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Abstract. Material detection algorithms used in hyperspectral data processing are computation-
ally efficient but can produce relatively high numbers of false positives. Material identification
performed as a secondary processing step on detected pixels can help mitigate false positives.
A material identification processing chain for longwave infrared hyperspectral data of solid
materials collected from airborne platforms is presented. The algorithms utilize unwhitened radi-
ance data and Nelder–Meade numerical optimization to estimate the temperature, humidity, and
ozone levels of the atmospheric profile. Pixel unmixing is done using constrained linear regres-
sion and Bayesian information criteria for model selection. The resulting identification product
includes an optimal atmospheric profile and a full radiance material model that includes material
temperature, abundance values, and several fit statistics. A logistic regression method utilizing
the model parameters to improve identification is also presented. Several examples are provided
using modeled data at several noise levels. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12
.025019]
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1 Introduction

Longwave infrared (LWIR) hyperspectral imagers (HSI) can capture high spectral resolution
measurements of the electromagnetic spectrum between 7.5 and 13.5 μm.1,2 In this spectral
region, many gas3 and solid materials4,5 have spectral emission/absorption features that are
observable by LWIR HSI. Spectral analysts match observed spectral features found in the
data with those found in a spectral database of materials. This is often performed using auto-
mated material or target detection algorithms.6 Detection algorithms are designed to be computa-
tionally efficient and process spectra quickly; however, they have typical false positive rates of
∼10−5 per pixel for common threshold settings. Detections above the threshold are flagged for
examination by a spectral analyst. As the number of sensors increase and the sensors themselves
improve, collecting greater numbers of pixels, the number of false positives will begin to over-
load the current number of spectral analysts. To mitigate the effect of costly false positives,
a “material identification” algorithm can be added to hyperspectral data processing chains.7,8

Material identification performs a more thorough analysis on a single pixel (or region) of interest
that passed the detection threshold. It is often more time-consuming than detection algorithms
and is not practical to run on a full scene. The resulting product can provide the spectral analyst
with more information about the contents of the pixel. This information, which is often quanti-
tative, can also be used to set additional thresholds to suppress false positives found during the
detection step.

This approach requires estimation of atmospheric parameters (transmission, downwelling
radiance, and upwelling radiance). Temperature emissivity separation algorithms provide
a method of acquiring these terms. The in-scene atmospheric compensation (ISAC)
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algorithm9 utilizes in-scene blackbodies in an algorithm that provides an estimate of atmos-
pheric transmission and upwelling. This method was developed for Aerospace Corporation’s
Spatially Enhanced Broadband Array Spectrograph System (SEBASS). SEBASS is a disper-
sive HSI system that utilizes a liquid helium-cooled focal plane array that has very well-
behaved noise structure and few dead pixels. Not all LWIR HSI sensors have these character-
istics. Another important limitation with ISAC is that blackbody materials are not found in all
datasets (for example, desert scenes). Also, many locations do not have spatially uniform
atmospheric profiles across the scene. Because of these limitations, the ISAC algorithm is
not appropriate for many LWIR HSI imaging scenarios. Other approaches10 require measuring
the atmosphere by sounding and then using this data in a radiative transport code, such as
MODerate resolution atmospheric TRANsmission (MODTRAN)11 to simulate the atmos-
pheric parameters. This approach has limitations relating to the availability of time/location
appropriate sounding data. There are also several methods to “search” for correct atmospheric
and model terms. This is done using precomputed look-up tables for the atmosphere12–14 and
spectral emissivity smoothness as a metric for determining appropriate model parameters
(solid materials have broader spectral features than atmospheric gasses). The processing
chain presented here utilizes some of these concepts in an approach that does not depend
on in-scene blackbodies, sounding, or a spatially uniform atmosphere. It should be noted
that these traditional algorithms are likely more computationally efficient than the processing
chain described in this paper.

This paper demonstrates a physics-based processing chain for performing material identifi-
cation by unmixing nonwhitened LWIR HSI radiance data. Spectra are unmixed by producing
radiance models that match measured scene spectra. The models are comprised of background
endmembers and emissivity spectra that are forward modeled to radiance. Models and scene
measurements are compared using root-mean-squared (RMS) error.

As mentioned earlier, researchers have used sounding to obtain atmospheric temperature,
humidity, and ozone-level profiles. This paper demonstrates how to acquire an estimate of
the atmospheric profile using an optimization algorithm. The temperatures and abundances for
the material of interest can also be determined. If all parameters in the model are correct, then it
should match the measurement. If it does not match, then it is unlikely that the pixel under
inspection contains the material of interest.

The processing chain consists of two primary steps: “atmospheric inference” and “radiomet-
ric modeling/pixel unmixing.”Atmospheric inference is fast enough to be applied to many pixels
and potential atmospheres. Its primary function is to find an estimate of the atmospheric profile,
as it performs a relatively broad search compared to the radiometric modeling/pixel unmixing
step. It also does not operate on the pixel of interest. The radiometric modeling/pixel unmixing
step operates on the pixel of interest and aims to produce a radiometric model that includes
several fit parameters and statistics related to how well the model fits the pixel of interest.
Figure 1 provides the reader with a summary view of the algorithms.

Whether this processing chain is applied to real data or simulated data, there are several
important assumptions that need to be stated:

Fig. 1 This flowchart provides a basic view of the data processing pipeline.
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1. Sensors accurately and precisely measure radiance. This means that it is desirable to
have well-behaved low-noise systems that are radiometrically and spectrally calibrated.
The data should not have artifacts relating to spectral–temporal data collection as one
might find with a Fourier transform interferometer. Dispersive systems, with low smile
and keystone, are favored.

2. MODTRAN simulates atmospheric transmission, upwelling, and downwelling, both
accurately and precisely.

3. Lambertian radiance models are appropriate.
4. Spectral libraries accurately characterize materials as they are found in nature.

This paper is organized as follows. Section 2 describes MODTRAN and provides several
important guidelines for using it in this study. Section 3 describes an approach for obtaining
an optimal atmospheric column parameterization. Section 4 details the Lambertian radiance
model used in this study. Section 5 describes the calculations that occur within each iteration
of the atmospheric inference and pixel unmixing algorithms. Section 6 describes how logistic
regression can be used with multiple model output parameters for identification and reducing
false positives. Section 7 uses the data processing chain in multiple simulations and discusses the
results. Section 8 provides a conclusion. Throughout the document are several implementation
notes that readers should follow if they choose to implement these algorithms.

The radiance unit used here is a micro-Flick (μF), which is a μW∕ðcm2 sr μmÞ.

2 MODTRAN

MODTRAN is a highly capable tool for radiative transport calculations in the Earth’s atmos-
phere at altitudes ranging from below sea level (e.g., Death Valley) to 100 km and wavelengths
between 0.2 and 10;000 μm at a spectral resolution of 0.1 cm−1.

This research makes use of MODTRAN’s “Card2C1” to define the temperature, humidity,
and ozone levels. The optimization code parameterizes the profile at four altitudes. The lowest
altitude is at ground level. The second altitude is at 300 m where the atmospheric boundary layer
could exist. The third altitude is at the aircraft altitude. If the aircraft has an onboard temperature/
humidity/ozone sensor, the data can be used by the algorithm; this will be discussed in Sec. 7.
The fourth altitude is at 10 km. Between each of the defined altitudes, seven additional atmos-
pheric layers are computed using linear interpolation for a total of 25 layers.

For the radiance models defined below, the atmospheric transmission and the upwelling radi-
ance values are calculated by positioning the MODTRAN observer at the altitude of the HSI
sensor. At this setting, the target temperature should be set to 0 K. The downwelling term is
calculated by placing the observer 1 m above the target and setting the target reflectance to
1. The Lambertian reflectance model was used in this work.

Atmospheric band radiance and transmission values vary significantly in narrow wavelength
regions—much narrower than the spectral resolution studied here.9 Therefore, good spectral
calibration (band center and shape) is critical. This approach makes use of simulated data, there-
fore the spectral calibration is known; however, in a real HSI system, wavelength calibration
bandcenters should be known to be within 1/10th of a spectral bin across the entire focal
plane array (accounting for spectral smile and keystone).

The code used to interact with MODTRAN was written in MATLAB™ and makes use of
the MODTRAN class wrapper15 to set the values in the tape5 file. The class wrapper includes
commands to run MODTRAN as well as read the output in the tape7 file.

MODTRAN calculations were performed at 0.1-cm−1 spectral resolution between 1400 and
700 cm−1. The resulting atmospheric arrays had 7001 elements. When appropriate, radiometric
calculations were done in high spectral resolution (specified in the Figs. 3 and 4). Downsampling
was done by integrating under a Gaussian (sigma value of 0.024 μm) spectral line shape for
each spectral band. This approach used a simulated sensor with 178 bands and linewidth
0.024 μm∕band , covering 8.86 to 13.1 μm. Outside of this region the water vapor features
are large and high frequency such that they are not well sampled by MODTRAN at
0.1-cm−1 resolution. Downsampling is done efficiently by creating a bandpass array (dimensions
7001 × 178) that is applied to the high-resolution vectors with a dot product.
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3 Atmospheric Column Parameter Optimization

The atmospheric inference and pixel unmixing methods utilize MODTRAN estimates of the
atmospheric spectral transmission, downwelling, and upwelling. MODTRAN atmospheres
are parameterized by defining the temperature, dew point, and ozone profiles of the atmospheric
column at four altitudes. As will be described in Sec. 5, if these atmospheric terms are known,
one can expect smooth emissivities and low error radiance models. Typically, atmospheric
sounding is used to measure these parameters. Alternatively, metrics relating to emissivity
smoothness and model error can be used with an optimization algorithm to determine a “best”
or optimal atmosphere.

Nelder–Meade (a.k.a. “simplex” or “amoeba” algorithm)14,16 is a common numerical opti-
mization algorithm that does not require an analytical derivative. There are implementations in
many coding packages, such as Python or MATLAB™. An open-source constrained version of
the algorithm in MATLAB™ allows users to set boundaries on each optimization parameter.17

This is particularly useful when the objective function has local minima and the user knows
the initialization is close to an optimal solution.

Numerical optimization algorithms require initialization points and there are several accept-
able ways to do this. One way is to use a set of atmospheric profiles comprised of biased versions
the standard atmospheres. Biasing is done by generating a set of atmospheres where the ground
temperature is centered at the median scene temperature and biased in increments of 2°C above
and below that value. Users should create a set that spans any potential extremes that the atmos-
pheric profile might have. This step can be subjective and rely on the user’s intuition of what
the potential atmospheric conditions might be. The author, at the time of publication, uses a
custom set of atmospheres for this step. Using this set, the atmospheric inference step is run
for a single iteration on each atmosphere in the set. This is then repeated using the same set
of atmospheres but with varying amounts of tropospheric ozone. The best atmosphere in the
set is selected as the initialization point for the atmospheric inference, which is then run for
60 iterations. The output of this is then used as an initialization point for the pixel unmixing
method, which is run several times with different initialization constraints (see Table 1).
Each successive run aims to improve upon the previous estimate of the atmospheric parameters.
The first run improves the estimate of the atmospheric column temperature and humidity.
The second run improves the estimate of the tropospheric ozone concentration. The third run
fine-tunes the most sensitive portions of the profile. As the optimization algorithm defines new
atmospheres, they are saved in a database.

4 Longwave Infrared Lambertian Radiance Model

The LWIR Lambertian radiance model18 is defined as

EQ-TARGET;temp:intralink-;e001;116;278L ¼ BðTÞετ þ ð1 − εÞτLd þ Lu; (1)

where L is the at-sensor radiance (μF), BðTÞ is the blackbody radiance defined at temperature T,
ε is the material emissivity, τ is the transmission of the atmosphere from the ground to sensor,
Ld is the downwelling radiance at ground level, and Lu is the upwelling radiance between the
ground and sensor. The spectral nature of each component is implied, and the λ subscript has,
therefore, been omitted from the equation.

Section 5.2 makes use of a target leaving radiance model that incorporates mixtures of target
spectra as well as scene endmembers. This can be defined as

EQ-TARGET;temp:intralink-;e002;116;163Lleaving ¼
XM

i

fiðLem;i − LuÞ
τ

þ
XN

j

fj½BðTjÞεj − ð1 − εjÞLd�; (2)

whereM is the number of endmembers, N is the number of target spectra, Lem;i is the i’th scene
endmember, and fi and fj are the fractional abundances of each component. In this effort, the
abundances are constrained such that they sum to 1 and are nonnegative.19
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5 Calculations Occurring within Each Iteration

As described in the earlier sections, the atmospheric inference and pixel unmixing algorithms
utilize iterative optimization to find an atmospheric profile that is close to optimal. At each
iteration, tests are done to assess how well model parameters approximate the optimal solution.
This section provides details on the calculations done within each iteration.

A key part of this approach is finding the correct material temperature in the radiometric
model. Both algorithms used in the paper have separate approaches for finding this temperature
for the pixels(s) under inspection. The atmospheric inference method uses an approach inspired
by automatic retrieval of temperature and emissivity using spectral smoothness,12 which deter-
mines optimal temperature by examining the smoothness of the calculated emissivity. On the
other hand, the pixel unmixing algorithm uses a library-based method, where the material
temperature is adjusted to find the lowest “RMS error” between the model and the measurement.
The details of both methods are discussed in Secs. 5.1 and 5.2.

5.1 Temperature Determination for Atmospheric Inference

A key assumption used here is that most solid materials tend to have smoothly varying emissivity
relative to both the sensor’s spectral resolution and the spectral features of atmospheric gasses.14

If Eq. (1) is solved for emissivity and the atmospheric parameters and material temperatures are
known, then the calculated emissivity should be smooth for Lambertian materials.

The method of temperature determination used by the atmospheric inference algorithm is
shown in Fig. 2. Emissivity vectors are created at a range of temperatures spanning
−30∕þ 80 K of the median brightness temperature at intervals of 0.1 K. This is expressed in
Fig. 2 using a MATLAB™ convention for the for loop and interval “:” in “for T ¼ Tmedian −
30∶0.01∶Tmedian þ 80.” A roughness calculation, that is the product of two numbers, is per-
formed on each emissivity vector. The first number is the abs½medianðεT − .95Þ�, which biases
the metric such that high emissivity vectors are favored. The second number is calculated by
downsampling the emissivity vector by a factor of 2, taking the difference (shown as “diff” in
Fig. 2) along the adjacent elements of the array (analogous to a derivative), raising that vector to
the fourth power (this accentuates rough spectral features caused by an incorrect atmosphere but
not emissivity variation), and then taking its mean. A minimum value indicates the least rough

Fig. 2 This flowchart shows the temperature determination method used in the atmospheric
inference algorithm. Equation (1) solved for emissivity is used to calculate emissivity spectra at
a range of temperatures (shown in right hand plot). A roughness metric is used to select the ideal
temperature (left hand plot) at the minimum roughness value. This is repeated for each of the 20
endmembers. The summation of roughness values is used as the cost function in the atmospheric
optimization.
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(or smoothest) emissivity that is close to 0.95. The product of these two numbers is used in the
cost function for the optimization. This process is repeated for all 20 endmembers. Readers
should examine Fig. 3, which shows all steps in the atmospheric inference algorithm.

This procedure is computationally fast and can be applied to many pixels, temperature
ranges, and atmospheres. In a real-world implementation, it is preferable to have pixels that
are at different temperatures and have different emissivities. The 20 endmembers should be col-
lected from an area surrounding the pixel of interest. Depending on the scenario, an appropriate
approach might be to define a rectangle or circle with a width of 10 m around the pixel of interest.
The hope here is that local endmembers are pure versions of the background spectra found mixed
into the target pixel. Ideally, they have similar emissivities, temperatures, and propagate through
the same atmosphere. Endmembers can be selected using the maxD18 algorithm, where the
20 most orthogonal pixel vectors are chosen. Users can employ other endmember selection
algorithms or use a different number of endmembers as required by their scenario.

5.2 Model-Based Temperature Determination and Pixel Unmixing

A key component of material identification is finding the signal model that matches the
measurement. This section describes a method to create radiance models from a subset of
library spectra and the 20 local background endmembers. As in Sec. 5.1, this method is
also a part of an iterative atmospheric optimization used to determine an optimal set of atmos-
pheric parameters. Here, however, a material of interest is unmixed and several statistics useful
for material identification are found.

Unmixing using radiometric models is a multistep process. To aid in understanding this
process, readers should first refer to the flowchart in Fig. 4 and then to the flowcharts presented
in this section. The first step is to obtain an initial temperature estimate of the material of interest.
Using MATLAB™’s “lsqlin”19 models with all material spectra and background endmembers
are fit at a course range of temperatures (dT ¼ 0.5 K). Figure 5(a) details this method. The
temperature found at this step is used in the following model selection step as shown in
Fig. 5(b).

The best-fit model from the initial temperature determination step will likely be overfit.
Reducing the number of variables within the model may result in more reliable model statistics.
This can be done using Bayesian information criteria (BIC). The definition of BIC in model
fitting scenarios where the log-likelihood is being maximized is BIC ¼ −2 · loglikþ
½lnðN BandsÞ� · d,20,21 where loglik is the log-likelihood, N Bands is the number of samples

Fig. 3 This flowchart shows a high-level view of the atmospheric inference algorithm. Section 5.1
and Fig. 2 provide additional details. The importance of the algorithm to the full processing chain is
examined in Sec. 7.2.
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(number of bands), and d is the number of variables (M þ N). Including the number of variables
in a summation term has a regularizing effect. A modified version of this equation (mbic) is used
here for model selection [see Fig. 5(b)]. The primary modification is that the number of variables,
d, is multiplied by the squared term ln ðN BandsÞ2, which results in an increased preference for
simple models.

The reduced model is then used in a final temperature determination step. This step is iden-
tical to the initial temperature determination except that a finer temperature increment is used
(dT ¼ 0.1 K). An important implementation note is the final temperature found here is then used
as an initialization point for the next iteration of atmospheric optimization.

Readers should note that while it is possible for the algorithm to use multiple material spectra
during unmixing, it is not possible to use multiple material temperatures. For many remote sens-
ing scenarios, materials will be at a uniform temperature. Small variations in material temper-
ature produce approximately linear variations in radiance; therefore, the average radiance value
captured of subpixel temperature variability is still likely to be useful—this will depend on the
magnitude of variability and noise of the system. These issues will not be investigated here.

6 Logistic Regression for Spectral Identification

Traditional detection algorithms require a user-defined threshold to establish which pixels are
presented to the analysts. This is also possible with identification algorithms. A useful parameter
might simply be the RMS error between the model and measurement. Identification algorithms
also offer a different approach, where information can come from multiple sources. A spectral
analyst might find it useful to inspect several numerical values before deciding whether
a material is present. The detection score (such as the adaptive cosine estimator),18 RMS
error, overall F-statistic, partial F-statistic,22 target material temperature, number of target mate-
rials, and target abundances may all be useful to the analyst. If the analyst views identification
results from many detections, patterns might appear that would allow for usage of multiple
parameters. One option is to use the fit statistics from known true and false positives to
train a logistic regression algorithm20,21 to define a decision surface that optimally separates
the true and false positives. Once the surface is established, future identification results can
be tested against this decision surface to determine whether the detection is a true or false

Fig. 5 (a) A method for determining model constituents and material temperature is provided here.
A nonnegativity and sum to 1 constraint is placed on the abundances of the model. Referring to
Eq. (2), emleaving has dimension [M × numbands] and Lobj has dimension [N × numbands].
(b) With material temperature held static, a search of models is performed. A modified version
of BIC that more strongly preferences simpler models is used. The maximum mbic value is
chosen as the best model.
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positive. A two-dimensional illustration of this is provided in Fig. 6. The parameters shown here
could be “determined target abundance” versus RMS error, which would reflect that
true positive pixels will likely have low RMS error models and high target abundance.
Adding additional information, such as partial F-statistics, model size, temperature, etc., can
increase the ability of this method to separate true versus false positive detections.

The author has found this to be a powerful approach for eliminating large numbers of false
positives in real datasets. If readers choose to employ this method, caution should be taken when
using data from multiple sensors. A decision surface established using data from one sensor may
not be useful for analyzing data from other sensors with different noise characters. Results using
the simulated data will be provided in Sec. 7.6.

7 Simulations and Results

Using synthetic data makes it possible to create and test algorithms under many different con-
ditions. Presenting the processing chain with challenging conditions, such as increased noise or
low target abundance, allows users to understand the limitations of the processing chain. This
section will present a variety of tests allowing users to understand how well the processing chain
determines abundance, target material temperature, and the overall error when compared to the
measurement. Simulated false positive detections will also be examined with the algorithm, and
their results will be compared to those of the simulated true positives.

NASA’s ASTER spectral library has reflectance measurements of many common materials.
The material types used here (limestones and roofing materials) were chosen because they are
common, have unique spectral features, and do not suggest favoritism toward any applications
(mining, defense, etc.). The simulations in this paper utilize:

jhu.becknic.rock.sedimentary.limestone.coarse.limest1.spectrum and
jhu.becknic.manmade.roofing.rubber.solid.0833uuu.spectrum

as the surrogate target and background material, respectively [see Fig. 7(a)]. All true positive
pixels are modeled using mixtures of these two materials at different abundances and temper-
atures. The input target spectral library used in unmixing includes additional ASTER limestones
[see Fig. 7(c)] with 11.4-μm features:

jhu.becknic.rock.sedimentary.limestone.coarse.limest1.spectrum,
jhu.becknic.rock.sedimentary.limestone.coarse.limest2.spectrum,
jhu.becknic.rock.sedimentary.limestone.coarse.limest3.spectrum,
jhu.becknic.rock.sedimentary.limestone.coarse.limest4.spectrum,
jhu.becknic.rock.sedimentary.limestone.coarse.limest5.spectrum, and
jpl.nicolet.rock.sedimentary.limestone.solid.fge3.spectrum.

Fig. 6 This is an illustration of logistic regression used to optimally adjust identification thresholds.
Each data point represents a pixel that passed the detection threshold and was subsequently
processed by the identification chain. The true and false positives are used to train the logistic
regression decision surface. The future identification result (green) will be classified by the
decision surface; in this case, it will be a true positive.
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The background endmember pixels were created by selecting other common roofing materi-
als also in the ASTER library [see Fig. 7(b)]:

jhu.becknic.manmade.roofing.rubber.solid.0833uuu.spectrum,
jhu.becknic.manmade.roofing.rubber.solid.0834uuu.spectrum,
jhu.becknic.manmade.roofing.shingle.solid.0490uuu.spectrum,
jhu.becknic.manmade.roofing.shingle.solid.0597uuu.spectrum,
jhu.becknic.manmade.roofing.shingle.solid.0672uuu.spectrum,
jhu.becknic.manmade.roofing.shingle.solid.0680uuu.spectrum, and
jhu.becknic.manmade.roofing.shingle.solid.0683uuu.spectrum.

In Sec. 7.6, a confuser concrete material is modeled. The emissivity spectrum for this material
is shown in Fig. 7(a).

The 20 background spectra were modeled using a random material temperature selected from
a Gaussian distribution with mean 30°C and standard deviation 2.5°C. Target temperatures will
be specified in each simulation.

In the following sections, scene radiance spectra are modeled with the middle-latitude summer
standard atmosphere, sensor altitude at 5.5 km above sea level, and 4.5 km above ground level.

Ideally, an analyst would like to see a model with low RMS error, realistic temperature, target
material abundances above ∼0.3 if it is the only target predictor variable in the model, and high
partial F-statistic. Plots of ground leaving radiance, model minus measurement residuals, and
estimated emissivity can also be useful to analysts viewing real data.

7.1 Impact of System Noise on Model Parameters

This section examines the effect of additive Gaussian noise and target material abundances
on several fit parameters. The radiance in the scene measurement was modeled using:

jhu.becknic.rock.sedimentary.limestone.coarse.limest1.spectrum and
jhu.becknic.manmade.roofing.rubber.solid.0833uuu.spectrum

at 25°C and 30°C, respectively. Five sets (a set is 10 scene pixels and 20 endmembers) were
created where the pixel of interest was modeled with abundance values of 0.1 to 1 in incre-
ments of 0.1. At five additive Gaussian noise levels (standard deviation of 0, 0.5, 1, 1.5, and
2 μF), this amounts to 150 spectra total. The limestone spectrum has a spectral emissivity
feature of ∼7% at 11.25 μm. This feature at 25°C and fractional abundance of 0.1 should
be about 4 μF in depth prior to atmospheric attenuation.

The full pipeline was applied to all datasets. Figure 8 shows a summary of the algorithm’s
performance for these tests. The first column shows the RMS error in μF between the modeled
and measured radiances. The second column shows the determined target fractional abundance
from the radiance model. The third column shows the determined temperature. The dashed lines
in the second and third columns are the true values, and deviations from these values are errors.

Fig. 7 Plots of spectra used in the experiments are shown here. (a) The limestone and rubber
roofing materials used in the pixels of interest are shown here. Also shown is the concrete confuser
used in Sec. 7.6. Note the wavelength is bound between 8.86 and 13.1 μm, the spectral region
used in identification. Plots (b) and (c) show the background spectra and target (limestone) library
spectra, respectively.
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Each of the five rows pertains to a different noise level ð0; 0.5; : : : 2 μFÞ. The horizontal axis of
each plot is the fractional abundance of the limestone spectra in each modeled target vector.
The plots show some disagreement in the RMS error between modeled and measured spectra
in the 0-μF noise data. This is expected as the optimized atmospheric profile will not match
the original profile and that will be reflected as error in fit and parameter estimates. Other
contributing effects are found in the values for the “determined fractional abundance” and
the “determined temperature.” At higher target abundances, the error consistently increases.
It is difficult to know exactly why but one likely explanation is that at lower target abundances
(higher background abundances) the background endmembers can explain more of the variance,
as they have a variety of temperatures and spectral shapes. The algorithm shows good matching
between the modeled and predicted abundance (<10% error). This behavior might change if
there is a large discrepancy between predicted and real temperatures, for example, if a predicted
temperature is low, a higher abundance might produce a best-fit model as it would compensate
for the low temperature. Temperature estimations are between 24°C and 26°C for the models
with abundances >50% at all noise levels, with one exception at the zero noise 0.9 abundance
level which was 23.4°C. All target fractional abundance estimations are within 0.1 of their true
values for all models.

7.2 Importance of Atmospheric Inference

Given the number of steps in this processing chain, it is useful to have an understanding of
the importance of each step to overall performance. The pixel unmixing can be run without
estimating the atmosphere with the atmospheric inference algorithm. The results shown in
Fig. 9 utilized the same zero-noise dataset from the first row of Fig. 8. Here, we see that
omitting the atmospheric inference causes a reduction in the accuracy of the determined
temperature and abundance, as well as a dramatic increase in RMS error. The atmospheric
inference algorithm is, therefore, helpful in the retrieval of abundance and temperature and
creating low error models.

Fig. 8 This shows a demonstration of algorithm performance with additive Gaussian noise with
standard deviation of 0, 0.5, 1, 1.5, and 2 μF. Performance is consistent even at higher levels of
noise.
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7.3 Demonstration of Initial Atmospheric Search

The pixel unmixing calculations specified in the second and third row of Table 1 can be omitted
from the processing chain. The reduced pipeline is run on the zero-noise dataset. The results
are shown in Fig. 10. The RMS error values for the model are not substantially higher. The
determined abundance values are also quite reasonable. The determined model temperature
shows much more error than when the full processing chain is used (compare with Sec. 7.1).
The calculations defined in rows 2 and 3 of Table 1 act as priming steps for the last run of
the algorithm (row 4) to help with determining correct material temperatures.

7.4 Examining Effects of Object Temperature Relative to Atmospheric
Temperature

One could imagine scenarios where the object temperature is either above or below the ground
atmosphere temperature. A simulation was conducted where the limestone target temperature
and rubber roof background temperature were increased from 8°C and 13°C to 35°C and 40°C,
respectively, in increments of 3°C. The purpose of the simulation was to monitor the behavior of
the algorithm as object temperature changed relative to a static atmospheric profile. This simulation
used zero-noise data with target fractional abundance of 0.6. The plots in Fig. 11 show that an
object having low temperature (8°C) relative to the atmospheric temperature (∼18°C) could create
a model with high RMS error. In the low-temperature case, the determined abundance is

Fig. 10 Effects of omitting calculations specified in rows 2 and 3 of Table 1.

Fig. 9 Retrieval of model abundance and temperature is negatively affected by omitting the
atmospheric inference algorithm.
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significantly less than it should be, and the determined temperature has high error. The behavior at
higher temperatures resembles results observed in previous simulations.

7.5 Atmospheric Profile Retrieval

As described in Sec. 3, the algorithms used here attempt to find optimal atmospheric profiles.
This section examines the temperature and humidity profile estimates for the zero-noise data-
set with fractional target abundance of 0.6. The results in Fig. 12(a) show little agreement
between the determined temperature/dew point profile and that of the middle-summer latitude.
The test is repeated using a narrow boundary in the Nelder–Meade optimization at the aircraft
altitude—simulating usage of a temperature/humidity sensor onboard the aircraft. The results
from this test in Fig. 12(b) show more agreement to the middle-summer latitude atmosphere.
However, a degree of error remains. A test for future work using just three altitudes in the
atmospheric optimization might show improved results as there are fewer local minima.
The author uses four altitudes to guard against atmospheres with strong boundary layer
conditions.

Fig. 11 The lowest temperatures here show higher error rates and larger deviations in determined
fractional abundance compared to results shown in Fig. 8.

Fig. 12 (a) As can be seen, there is a significant amount of error in this retrieval. The dew point
estimate has errors of over 10°C. Examining the dew point closely, there is an undershoot at low
altitudes and overshoot at higher altitudes. Therefore, the overall effect here is likely similar to
closer approximations of the true atmosphere. This is an example of the algorithm getting trapped
in a local minima. (b) There is a slight improvement made by placing a temperature/humidity
sensor onboard the aircraft.
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7.6 Examination of Outputs for True and False Positive Detections

Material detection steps often produce false positive rates >10−5.18,23 The reason for false alarm-
ing can be related to the statistical whitening process used in many detection algorithms.
Reprocessing the data in radiance space using algorithms, such as the one described in this
paper, will allow users to produce physics-based statistics and parameters that can be used
to further suppress false positives. This section shows how multiple parameters can be used
together to improve system performance.

Four sets of spectra were created:

1. 20 spectra, with abundances of 70% limestone materials (mean temperature 25°C, std 1)
and 30% rubber roofing materials (temperature 30°C),

2. 20 spectra, with abundances of 40% limestone materials (mean temperature 25°C, std 1)
and 60% rubber roofing materials (temperature 30°C),

3. 20 spectra, with abundances of 70% nonlimestone materials (mean temperature 25°C,
std 1) and 30% rubber roofing materials (temperature 30°C), and

4. 20 spectra, with abundances of 40% nonlimestone materials (mean temperature 25°C,
std 1) and 60% rubber roofing materials (temperature 30°C).

The nonlimestone materials were comprised of 20 randomly selected materials from the
ASTER library. The only nonlimestone material that shared common spectral features to the
limestone was jhu.becknic.manmade.concrete.paving.solid.0425uuu.spectrum [see Fig. 7(a)].
Using these 80 spectra, separate low- and high-noise datasets were created using 0.5- and
1.5-μF Gaussian noise, producing a total of 160 spectra.

The full processing chain was used to gather fit results. For many of the nonlimestone mate-
rials, the RMS error was very high. The most interesting results occurred when the algorithm
processed a false positive that produced a low RMS error. In scenarios such as this, a threshold
on the RMS error alone will not be enough to suppress all the false positives.

Figure 13(a) contains the results for the low-noise dataset. Here, we see a near-perfect sep-
aration between limestone and nonlimestone pixels when using the RMS error. If the determined
target abundance is included, the two groups can be linearly separated. The logistic regression
line is drawn as a dashed line here. The two circled nonlimestone results belong to pixels con-
taining the concrete spectrum. Concrete is similar to the limestone but is not a perfect match and
is, therefore, still separable. At the higher 1.5-μF noise level, as shown in Fig. 13(b), the concrete
pixels are not separable when using the RMS error and determined target abundance.

Plotting fit parameters in two dimensions shows that true and false positives can be separated
using linear logistic regression. Using additional fit data to extend the logistic regression to
higher dimensions will likely help with separability, possibly separating the concrete. An in-
depth discussion of logistic regression has been left out of this paper as there are many resources

Fig. 13 (a) The results from the low-noise (0.5 μF) data have a clear separation between all target
and nontarget materials. (b) The high-noise (1.5 μF) data do not have a clear separation between
the target and nontarget materials. The circled red data points belong to spectra modeled with
concrete. The dashed line is a logistic regression line that creates a decision surface between
the two classes.
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available on this topic.20 General machine learning principles (class balancing, training/test/
validation datasets, etc.) should be followed.

8 Conclusion

This paper describes an LWIR HSI solid material identification method. The overall assumption
of this approach is that accurate radiometric models can be created for pixels of interest using
mixtures of local endmembers and forward modeled library spectra. If a pixel of interest contains
the materials found in the model, then the fit between the measurement and model will have an
RMS error approaching the instrument noise, and the fit parameters will be close to their true
values. If the pixel does not contain the materials found in the model, then the fit between the
measurement and model will have a high RMS error, and the model parameters might be unre-
alistic. False positives can be reduced or eliminated using parameters and statistics from the pixel
unmixing step, as input to a logistic regression algorithm that was trained on a known set of true
and false positives. These statements are dependent upon the list of assumptions found in Sec. 1.

The simulations provided in Sec. 7 demonstrate the behavior of the processing chain under
a variety of conditions. Section 7.1 shows a consistent rise in model error with system noise.
For most pixels with target abundance >0.5, the object temperature can be retrieved to within
1°C of the true temperature and abundances can be retrieved to within 0.1 of their true value.
Sections 7.2 and 7.3 demonstrate the importance of the atmospheric inference and the initialization
runs of the unmixing algorithm. Section 7.4 examines scenarios where the ground is either hotter or
cooler than the surrounding air temperature. The algorithm appears to work best when ground
temperatures are greater than or equal to the air temperature. When ground temperatures are
<10°C than that of the air temperature, the performance drops off significantly. Section 7.5 dem-
onstrates that this pipeline cannot accurately retrieve the atmospheric temperature/humidity profile.
But if a temperature/humidity sensor is placed on the aircraft, some improvement can be made in
the retrieval of the atmospheric parameters. Section 7.6 demonstrates how multiple fit parameters
from the pipeline can be used to separate true and false positives from the detection step. In one
case, the false positive material was concrete, which has strong limestone spectral features. At a
0.5-μF noise level, the algorithm was capable of discerning between the limestone and concrete.

An alternate approach to this study would have been to use a real LWIR HSI remote sensing
dataset, with in-scene targets, which could allow for characterization the algorithm’s performance
using receiver operator characteristic curves. In the VNIRSWIR remote sensing community, this is
common as datasets from many studies are freely downloadable. An example is the RIT target
detection blind test24 where scientists can benchmark their algorithm’s performance. Open-source
datasets collected from an airborne platform by a dispersive optic LWIR HSI system are not
common. The author chose the modeling approach used here because it is easily reproducible.
This approach also allowed for well-controlled simulations where all data parameters were known.

This work was performed on a Dell Precision with an Intel i7 processor. No GPUs were uti-
lized. The algorithm requires about 20 min to process a single spectral vector. During the atmos-
pheric optimization process, atmospheres are saved in a database for subsequent use. Because of
the time requirements, this algorithm is not practical for real-time data processing in size, weight,
and power-limited environments, such as onboard an aircraft. However, because the required
amount of data for identification is only 21-pixel vectors (1 pixel of interest and 20 endmembers),
the data could be rapidly transmitted to a computer cluster for parallel processing. There is also
additional algorithmic work that could be done to speed up the search for an optimal atmospheric
profile; for example, numerical approximations that can be used on a precalculated database of
atmospheres to speed up the atmospheric inference and pixel unmixing algorithms. In real datasets
collected over a local area, atmospheric conditions in one location could be correlated with atmos-
pheric conditions in another location. In this scenario, users could employ the atmospheric model
found for one identification result on another local identification result, either as an initialization for
optimization or directly to the pixel. It is also possible to optimize an atmosphere for multiple target
pixels simultaneously by summing the pixels’ RMS model error values. If users choose this route,
care should be taken to ensure that atmospheric conditions are suitable (uniform), as there are
scenarios where the atmosphere could be nonuniform over short distances.
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