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Abstract. Phase unwrapping (PU) is one of the key processes in measuring the elevation or
deformation of the Earth’s surface from its interferometric synthetic aperture radar (InSAR)
data. PU problems may be formulated as maximum a posteriori estimation estimations of
Markov random field (MRF). The key issue of this formulation is energy minimization.
Iterated conditional mode (ICM), graph cuts (GC), loopy belief propagation (LBP), and sequen-
tial tree-reweighted message passing (TRW-S) have been proposed for the energy minimization.
Unfortunately, they differ in the formulation of the MRF model for PU, which raises the question
of how they compare against each other on the same MRF model for PU. We address this by
investigating the four optimization algorithms and comparing them on an identical MRF model,
which gives researchers some guidance as to which optimization method is best suited for solv-
ing the PU problem. Experiments using simulated and real-data illustrate that the GC algorithm
is clearly the winner among the four algorithms in all cases. The ICM algorithm, although very
rapid, performs much worse than the other three especially in the terrain with violent changes
or discontinuities. The two message-passing algorithms—LBP and TRW-S—perform com-
pletely differently. The LBP algorithm performs surprisingly poorly on solving phase disconti-
nuities issue, whereas the TRW-S algorithm does quite well (second only to the GC algorithm).
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1 Introduction

Interferometric synthetic aperture radar (InSAR) is a powerful tool not only for the
reconstruction of the topography,1 but also for the Earth’s surface deformation retrieval.2,3

An InSAR system makes use of two or more SAR images covering the same scene to generate
interferograms. The acquired interferometric phase is the principal value of the absolute phase,
which corresponds to topography or deformation and is called the wrapped phase. Phase
unwrapping (PU) is the process of resolving the absolute phase through the wrapped phase.
PU is based on the assumption that the absolute value of phase difference between any two
neighboring pixels is less than π, termed the Itoh condition.4 The Itoh condition can be violated
if the absolute phase surface is discontinuous or if the wrapped phase is noisy. The existence of
low coherence regions and rapid-phase variations poses challenges to two dimensional (2-D)
PU algorithms.
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PU approaches comprise three main classes: path following, minimum norm, and Bayesian
approaches. Path following algorithms apply line integration schemes over the wrapped phase
image and rely on the assumption that the Itoh condition holds along the integration path.
Wherever this condition fails, different integration paths may lead to different unwrapped
phase values. Path following algorithms include branch cuts,5,6 quality-guided,7,8 mask cut,4,9

and minimum discontinuity.10,11 These approaches are sensitive to Itoh conditions that are
often violated in 2-D cases. The second category of algorithms is minimum norm methods,
which attempt to find a phase solution for which the Lρ norm of the difference between absolute
phase differences and wrapped phase differences is minimized. In the case ρ ¼ 2, we have a
least-squares method.12 A drawback of the L2 norm-based criterion is that it tends to smooth
discontinuities, unless they are provided as binary weights.13 The minimum cost flow (MCF)
algorithm, the ρ ¼ 1 case of the Lρ norm method, was proposed by Costantini.14 L1 norm-based
criterion performs better than L2 norm in preserving discontinuities. Obviously, L0 norm is the
most desirable in practice as it tends to be more accurate than other Lρ criteria, but it was proved
an NP-hard problem by Chen;15 hence, only approximated L0 norm solutions can be
achieved.4,16 In recent years, as the multitemporal/multibaseline InSAR attracted increasing
interests, it is with significance to unwrap interferogram series to support these techniques,
e.g., permanent scatterer SAR interferometry (PSInSAR),17 small baseline subset (SBAS).18

In 2004, Kampes and Hanssen19 proposed a least-squares AMBiguity decorrelation adjustment
algorithm, which is borrowed from GPS technique to solve the phase ambiguity problem in
PSInSAR. In 2007, Hooper and Zebker20 presented a technique for three-dimensional (3-D)
PU in PSInSAR, which relies on first unwrapping in 1-D, then iteratively improving this solution
in the other two dimensions. In 2011, Pepe et al.21 developed an extended 3-D (2-D image plus
1-D time) MCF algorithm in SBAS technique. In 2012, Costantini et al.22 proposed a general
formulation for multidimensional PU, which exploits a highly redundant set of measurements of
finite differences to perform PU with a reliable and accurate integration.

The Bayesian approach relies on a data observation mechanism model as well as a priori
knowledge of the phase to be modeled.23 One of the reasons why this framework is so popular
is that it can be justified in terms of maximum a posteriori estimation (MAP) of a Markov ran-
dom field (MRF),24 whose major advantage lies in their ability to take contextual information
into account.25 Hence, PU problems are naturally represented in terms of energy minimization,
where the energy minimization approaches are originally used, such as iterated conditional
modes (ICM)26 or simulated annealing (SA).27 For instance, in 2004, Ferraiuolo et al.28 proposed
a solution of the MAP problem for PU achieved using ICM and showed the good performances
of the method. In 2006, Ying et al.29 proposed an MRF approach utilizing an efficient algorithm
for parameter estimation using a series of dynamic programming connected by the ICM algo-
rithm. In 2013, Chen et al.30 proposed an integrated denoising and unwrapping of InSAR phase
based on MRF using SA algorithm. However, the two well-known optimization approaches,
i.e., ICM and SA, originally used are proved to be either ineffective or extremely inefficient.

Over the last few years, energy minimization approaches have had a renaissance, primarily
due to powerful new optimization algorithms, such as graph cuts (GC),31,32 loopy belief propa-
gation (LBP),33 and sequential tree-reweighted message passing (TRW-S).34,35 These new opti-
mization methods have proven to be very powerful for solving vision problems, such as
stereomatching, photomontage, and image segmentation. In the realm of PU, the new optimi-
zation algorithms have been proposed in several literatures. For example, in 2001, Frey et al.36

proposed a new representation for the 2-D PU problem and showed that LBP produces results
that are superior to existing techniques. In 2007, Bioucas-Dias and Valadao37 proposed a PU
algorithm based on GC and validated that this approach, referred to as phase unwrapping
max-flow/min-cut (PUMA), provides good results. In a similar way, in 2009, Ferraioli et al.38

extended the GC unwrapping algorithm for multichannel SAR interferograms. This algorithm is
meant to directly reconstruct target height h from the interferometric phase series through
a GC approach similar to the PUMA algorithm.

Furthermore, some attention has also been paid to the comparison of various optimization
algorithms. Among them is Ref. 39, which conducted a comparative study on identical MRF
models on a set of energy minimization benchmarks, such as stereo, image stitching, interactive
segmentation, and denoising. What is more,39 it provided a unifying software framework that
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facilitated a fair comparison of optimization techniques. Unfortunately, relatively little attention
has been paid to the comparison of various optimization algorithms for PU. This raises the ques-
tion of how they compare with each other in terms of the identical MRF model for PU. In this
paper, we show a comparison of the ICM, GC, LBP, and TRW-S algorithms on the identical
MRF model for PU, with the hope to give researchers some guidance as to which optimization
method is best suited for solving the PU problem. We show that an MRF model can be used to
solve a PU problem and examine the four optimization algorithms from different aspects using
simulated data, which depends on their capability against different phase surfaces, noise levels,
and clique potentials. Moreover, we also use real data to compare the solution quality and run-
time of the four algorithms on real applications. This paper is organized as follows: Sec. 2
explains the formulation of the identical MRF for PU used in our tests. Section 3 describes
the implementations of the four optimization algorithms on the same MRF model for PU in
our tests. Section 4 provides simulated and real-data experiments of the four optimization
algorithms in which some detailed analysis and comparison are provided. Finally, Sec. 5
concludes this paper.

2 Markov Random Field Model for Phase Unwrapping

The wrapped phase φ and the unwrapped (absolute) phase ϕ are related by multiples of 2π.
Formally, we have

EQ-TARGET;temp:intralink-;e001;116;489ϕ ¼ φþ 2kπ; (1)

where k is the wrap count. The PU problem determines the unknown wrap count k for each pixel.
Dias and Leitão40 suggested a general MRF model for PU, which is defined in terms of an energy
function under a Bayesian perspective

EQ-TARGET;temp:intralink-;e002;116;422EðkjφÞ ¼
X

p∈P;q∈Np

VðΔϕpqÞ; (2)

where P is the set of pixels in a phase image and N is the neighborhood system in the four-
connected image grid graph. In the computation, the value of k can be the binary variables of 1 or
0, which means that every pixel’s label either increases by one (phase plus 2π) or remains
unchanged. We believe that the value of k can also be negative in MRF-based PU algorithms,
i.e., k ∈ f0; 1;−1g, which is similar to the traditional PU algorithms, e.g., path following algo-
rithms, in which the PU result can be uniquely achieved by a simple integration process, i.e.,
addition of a 2π or subtraction of a 2π. Under this condition, the energy minimization is achieved
by multilabel optimization. The reason why a binary-label is chosen is that binary optimization is
advantageous over multilabel optimization because the global minimum can only be reached for
binary optimization, whereas there is no approach that can reach a global minimum for multi-
label optimization. We also compared the performance of binary-label and multilabel optimi-
zation for PU problem, which illustrates that binary-label optimization performs much better
than multilabel optimization when facing rapid-phase variations or phase discontinuities.
However this issue is out of the scope of this paper. Moreover, we believe that it is not fair
to pick only one MRF model to compare the four optimization algorithms for PU. It is
worth mentioning that changes of the MRF model for PU depend on choosing different clique
potentials Vð·Þ, a real-valued function, which defines how the phase of the neighboring pixels in
the clique interacts.29,37 Notice that the topography phase images usually contain two compo-
nents: a spatially smooth component where the topography is comparatively flat and a non-
smooth component where the local topography varies drastically. Hence, a wide range of
potential functions has been studied in the PU literature, which can effectively handle the
type of mixed image characteristics, i.e., both smooth and nonsmooth features. The clique poten-
tial is usually defined by a generalized-ρ Gaussian model, which is given as

EQ-TARGET;temp:intralink-;e003;116;101Vð·Þ ¼ ðΔϕpqÞρ; (3)
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where Δϕpq measures the absolute phase difference of assigning labels kp and kq to two
neighboring pixels given as

EQ-TARGET;temp:intralink-;e004;116;469Δϕpq ¼ ½2πðkp − kqÞ þ Δφpq�; (4)

EQ-TARGET;temp:intralink-;e005;116;436Δφpq ¼ φp − φq; (5)

and ρ is potential exponent, which decides the employed error criterion. When ρ ¼ 2, we have a
quadratic model, which produces smooth images with very low probability of sharp transitions in
intensity. When ρ ¼ 1, we have a linear model, which performs better than quadratic model in
what discontinuity preserving is concerned. Such clique potentials, when ρ ≥ 1, are named as
convex clique potentials, which embrace the classical minimum Lρ norm PU problem. To allow
for even sharper intensity transitions, nonconvex potential functions, when 0 < ρ < 1, is
employed. Hence, we will evaluate the performance of the four optimization algorithms
using different clique potentials in Sec. 4.3.

This energy minimization for PU is achieved by a finite sequence of binary minimizations,
which can be solved by different optimization algorithms, such as ICM, GC, LBP, and TRW-S
algorithms, as is explained in Sec. 3. The overall process of MRF-based PU approach is shown in
Fig. 1. Initially, the labels of all pixels are set to zero, i.e., kt¼0

p ¼ 0. At each iteration step, every
pixel’s label either be 1 (phase plus 2π) or 0 (phase remains unchanged), i.e., ktþ1

p ¼ ktp þ δtþ1
p ,

in which the t denotes iteration and δtþ1
p ∈ f0; 1g. Every iteration aims to decrease the value of

the energy function [Eq. (2)]. After each iteration, the unwrapped phase is updated, i.e., ϕtþ1
p ¼

2ktþ1
p π þ φ and the energy function Eq. (2) is recalculated. When the energy ceases to decrease,

the iteration is terminated, where the unwrapped phase is estimated, i.e., ϕt¼end
p ¼ 2kt¼end

p π þ φ.

3 Optimization Algorithms for Phase Unwrapping

In this section, we describe the four optimization algorithms that we have implemented for MRF
model to solve PU problem. Most of the algorithms were implemented by the software interface
available at: http://vision.middlebury.edu/MRF/ for energy minimization; the exceptions is the
GC algorithm, for which we refer to an approximate algorithm as a minor modification of
standard GC algorithm to handle nonconvex clique potentials proposed in Ref. 37.

Fig. 1 Flowchart of the MRF-based PU approach.
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3.1 Iterated Conditional Modes

The ICM algorithm proposed by Ref. 26 is an iterative algorithm that modifies at each step the
labels of each site by keeping the other fixed, but differently from SA and others stochastic
algorithm, the new value is chosen in a deterministic way. The algorithm goes through all
the pixels p, it starts with an estimate of the labeling kp ¼ 0, and calculates the energy function
for each possible value of kp ∈ f0; 1g

EQ-TARGET;temp:intralink-;e006;116;656dpðkpÞ ¼
X

p∈P;q∈Np

VðΔϕpqÞ; (6)

and then compares the label assigned to the pixel p at the t’th iteration using the value that yields
the largest decrease in the energy function. Hence, given the wrapped phase φ and the labels, the
algorithm sequentially updates each ktp into ktþ1

p by minimizing EðkpjφÞ with respect to kp. The
process ends when the number of updates between two consecutive iterations becomes too small.
This algorithm is very fast and is not computationally heavy as it just needs to evaluate the
energy function at each iteration. By the way, the effectiveness of this algorithm is strictly related
to the initialization kt¼0

p provided to the algorithm. Unfortunately, the results of this algorithm are
extremely sensitive to the initial estimate, and can often be trapped in the local minimum nearest
to the initial solution due to the huge number of local minima (Algorithm 1).

3.2 Graph Cuts

We used the GC algorithm provided in Ref. 37. By mapping binary optimizations onto graph
max-flows, the energy function [Eq. (2)] is rewritten as

EQ-TARGET;temp:intralink-;e007;116;440Eðktp þ δtþ1
p jφÞ ¼

X
p∈P;q∈Np

V½2πðδtþ1
p − δtþ1

q Þ þ Δϕt
pq�: (7)

Algorithm 1 Iterated conditional mode.

Initialization k0 ¼ 0, possible_improvement = 1

1: while possible_improvement do

2: for all pixel p do

3: if dpð1Þ < dpð0Þ then

4: k tþ1
p ¼ k t

p þ 1 (phase plus 2π)

5: else

6: k tþ1
p ¼ k t

p (remain unchanged)

7: endif

8: endfor

9: if Eðk tþ1jφÞ < Eðk t jφÞ then

10: ϕtþ1 ¼ φþ 2k tþ1π

11: else

12: possible_improvement = 0

13: endif

14: endwhile
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For the sake of simplicity, Eq. (7) is renamed as

EQ-TARGET;temp:intralink-;e008;116;723Eðktp þ δtþ1
p jφÞ ¼

X
p∈P;q∈Np

Epðδtþ1
p ; δtþ1

q Þ: (8)

The minimization of Eq. (8) can be achieved through a cut on a weighted graph σ ¼ hν; ei
(ν and e denote the set of vertices and edges, respectively) with two terminals s and t, if and
only if it satisfy the regularity condition

EQ-TARGET;temp:intralink-;e009;116;642Epð0; 0Þ þ Epð1; 1Þ ≤ Epð1; 0Þ þ Epð0; 1Þ: (9)

An s − t cut is a set of edges such that the terminals are separated into two disjoint sets s ∈ S
(phase plus 2π) and t ∈ T (phase remains unchanged). The cost of the cut equals the sum of its
edge weights between S and T. According to Eq. (8), we have

EQ-TARGET;temp:intralink-;e010;116;573

Eð0; 0Þ ¼ Vðφp − φqÞ
Eð1; 1Þ ¼ Vðφp − φqÞ
Eð0; 1Þ ¼ Vðφp − φq − 2πÞ
Eð1; 0Þ ¼ Vðφp − φq þ 2πÞ: (10)

A directed edge ðp; qÞ is assigned the weight of Eð0; 1Þ þ Eð1; 0Þ − Eð0; 0Þ − Eð1; 1Þ.
Moreover, for vertex p, if Eð1; 0Þ − Eð0; 0Þ > 0, an edge ðs; pÞ is assigned the weight of, oth-
erwise, an edge ðp; tÞ is assigned the weight of Eð0; 0Þ − Eð1; 0Þ. Similarly, for vertex q, if
Eð1; 1Þ − Eð1; 0Þ > 0, an edge ðs; qÞ is assigned the weight of Eð1; 1Þ − Eð1; 0Þ, otherwise, an
edge ðq; tÞ is assigned the weight of Eð1; 0Þ − Eð1; 1Þ. Elementary graphs are constructed and
merged to obtain a main graph, shown in Fig. 2. Once energy is mapped on to the graph, energy
is easily minimized using the min-cut/max-flow on the constructed graph. Among the available
max-flow algorithms, we have used the augmenting path algorithms proposed in Ref. 41 for
finding the min-cut/max-flow. For nonconvex potential, the GC algorithm of convex potential
does not fit because it faces with the problem that the condition of regularity [Eq. (9)] does not
hold for every pairwise clique interaction. In other words, it is not possible to map an energy
function onto a graph, and energy cannot be minimized via standard GC algorithm. This problem
can be resolved by applying majorize minimize (MM) concepts to energy function. That is
wherever the pixel pair does not satisfy the regularity condition [Eq. (9)] then the edge weight
between pixel pairs is set to zero to satisfy the regularity condition. The main computational cost
of GC algorithm lies in computing the min-cut, which is done via max-flow. Thus, the computa-
tional complexity of GC algorithm for PU is Oðn2mÞ for a given T, where n and m are the
number of vertices and edges, respectively, and T is the number of iterations (Algorithm 2).

Fig. 2 (a) Elementary graphs are constructed and (b) merged to obtain a main graph, where s and
t represent terminals, and p and q represent the two neighboring pixels.
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3.3 Max-Product Loopy Belief Propagation

The LBP algorithm provided by Ref. 42 is a message-passing algorithm that passes messages
around the graph defined by a four-connected image grid. The method is iterative, with messages
from all nodes being passed in parallel. Each message is a vector of labels k ∈ f0; 1g. Let mt

p→q

be the message that node p sends to a neighboring node q at iteration t. It starts with all entries in
mt

p→q initialized to zero. At each iteration, new messages are computed as follows:

EQ-TARGET;temp:intralink-;e011;116;257mt
p→qðkpÞ ¼ min

kp

"
VðΔϕpqÞ þ

X
s∈NðpÞ\q

mt−1
s→pðkpÞ

#
; (11)

where NðpÞ \ q denotes the neighbors of p other than q. Messages are passed along rows and
then along columns. When a row or column is processed, the algorithm starts at the first node and
passes messages in one direction. Once the algorithm reaches the end of a row or column, mes-
sages are passed backward along the same row or column, and then a belief vector is computed
for each node

EQ-TARGET;temp:intralink-;e012;116;144bpðkpÞ ¼
X

q∈NðpÞ
mt

q→pðkpÞ: (12)

Finally, the label kp that minimizes bpðkpÞ individually at each node is selected. Iterations
terminate when energy no longer decreases. The major advantage of the LBP algorithm lies in
their ability to deal with nonconvex potential and implementation in a simple fashion. However,

Algorithm 2 Graph cuts.

Initialization k0 ¼ 0, possible_improvement = 1

1: while possible_improvement do

2: Compute Eð0;0Þ, Eð1;1Þ, Eð0;1Þ, and Eð1;0Þ for every pixel pair

3: Find nonregular pixel pairs ½Eð0;1Þ þ Eð1;0Þ − Eð0;0Þ − Eð1; 0Þ < 0�. If there is any,
regularize it using the MM method (for instance, set the edge weight to zero).

4: Construct elementary graphs and merge them to obtain the main graph.

5: Compute the max-flow/min-cut ðS; T Þ

6: for all pixel p do

7: if pixel p ∈ S then

8: k tþ1
p ¼ k t

p þ 1 (phase plus 2π)

9: else

10: ktþ1
p ¼ kt

p (remain unchanged)

11: endif

12: endfor

13: if Eðktþ1jφÞ < Eðkt jφÞ then

14: ϕtþ1 ¼ φþ 2ktþ1π

15: else

16: possible_improvement = 0

17: endif

18: endwhile
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it is not guaranteed to converge and may go into an infinite loop switching between two labeling.
In other words, it has a strong local minimum property that is somewhat analogous to that of the
ICM algorithm. The implementation of the message-passing algorithm on the grid graph all run
in OðnÞ time for a given T, where n is the number of pixels in the image and T is the number of
iterations (Algorithm 3).

3.4 Sequential Tree-Reweighted Message Passing

The TRW-S algorithm proposed by Ref. 35 is another message-passing similar to the LBP algo-
rithm. The message update rule is identical to Eq. (11) of the standard LBP. However, the most
striking difference from the LBP algorithm is its strategy to pass messages on grids. In the TRW-
S implementation, nodes are processed in a scan-line order with a forward and backward pass.
In the forward pass, each node sends messages to its right and bottom neighbors. In the backward
pass, messages are sent to the left and upper neighbors. Another difference involves labels
computed from the messages. In LBP, each pixel chooses independently the label with the
lowest belief bpðkpÞ, whereas in TRW-S, the labeling kp ∈ f0; 1g is computed from that
minimizes

EQ-TARGET;temp:intralink-;e013;116;187cpðkpÞ ¼
X

q∈Nleft;upðpÞ
VðΔϕpqÞ þ

X
q∈Nright;bottomðpÞ

mt
q→pðkpÞ: (13)

It is noted that there is no guarantee that the energy of TRW-S implementation might actually
decrease with time. In practice, the energy sometimes starts to oscillate. To deal with this issue,
one could keep track of the lowest energy to date and return that state when the algorithm is
terminated. The computational complexity of TRW-S algorithm is same as the LBP algorithm
(Algorithm 4).

Algorithm 3 Loopy belief propagation.

Initialization k0 ¼ 0, m0
p→q ¼ 0, possible_improvement = 1

1: while possible_improvement do

2: Update the messages mt
p→q and pass them along rows and then along columns. Once the algorithm

reaches the end of a row or column, messages are passed backward along the same row or column.

3: for all pixel p do

4: if bpð1Þ < bpð0Þ then

5: k tþ1
p ¼ k t

p þ 1 (phase plus 2π)

6: else

7: k tþ1
p ¼ k t

p (remain unchanged)

8: endif

9: endfor

10: if Eðk tþ1jφÞ < Eðkt jφÞ then

11: ϕtþ1 ¼ φþ 2ktþ1π

12: else

13: possible_improvement = 0

14: endif

15: endwhile
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4 Performance Analysis

In this section, the performance of the four optimization algorithms is compared with different
aspects on some simulated data, which depends on their capability against different phase sur-
faces, noise levels, and clique potentials. In addition to that, we test the performance of each
algorithm on real applications using real data and compare their accuracy. We implemented
the algorithms in C or C++ and ran every experiment presented here on the same computer
(2.5 GHz and 8 Gbyte RAM).

4.1 Comparison of Different Phase Surfaces

To analyze the accuracy of the four optimization algorithms, simulated data of different phase
surfaces are used in the experiment. We define the simulated data based on two types of phase
surfaces (one is continuous phase surface and other is discontinuous phase surface); hence, we
have simulated four datasets introduced in Refs. 37 and 40 and the phase images shown in Fig. 3:
first column—Gaussian surface, size 256 × 256; second column—Peaks surface generated by
MATLAB’s Peaks function, size 256 × 256; third column—discontinuous Gaussian surface
with a quarter set to zero, size 256 × 256; and fourth column—discontinuous Gaussian surface
with a nonvertical and nonhorizontal aligned sector set to zero, size 256 × 256.

In the first experiment, we test the four algorithms on two kinds of continuous phase surface.
Figures 3(b) and 3(c) show two wrapped phase images (256 × 256 pixels); they are generated
from original absolute phase surfaces formed by Gaussian elevations with heights of 45 or
70 rad, which are shown in Figs. 3(a) and 3(b). The two wrapped images are simulated according
to an InSAR observation statistics,37 producing an interferometric pair with coherence coefficient
1.0 (noise-free). Regarding the first image, Fig. 4 shows the corresponding unwrapped surface
by the four algorithms using convex potential VðxÞ ¼ x2, which produces smooth images with
very low probability of sharp transitions in intensity.40 It can be noted that the four algorithms all

Algorithm 4 Tree-reweighted message passing.

Initialization k0 ¼ 0, m0
p→q ¼ 0, possible_improvement = 1

1: while possible_improvement do

2: Update the messages mt
p→q and pass them in scan-line order with a forward and backward pass.

In the forward pass, each node sends messages to its right and bottom neighbors.
In the backward pass, messages are sent to the left and upper neighbors.

3: for all pixel p do

4: if cpð1Þ < cpð0Þ then

5: k tþ1
p ¼ k t

p þ 1 (phase plus 2π)

6: else

7: k tþ1
p ¼ k t

p (remain unchanged)

8: endif

9: endfor

10: if Eðk tþ1jφÞ < Eðkt jφÞ then

11: ϕtþ1 ¼ φþ 2ktþ1π

12: else

13: possible_improvement = 0

14: endif

15: endwhile
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successfully accomplish correct unwrapping. To quantitively analyze the accuracy of each algo-
rithm, the root mean square (rms) errors are listed in Table 1. It can be noticed that the four
algorithms have the same rms error value 0.0 (error free), meaning that the four algorithms
can generate flawless results for noise-free inputs.

Regarding the second wrapped image, Fig. 3(d), although the coherence value is at the maxi-
mum (there is no noise), the phase fringes vary drastically and generate a lot of residues that
degrade the accuracy of the unwrapping. Figure 5 shows the corresponding unwrapped surfaces
obtained by the four algorithms using again convex potential VðxÞ ¼ x2. In Figs. 5(c), 5(e), and
5(g), we can see that the GC, LBP, and TRW-S algorithms all unwrap the phase image flawlessly.
The exception is ICM algorithm, which unwraps several regions incorrectly as shown in
Fig. 5(a). As indicated by the metrics in Table 1, the GC, LBP, and TRW-S algorithms have
identical rms error value 0.0 (no error), whereas the ICM algorithm has higher rms error, which
means that the ICM algorithms show a poor performance regarding the unwrapping of phase
surface where the local topography varies drastically. This is because the ICM algorithm can

Fig. 4 Unwrapped Gaussian phase surfaces generated by the (a) ICM algorithm, (c) GC algo-
rithm, (e) LBP algorithm, and (g) TRW-S algorithm. (b), (d), (f), and (h) The mesh corresponding
to (a), (c), (e), and (g), respectively.

Fig. 3 Test on the four simulated data with different phase surfaces. (a) Gaussian surface, size
256 × 256, (c) peaks surface, size 256 × 256, (e) discontinuous surface with a quarter set to zero,
size 256 × 256, and (g) discontinuous surface with a nonvertical and nonhorizontal aligned sector
set to zero, size 256 × 256. (b), (d), (f), and (h) The wrapped phase images corresponding to (a),
(c), (e), and (g), respectively.
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often be trapped in the local minimum nearest to the initial solution due to the rapid-phase
variations.

In the second experiment, we examine the four algorithms on Gaussian surface with discon-
tinuities. Figures 3(e) and 3(g) are both analogous to Fig. 3(a), but now the original Gaussian
surface is changed with a quarter set to zero and with both sectors set to zero, respectively.
Therefore, this null quarter causes many discontinuities, which renders a very difficult PU prob-
lem. Notice that we do not utilize any discontinuity information from any quality map to the four
optimization algorithms in this experiment. We employ nonconvex clique potential VðxÞ ¼ x0.5,
which is desirable to allow discontinuity preservation.37 Figures 6 and 7 show the two kinds of
unwrapped surfaces produced by the four algorithms, respectively. It can be illustrated visually
that the ICM and LBP algorithms both fail completely. On the contrary, the GC and TRW-S
algorithms appear to unwrap the two discontinues image correctly. The same behavior can
be noticed in Table 1, where the GC and TRW-S algorithms have lower error than the other
two, which means that the GC and TRW-S algorithms suffer less from the discontinuity effects,
whereas the ICM and LBP algorithms are both ineffective on solving discontinuities issue. The
reason may be that the ICM and LBP algorithms are both easily trapped in the local minimum
due to the phase discontinuities.

4.2 Comparison of Energy and Time

Considering that a logical way to compare optimization algorithms is in terms of energy and
running time, we produce plots that record energy decrease versus time for every algorithm

Fig. 5 Unwrapped peaks phase surfaces generated by the (a) ICM algorithm, (c) GC algorithm,
(e) LBP algorithm, and (g) TRW-S algorithm. (b), (d), (f), and (h) The mesh corresponding to
(a), (c), (e), and (g), respectively.

Table 1 Rms errors (rad) of the four algorithms on the simulated data of the different phase
surface types.

Algorithms
Gaussian
surface

Peaks
surface

Discontinuous surface with
a quarter set to zero

Discontinuous surface with
both sectors set to zero

ICM 0.00 4.11 8.71 5.76

GC 0.00 0.00 0.00 0.33

LBP 0.00 0.79 7.9 5.65

TRW-S 0.00 0.01 0.93 0.73
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tested. It is particularly clear that the best methods produce energies that are extremely close to
the global minimum. The processes of global energy minimization for the four optimization
algorithms tested on four data sets are shown in Fig. 8. The x-axis of the plot shows the running
time, and the y-axis shows the energy of the different methods over time. To quantitively analyze
the computational performance of each algorithm, the running time (s) is show in Table 2.
Regarding the Gaussian surface, Fig. 8(a), it can be noticed that the four algorithms all reach
the global minimum, which means that they can generate reasonable results. Among them, the
ICM algorithm needs the least time to converge, followed by the TRW-S and GC algorithms, and
the LBP algorithm is the slowest. Concerning the peaks surface, Fig. 8(b), it can be observed that
the TRW-S algorithm reaches the global minimum quickly and close to its GC algorithm. The
LBP algorithm is slower and performs slightly worse than the former two algorithms. On the
other hand, the ICM algorithm is not guaranteed to converge, meaning that the algorithm fails
completely. With respect to the two Gaussian surfaces with discontinuities, Figs. 8(c) and 8(d),
we notice that although slower, the GC algorithm is guaranteed to compute the global minimum,
and very close to its TRW-S algorithm, which comes extremely close but never actually attains

Fig. 7 Unwrapped Gaussian phase surfaces with both sectors set to zero generated by the
(a) ICM algorithm, (c) GC algorithm, (e) LBP algorithm, and (g) TRW-S algorithm. (b), (d), (f),
and (h) are the mesh corresponding to (a), (c), (e), and (g), respectively.

Fig. 6 Unwrapped Gaussian phase surfaces with a quarter set to zero generated by the (a) ICM
algorithm, (c) GC algorithm, (e) LBP algorithm, and (g) TRW-S algorithm. (b), (d), (f), and (h) The
mesh corresponding to (a), (c), (e), and (g), respectively.
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the global minimum. On the contrary, the LBP algorithm does much worse than the other two
solutions and the ICM does even worse. From Table 2, it is worth mentioning that the GC
algorithm is more time consuming than the TRW-S algorithm, presumably due to its high
computational cost of GC that lie in computing the minimum cut via max-flow algorithm.

4.3 Comparison of Different Clique Potentials

In this section, to evaluate what clique potentials should be taken in four algorithms on four
datasets, we calculate the rms error against the clique potentials with different exponents
(between 0.1 and 3). The relationship between the rms error and potential exponents is
shown in Fig. 9. The behaviors of error curves in Figs. 9(a) and 9(b) where phase surface is
continuous show that the rms errors of the four algorithms vary less against the variation of
the potential exponents, which demonstrates that convex and nonconvex potentials both
prove to be effective regarding continuous phase surfaces. Notice that convex potential has
the advantage over nonconvex potential in the situation of continuous phase surface, both in

Fig. 8 Energy decreasing for the unwrapping of image in (a) Gaussian surface, (b) Peaks surface,
(c) discontinuous Gaussian surface with a quarter set to zero, and (d) discontinuous Gaussian
surface with both sectors set to zero.

Table 2 Running time (s) of the four algorithms on the simulated data of the different phase
surface types.

Algorithms
Gaussian
surface

Peaks
surface

Discontinuous surface with
a quarter set to zero

Discontinuous surface with
both sectors set to zero

ICM 0.08 0.15 0.07 0.21

GC 0.58 1.38 0.49 1.18

LBP 1.88 3.5 1.18 2.31

TRW-S 0.21 0.58 0.32 0.68
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stability and computational efficiency. By contrast, it can be noticed in Figs. 9(c) and 9(d) where
the phase surface is discontinuous, that GC and TRW-S algorithms with nonconvex potential
(exponent is less than one) perform much better than that with convex potential (exponent is
more than one), which means that the two algorithms with nonconvex potentials have more
strong discontinuity preserving ability, whereas those with convex potentials tend to smooth
phase discontinuities. On the contrary, the ICM and LBP algorithms are both useless regardless
of whether employing convex or nonconvex potentials.

4.4 Comparison of Different Coherence Coefficients

To test the noise robustness of each algorithm deeply, we test the performances of the four algo-
rithms against different coherence coefficients that are added with different coherence coeffi-
cients (1.0, 0.9, 0.8, 0.7, 0.6, and 0.5). Figure 10 is the relationship between the rms error
(rad) of each algorithm and the coherence coefficient. Regarding the continuous phase surface,
Figs. 10(a) and 10(b), it can be seen that the error curves of the three algorithms are similar in the
majority of the coherence coefficient scale, as the exception is ICM algorithm, which suggests
that the decorrelation effect on the former three algorithms is not evident in the continuous phase
surface. Concerning the discontinuous phase surface, Figs. 10(c) and 10(d), the behavior of these
curves show that the rms error of the GC and TRW-S algorithms varies less than that of the other
two algorithms against the variation of the coherence coefficient, which demonstrates that the
performance of the two algorithms suffers less with the degradation of the coherence coefficient.
On the contrary, in the majority of the coherence coefficient scale, the ICM and LBP algorithms
both generate higher rms errors, which mean that they suffer from poor noise robustness. The
reason is that the ICM algorithm, as mentioned above, is often be trapped in the local minimum
nearest to the initial solution due to the high phase noise, whereas the LBP algorithm is easy to
enter into an infinite loop switching between two labelings, which implies that it has strong local
minimum properties in the high-noise area.

Fig. 9 Relationship between the rms error (rad) of each algorithm and the potential exponents for
the unwrapping of image in (a) Gaussian surface, (b) peaks surface, (c) discontinuous Gaussian
surface with a quarter set to zero, and (d) discontinuous Gaussian surface with both sectors set to
zero.
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4.5 Comparison of Real Data

To test the performances of the four algorithms on real applications, real-data experiment is
performed, which intends to reconstruct the real digital elevation model (DEM) using different
algorithms and compare their accuracy. The SAR interferometric pair used in this experiment is
acquired by two TerraSAR-X images covering the Grand Canyon, USA, and the data are
downloaded from the Infoterra website.43 The major parameters of the interferometric pair are
listed in the Table 3. We use subsets of these two images to generate a flattened interferogram,
Fig. 11(a), with a size of 709 × 1136 pixels and a coherence coefficient map, Fig. 11(b).
Figure 11(c) shows the SAR intensity image of this data, where the topography varies drastically
as it is located across the canyon, therefore, inducing many discontinuities and posing a very
tough PU problem. For comparison, the ASTER G-DEM is simulated into the terrain phase,
which is used as the reference shown in Fig. 11(d). Considering the original phase surface has
many discontinuities, the nonconvex potential VðxÞ ¼ x0.5 is used, which has the discontinuity
preserving ability.

Figure 12 shows the unwrapped results using the four algorithms. We observe that the four
algorithms on real data have similar performance as those on simulated data. The ICM algorithm,
Fig. 12(a), produces noticeable errors throughout the entire image. The LBP and TRW-S algo-
rithms, Figs. 12(a) and 12(d), both remove most of the errors seen in the ICM result, yet some
errors still appear in the bottom right corner due to an aliased wrapped image. The GC algorithm,

Table 3 Major parameters of an interferometric pair of TerraSAR-X.

Wavelength (m) Resolution (m) Polarization Orbit Incidence Date

0.031 3 HH Descending 39.2 March 10, 2008

March 21, 2008

Fig. 10 Relationship between the rms error (rad) of each algorithm and the coherence coefficient
for the unwrapping of image in (a) Gaussian surface, (b) peaks surface, (c) discontinuous
Gaussian surface with a quarter set to zero, and (d) discontinuous Gaussian surface with both
sectors set to zero.
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Fig. 12(b), successfully alleviates the errors in the bottom right corner and generates seemingly
preferable results similar to the reference topography phase, Fig. 11(d). The relative performance
of the four algorithms can also be seen in the metrics in Table 4, where the GC algorithm has the
lowest rms error, followed by the TRW-S and LBP algorithms, and the ICM algorithm generates
the highest rms error. In addition, it can be observed that the ICM algorithm is faster than other
three by a large margin and the GC algorithm is slightly slower than the TRW-S algorithm,
whereas the LBP algorithm is very time-consuming.

5 Conclusions

We examined how the ICM, GC, LBP, and TRW-S algorithms compared with each other when
applied to the same MRF model for PU, which gives researchers some guidance as to which

Fig. 11 Test on the real data of two TerraSAR-X phase images with a size of 709 × 1136 pixels.
(a) Flattened interferogram, (b) coherence coefficient map, (c) SAR intensity image, and (d) topog-
raphy phase simulated by ASTER G DEM, which is used as the reference topography phase.

Fig. 12 Unwrapped results on the real data using the (a) ICM algorithm, (b) GC algorithm,
(c) LBP algorithm, and (d) TRW-S algorithm.

Table 4 Running time and rms errors of the four algorithms on the real data.

Algorithms Running time (s) Rms errors (rad)

ICM 2 11.44

GC 177 1.4

LBP 447 3.47

TRW-S 149 2.3
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optimization method is best suited for solving PU problem. First, we introduced an MRF model
that can be used to solve a PU problem. Second, we described the four optimization algorithms
that we have implemented for identical MRF model. Third, we gave some simulated-data experi-
ments that depend on their capability against the variation of phase surfaces, noise levels, and
clique potentials. In the end, we conducted real-data experiment in which some analysis and
comparison are provided. According to the experimental results, we can, thus, conclude that:

1. We tested the performances of each algorithm against Gaussian, peaks and two discon-
tinuous phase surfaces, respectively. We observed that the four algorithms all flawlessly
unwrap the Gaussian surface. Moreover, we noticed that the LBP, GC, and TRW-S algo-
rithms unwrap the peaks surface correctly, unlike the ICM algorithm. With respect to the
discontinuous surface, we noted that the ICM and LBP algorithms are both ineffective,
whereas the GC and TRW-S algorithms perform much better than other two algorithms.

2. We analyzed the minimum energy levels reached versus the running time characteristic
of each algorithm for PU process. Among them, the ICM algorithm is very rapid, but it is
not guaranteed to converge in peaks and two discontinuous surfaces. The GC algorithm
converges more slowly but to a slightly lower energy than the solution found by the
TRW-S algorithm in all cases. The LBP is very time consuming, and it never actually
attains the global minimum in two discontinuous cases.

3. We examined the performances of each algorithm against convex and nonconvex clique
potentials. It can be noted that the four algorithms with convex and nonconvex potentials
prove to be effective to unwrap the continuous phase surfaces. Given this situation, con-
vex potential has priory over nonconvex potential because of its stability and efficiency.
It can also be noticed that the GC and TRW-S algorithms with nonconvex potentials have
more strong discontinuity preserving ability, whereas the ICM and LBP algorithms are
both useless regardless of whether using convex or nonconvex potentials.

4. We tested the noise robustness of the four algorithms against different coherence coef-
ficient. Regarding the continuous phase surface, we noticed that the decorrelation effect
on the GC, LBP, and TRW-S algorithms is not evident as the exception is ICM algorithm.
With respect to the discontinuous surfaces, we observed that the GC and TRW-S
algorithms suffer from less decorrelation effect compared with other two algorithms.

5. We examined the performance of the four algorithms on TerraSAR-X data to reconstruct
the DEM of Grand Canyon, USA. We observed that the four algorithms on real data have
a similar performance as those on simulated data, where the GC algorithm unwraps
the phase image correctly, with the TRW-S algorithm resulting in a slightly larger errors.
In contrast, the LBP algorithm performs worse compared with the former two and
the ICM algorithm fails to unwrap the phase image completely.

We summarized evaluating the performances of the four algorithms as followers: the GC
algorithm is clearly the winner among the four optimization methods in all cases but is slightly
slower than the TRW-S algorithm, presumably due to the computational burden, which lies in
computing the minimum cut via max-flow algorithm. However, the max-flow solution in GC
algorithm has potential for parallelization, which is suitable for GPU acceleration.44 The well-
known older ICM algorithm, although is very rapid, performs much less accurately than the other
three methods, especially in the terrain with the violent change or discontinuities. This is because
that the ICM algorithm can often be trapped in the local minimum due to the rapid-phase
variations or phase discontinuities. There is also a large gap between the performance of the
two message-passing methods—the LBP and TRW-S algorithms. Although the LBP algorithm
is a well regarded and widely used algorithm in vision applications, it performs surprisingly
poorly on solving phase discontinuities issue. This is partly because it may go into an infinite
loop switching between two labelings as the surface is discontinuous. The TRW-S algorithm,
which has not been widely used in vision, performs much faster while closely achieving the
performance of the GC method, and the reason may be the strategy to pass messages on
grids differed from the LBP algorithm. What is more, it is noted that the ICM and two mes-
sage-passing algorithms can also be easily parallelized, making them much more efficient.

It is worth mentioning that we only conduct a comparative study of the four algorithms on
four-connected MRF model, it would be interesting to investigate different grid topologies such
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as an eight-connected topology, as well as nongrid topologies such as those used with Delaunay
triangulation. Moreover, this MRF model for PU can be extended into a 3-D version to help
unwrapping interferogram series in multibaseline InSAR. Thus, it is also worth comparing
the four algorithms in multibaseline configuration. In addition to that, considering parallelization
would be very appealing to take advantage of modern computer architectures, we expect that an
evaluation of the parallelizability of optimization algorithms for PU will be given. In the future,
we will focus on these aspects to conduct a comparative study of the four algorithms.
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