with the
phenological indices of the SOG, EOG, and LOG, while, for the precipitation and sunshine,
duration was relatively low. Global warming was a key factor influencing the phytophenological
changes in the Qinling Mountains, as the rising temperature advanced the SOG, delayed the
EOG, and prolonged the LOG. This effect was more obvious in the southern and northern slopes
of the Qinling Mountains with an altitude of 1000 to 2000 m. However, for the alpine areas, the
effect of global warming to the phytophenological change was more complex, which might be
related to the low increase of active accumulated temperature and the extraordinary sensitivity of
Chinese larches (Larix chinensis) and Farges’ firs (Abies fargesii). Stations in the Funiu
Mountains in the east part of the Qinling Mountains displayed a poor correlation with the active
accumulated temperature, indicating that this region was not significantly impacted by global
warming.
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