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ABSTRACT. Rapeseed is an essential oil crop and the third major source of edible oil in the world.
Accurate estimation of rapeseed phenotypic traits at field scale is important for pre-
cision agriculture to improve agronomic management and ensure edible oil supply.
Unmanned aerial vehicle (UAV) remote sensing technology has been applied to
estimate crop phenotypic traits at field scale. Machine learning is one of the main
methods to develop estimation models for phenotypic traits based on UAV data.
However, the accuracy and adaptability of machine learning estimation models are
constrained by the representativeness of the training data. Here, we explored the
influence of growth stage and crop conditions on the estimation of rapeseed phe-
notypic traits by machine learning and provided an optimized strategy to construct
training data for improving the estimation accuracy. Four machine learning methods
were employed, including partial least squares regression, support vector regres-
sion (SVR), random forest (RF), and artificial neural network (ANN), with SVR
showing the best performance in estimating rapeseed phenotypic traits. The models
established for a certain cultivar, planting site, or planting density had low estimation
accuracies for other cultivars, planting sites, and planting densities during the entire
growth period. The results showed that cultivar and planting site had an unquantifi-
able influence on phenotypic traits. Integration of stratified sampling and developing
estimation models for different growth stages respectively can improve the estima-
tion accuracy for different cultivars and planting sites during the entire growth period.
Planting density exhibited a quantifiable influence on phenotypic traits, and the con-
struction of training data with samples of both low and high planting densities could
improve the estimation accuracy for different planting densities. Overall, optimization
of the training data by considering the influence of crop conditions on phenotypic
traits can improve the estimation accuracy of rapeseed phenotypic traits based
on machine learning.
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1 Introduction
Rapeseed (Brassica napus L.) is one of the most important oil crops, as well as the third major
source of edible oil in the world.1 It has great nutritional value and functional properties, and it
plays important roles in both food and non-food applications,2 such as animal feed, biofuel, and
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medicine. Timely and accurate monitoring of rapeseed growth is of great significance for improv-
ing field management, which can help improve rapeseed yield and ensure the oil supply.

Phenotypic traits, such as plant height, leaf number, leaf area, and above-ground biomass,
are complicated traits with great temporal and spatial variations and can indicate the growth
status of the crop.3 The dynamic changes in some phenotypic traits can indicate the relationship
between plant growth and the surrounding environment.4 However, traditional measurement of
phenotypic traits mostly depends on time-consuming and labor-intensive manual work, which
cannot easily be implemented over large areas.5 Remote sensing (RS) is a non-destructive meas-
urement technology, with the advantages of high accuracy and high throughput and therefore the
potential to effectively estimate crop phenotypic traits.6,7 In recent years, the unmanned aerial
vehicle (UAV) technique has achieved considerable advancement, providing a novel platform for
RS and making it possible to collect data with unprecedented spatial, spectral, and temporal
resolution.8 Owing to its high spatial-temporal resolution,9 UAV RS has been widely used to
estimate phenotypic traits for crop growth monitoring, particularly at the regional scale. For
example, Ren et al.10 employed normalized difference spectral indices obtained by UAV hyper-
spectral data to estimate the above-ground biomass of winter wheat from flowering to maturity
and then retrieved the spatial information on the crop harvest index with normalized root mean
square error (RMSE) below 15%. Qiao et al.11 estimated leaf area index (LAI) of maize by com-
bining morphological parameters (canopy height, canopy coverage, and canopy volume) and
vegetation index (VI); as a result, the overall accuracy of RMSE in the seedling stage, jointing
stage, tasseling stage, silking stage, blister stage, and milk stage was 0.26; and they further used
the dynamic change of LAI to evaluate the maize growth status. Therefore, UAV RS has become
an effective tool for retrieving data on phenotypic traits for crop growth monitoring.

Two methods are generally employed to build the relationship between crop phenotypic
traits and UAV images, namely the statistical method and the radiative transfer model. The radi-
ative transfer model was developed on the basis of the interaction between solar radiation and
plant tissues, thus possessing more flexibility as it involves physical mechanisms.12,13 However,
the structure and input parameters of the radiative transfer model are rather complicated,14 mak-
ing it difficult to realize and limiting its further application. In contrast, the statistical method
(also called regression) consists of calibration of a numerical relationship between one or several
ground-measured phenotypic traits and the features of UAV images,15 and is characterized by an
easy process of development and operation. Linear and non-linear regression with a simple
regression process are the most commonly used statistical methods, but they suffer from weak
robustness and inferior estimation accuracy.16,17 Machine learning has been developing rapidly,
providing a more advanced statistical method to establish the relationship between phenotypic
traits and UAV image features. It functions as a “black box” with limited process-based
interpretation18 and can characterize complex relationships between variables without an explicit
equation. Compared with simple regression, machine learning is more robust and adaptive and
can better utilize the vegetation information in UAV images.19 Machine learning has exhibited
powerful performance in estimating phenotypic traits. Teodoro et al.20 used four machine learn-
ing methods, including deep learning (DL), random forest (RF), support vector regression
(SVR), and linear regression, to estimate the plant height and grain yield of soybean based
on UAV multispectral data. They found that DL, RF, and SVR performed better than linear
regression at early growth stages with the highest r value for plant height (0.77) and grain yield
(0.44). Teshome et al.21 estimated sweet corn biomass at the entire growth stage by using RF,
SVR, and k-nearest neighbor with UAV multispectral data and found that SVR outperformed
other algorithms with an R2 value of 0.77. As a more sophisticated statistical technique, machine
learning promotes the application of statistical methods in the estimation of crop phenotypic
traits based on UAV images. However, the estimation model developed by machine learning
is typically trained by ground-measured phenotypic traits,22 and its performance is largely deter-
mined by the representativeness of the training data. Generally, a higher estimation accuracy
requires the construction of training data and test data under the same or similar crop conditions
at the same phenological stage. In this case, phenological stages and crop conditions, such as
crop type, cultivar, planting density, and fertilizer level, have important impacts on the structure
of the training and test data datasets, and play an important role in the development of estimation
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models.23,24 Therefore, it is necessary to analyze the influence of phenological stage and crop
conditions on the estimation of phenotypic traits by using machine learning approach.

Some studies have compared the estimation results of phenotypic traits under different crop
conditions based on UAV images, such as rapeseed LAI at different nitrogen (N) levels,25 rice N
nutrition at different N levels and plant densities,26 and the above-ground biomass of winter
wheat at different N levels.27 Obviously, most studies have been focused on the uncertainties
of fertilizer treatment and involved few other crop conditions. However, except for fertilizer treat-
ment, other cultivation practices (such as planting density), growth environment, and cultivar
also have complex influence on phenotypic traits and deserve more attention.28 In addition, crop
growth is affected by multiple factors including the crop itself and growth environment.29 Hence,
the difference and interaction of different crop conditions on the estimation of phenotypic traits
should be determined.

In this study, multispectral images of rapeseed under different crop conditions (planting site,
planting density, and cultivar) were collected by UAV during the entire growth period, and the
estimation models of rapeseed phenotypic traits were developed by four machine learning algo-
rithms, including partial least squares regression (PLSR), SVR, RF, and artificial neural network
(ANN), respectively. Then, the optimal algorithm was used to develop estimation models with
different training data and test data to analyze the influence of growth stage and crop conditions
on the estimation accuracy. Specifically, this study aims to (1) explore the influence of growth
stage and crop conditions on the estimation of phenotypic traits by using machine learning
approaches; (2) explain the mechanisms for the influence of growth stage and crop conditions;
(3) provide an optimized strategy to improve the estimation accuracy of phenotypic traits.

2 Materials and Methods

2.1 Study Area and Experimental Design
The study involved two study areas, namely the rapeseed experiment base of oil crops research
institute, Chinese Academy of Agricultural Sciences in Jingzhou City (30°14′39″N, 112°21′14″
E) and Xiangyang City (31°53′32″N, 112°1′35″E), Hubei province, China (Fig. 1). Two field-
plot experiments involving different rapeseed cultivars and planting densities were respectively
conducted in these two areas in 2021. The experiment at Jingzhou involved two cultivars
(Zhongyouza 19 and Dadi 199) and three planting densities (22.5, 45.0, and 67.5 plants∕m2)
and therefore six treatments altogether. Each treatment was conducted in a separate field plot,
and the distance between two adjacent plots was 40 cm. Each treatment was repeated three times,
and there were 18 plots in this experiment. The experiment was conducted twice at Jingzhou to
induce plant growth difference with a sowing date of September 27 2021 and October 12 2021,
respectively. As for Xiangyang, the experiment involved other two cultivars (Zhongyouza 19 and
Flower type (FT) cultivar) and three planting densities (15.0, 45.0, and 75.0 plants∕m2).

Fig. 1 Location of the study area.
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Similarly, the experiment was conducted three times in Xiangyang with sowing dates of
September 30 2021, October 15 2021, and October 30 2021, respectively. In general, there were
90 field plots in this study, including 36 plots in Jingzhou and 54 plots in Xiangyang. Except
for the rapeseed cultivar and planting density, the field management of these experimental
plots was the same. Given the uneven distribution of planting density, the planting densities
of 15.0 and 22.5 plants∕m2 were considered as low, 45.0 plants∕m2 as medium, and 67.5
and 75.0 plants∕m2 as high. Therefore, this study involved two planting sites (Jingzhou and
Xiangyang), three rapeseed cultivars [Zhongyouza 19 (ZY 19), Dadi 199 (DD 199) and FT
cultivar], and three planting densities (low density, medium density, and high density). The
profile of meteorological parameters during the rapeseed growth period in two planting sites
is shown in Fig. 2.

UAV flight campaign was first carried out, and field measurement of rapeseed plants was
immediately performed after the UAV flight. Planting site, rapeseed cultivar, planting density,
and UAV image collection date of this study are summarized in Table 1. The workflow is pre-
sented in Fig. 3.

2.2 UAV Image Collection
This study employed a six-band sensor (MS600 Pro, Yusense, Qingdao City, China) to obtain
the multispectral image of field plots as shown in Fig. 4(a). The multi-band sensor consists of

Fig. 2 Profile of (a) temperature and (b) precipitation during the entire growth period of rapeseed in
two planting sites.

Table 1 Experimental design and UAV image collection date.

Planting site Cultivars
Planting density
(plants∕m2) Growth stage

Image collection date
(year/month/date)

Xiangyang Zhongyouza 19 15.0 Leaf stage 2021/12/09

45.0 2021/12/23

Flower type 75.0 2022/01/19

Flower stage 2022/03/13

2022/03/27

Pod stage 2022/04/08

Jingzhou Zhongyouza 19 22.5 Leaf stage 2021/12/02

45.0 2021/12/21

Dadi 199 67.5 2022/01/18

Flower stage 2022/03/10
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six individual miniature digital cameras with each camera equipped with a customer-specified
band pass filter centered at the wavelength of 450, 555, 660, 720, 750, and 840 nm, respectively,
which are sensitive bands of vegetation.25 The sensor was attached to the UAV (Matrice 300,
DJI Technology, Co., Ltd., Shenzhen City, China) by a gimbal to help compensate for UAV
movement (pitch and roll) and guarantee close-to-nadir image collection during flight.30

UAV flight campaigns were carried out between 10:00 and 14:00 local time when the changes
of solar zenith angle were minimal and under a sunny sky to avoid the influence of cloud cover
shadow. UAV flight altitude was set at 100 m, in which one exposure can cover all field plots of
each experiment.

Fig. 3 Workflow of this study.

Fig. 4 (a) UAV and multispectral sensor used in this study and (b) the radiometric correction of
multispectral images.
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2.3 Field Data Collection
A destructive sampling method was used to obtain the data of phenotypic traits of each field plot.
Five rapeseed plants were randomly harvested with roots together in each field plot, placed into a
polythene bag, and taken to the laboratory. The measurement was conducted as soon as possible
after the plant samples arrived at the laboratory. First, the roots were cut off in the cotyledonary
node. The plant tissues without roots were referred to as above-ground components, which were
weighed immediately to obtain the above-ground fresh biomass. Then, the green leaves were
separated from other components and spread on a horizontal table with a white background
as shown in Fig. 5(a). A Canon camera (EOS 5DMark II, Canon Inc., Tokyo, Japan) was utilized
to take photos for rapeseed leaves and then an image segmentation algorithm was performed in
MATLAB (MATLAB 2016a, MathWorks Inc., Natick, Massachusetts, USA) to calculate the
area of leaves [Fig. 5(b)]. Next, the above-ground components were dried in an oven for 30 min
at 105°C to deactivate enzymes and dried again at 80°C until constant weight. The oven-dried
above-ground components were weighed to obtain the above-ground dry biomass. The average
value of five plants was used as the plant-level phenotypic trait of each plot, and the plot-level
trait was derived by the product of plant-level trait and planting density. Therefore, three
phenotypic traits were obtained for each field plot, including above-ground fresh biomass
(AGBfresh), above-ground dry biomass (AGBdry), and LAI

EQ-TARGET;temp:intralink-;e001;114;344LAI ¼ LA × d; (1)

EQ-TARGET;temp:intralink-;e002;114;309AGB ¼ x × d; (2)

where LA and x are the plant-level leaf area and above-ground biomass (fresh or dry biomass) in
each plot, respectively, d is planting density with the unit of plants per square meter, and the unit
of AGB is weight per unit area (g∕m2).

2.4 UAV Image Processing
The process to obtain multispectral images by MS600 Pro included band-to-band registration,
radiometric correction, VI calculation, and determination of the region of interest (ROI). MS600
Pro consisted of six individual cameras that could take six images simultaneously with one single
exposure. Due to the spatial distribution difference of the six cameras, there was significant cam-
era misregistration among the images of different bands. To remove the effect of misregistration,
band-to-band registration was performed in the built-in software (Yusense Map, Yusense,
Qingdao City, China) of MS600 pro and corresponding pixels of each band were spatially over-
lapped in the same focal plane. In addition, the pixel value of the raw image obtained by MS600
Pro is a digital number (DN) and the radiometric correction is necessary to transform DN into
reflectance. A calibration target with a constant reflectance of 0.60 was used for radiometric
correction. Before each UAV flight, the calibration target was posed on the ground for the sensor
to take radiometric reference images [Fig. 4(b)]. These images were imported into Yusense Map
for radiometric correction and the reflectance images of different bands were exported to cal-
culate VIs (Table 2). To extract VI value of each field plot, a maximum square was defined for
each plot as ROI in the UAV image, and the plot-level VI was retrieved by averaging all the

Fig. 5 Measurement of leaf area. (a) RGB image of rapeseed leaves and (b) leaf segmentation
results.
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per-pixel values within ROI. VI calculation was performed by band math function of ENVI 5.3
software (EXELIS; Boulder, Colorado, USA) with the reflectance image of different bands and
ROI determination was performed by ROI tool.

2.5 Data Analysis and Model Development
Data analysis and model development of this study included statistical analysis of phenotypic
traits, model generation and evaluation, and model optimization, which were all performed by
MATLAB (MATLAB 2016a, MathWorks Inc., Natick, Massachusetts, USA).

2.5.1 Statistical analysis

The mean, minimum, maximum, and coefficient of variation (CV) of phenotypic traits were first
calculated. Anderson–Darling test was used to determine whether the data of phenotypic traits
follow normal distribution. Linear regression was used to analyze the relationship between differ-
ent phenotypic traits, and analysis of variance (ANOVA) was used to analyze the differences in
phenotypic traits under different crop conditions, including planting site, planting density, and
cultivar.

2.5.2 Model construction and evaluation

The correlation of rapeseed phenotypic traits and UAV image features (canopy reflectance and
VIs) was evaluated using Pearson correlation coefficient (r) before model construction.
Generally, the image features with higher correlations with phenotypic traits were selected to
develop estimation models. Four machine learning algorithms were used to develop the estima-
tion models of rapeseed phenotypic traits from the selected image features, including PLSR,35

SVR,36 RF,37 and ANN,38 which have been employed by some studies to estimate crop pheno-
typic traits based on RS data. For example, Chen et al. 39 used PLSR, SVR, and RF to estimate
plant nitrogen concentration of winter wheat with UAV hyperspectral data and found that SVR
and RF performed better than PLSR with an R2 above 0.8. Zhang et al. 40 used PLSR, SVR, RF,
and ANN to estimate anthocyanins of apple tree leaves with ground hyperspectral data and found
that the estimation accuracy varied significantly among these algorithms, but all of them showed
satisfactory performance with R2 from 0.85 to 0.95 in training data, and RF was relatively more
accurate and stable. The performance of these four algorithms in the estimation of rapeseed phe-
notypic traits was evaluated by k-fold cross-validation. A 10-fold cross-validation methodology
was used to randomly divide all the samples into ten groups with the same number of samples in
each group. Nine groups were used as training data, while the remaining one group was used as
test data. The process was repeated 10 times until each group was used as test data exactly
one time to ensure the reliability of the tested models. After 10 iterations, the coefficient of

Table 2 Vegetation indices used in this study.

Vegetation index Formula Reference

Red edge chlorophyll index ðCIrededgeÞ R840 nm∕R750 nm − 1 Gitelson et al.17

Green chlorophyll index ðCIgreenÞ R840 nm∕R555 nm − 1 Gitelson et al.17

Normalized difference
vegetation index (NDVI)

ðR840 nm − R660 nmÞ∕ðR840 nm þ R660 nmÞ Rouse et al.31

Normalized difference red
edge vegetation index (NDRE)

ðR840 nm − R750 nmÞ∕ðR840 nm þ R750 nmÞ Glenn et al.32

Enhanced vegetation index (EVI) 2.5ðR840 nm − R660 nmÞ∕
ðR840 nm þ 6R660 nm − 7.5R450 nm þ 1Þ

Liu et al.33

Two-band enhanced
vegetation index (EVI2)

2.5ðR840 nm − R660 nmÞ∕ðR840 nm þ 2.4R660 nm þ 1Þ Jiang et al.34
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determination (R2), RMSE, and relative root mean square error (rRMSE) were used to quantify
the model accuracy

EQ-TARGET;temp:intralink-;e003;114;712R2 ¼
P

K
i¼1 R

2
i

K
; (3)

where R2
i is the coefficient of determination in each tested group, and K is the iteration number of

the cross-validation (K ¼ 10 in this step)

EQ-TARGET;temp:intralink-;e004;114;652RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 E

2
i

n
;

r
(4)

where E2
i is the estimation error of each sample, and n is the number of all samples involved in

the cross-validation process

EQ-TARGET;temp:intralink-;e005;114;589rRMSE ¼ RMSE

meanðỹÞ ; (5)

where ỹ is the ground measured value (true value) of all the samples involved in the cross-
validation process.

Ten-fold cross-validation allows the estimation model to be trained on 90% of data (9/10)
and tested on 10% of data (1/10), which can ensure the representativeness of the estimation
model on the whole data. The algorithm with the highest estimation accuracy was selected
as the optimal algorithm.

To determine the influence of growth stage and crop conditions (planting site, planting den-
sity, and cultivar) on the estimation of phenotypic traits, all samples were divided into different
groups by these influencing factors, respectively, including three groups divided by growth stage
(leaf stage, flower stage, and pod stage), two groups by planting site (Jingzhou and Xiangyang),
three groups by planting density (low density, medium density, and high density), and three
groups by cultivar (ZY 19, DD199, and FT).

A five-fold cross-validation method was used to randomly divide each of the Leaf stage,
Flower stage, and Pod stage groups into five sub-groups, respectively. The sub-groups were used
to train and test the SVR estimation models, and R2, RMSE, and rRMSE were calculated to
evaluate the estimation accuracy of phenotypic traits. In addition, a cross-validation methodology
was used to quantify the influence of cultivar, planting site, and planting density on the estima-
tion accuracy. For each factor, each group was used as the test dataset exactly one time with other
groups as the training dataset. Taking the factor of cultivar for example, the cross-validation
included three repeats, in which one of ZY 19, DD199, and FT was used as the test dataset,
and the remaining two groups were used as the training dataset. Similarly, the SVR estimation
models based on canopy reflectance were trained and tested with different groups. R2, RMSE,
and rRMSE of each tested group were calculated, respectively.

2.5.3 Model optimization

Stratified sampling and developing models for different growth stages respectively were con-
ducted to improve the estimation accuracy of phenotypic traits. To reduce the influence of crop
conditions, stratified sampling was used to create the training and test data. For each factor, 70%
of the data in each group were randomly selected as the training data, while the other 30% of the
data were used as the test data. The SVR estimation models were trained and tested to evaluate
the estimation accuracy. Taking cultivar for example, 70% of the data in ZY19, DD199, or FT
were selected respectively to create the training data [denoted by ZY19 (70%), DD 199 (70%),
and FT (70%)], and other 30% of the data in these groups were used as the test data [denoted by
ZY19 (30%), DD199 (30%), and FT (30%)]. R2, RMSE, and rRMSE of the test data were
calculated.

K means clustering was conducted in all samples based on canopy reflectance and pheno-
typic traits respectively to explore the difference between the leaf and flower stage. The results
were compared with the sample label (labeled by stage) to obtain the identification accuracy of
the growth stage. To reduce the influence of growth stage, the estimation models were developed

Duan et al.: Remote estimation of rapeseed phenotypic traits under different crop. . .

Journal of Applied Remote Sensing 018503-8 Jan–Mar 2024 • Vol. 18(1)



for different growth stages, respectively, on the basis of stratified sampling. First, the SVR esti-
mation model was constructed for different growth stages respectively with the training dataset.
Then, a growth stage identification model was developed by support vector machine (SVM)
from canopy reflectance using the same training data. Next, the stage identification model was
applied in the test dataset to identify which stage the sample belongs to. Finally, the estimation
models for different growth stages were applied respectively according to the stage identification.
R2, RMSE, and rRMSE of the test data were calculated to evaluate the estimation accuracy of
phenotypic traits.

3 Results

3.1 Statistical Analysis of Rapeseed Phenotypic Traits
The statistical descriptions of AGBfresh, AGBdry, and LAI are shown in Table 3. Generally, the
three phenotypic traits exhibited discrete distributions during the entire growth period of rapeseed
with a coefficient of variation (CV) above 60%. In addition, Anderson–Darling test revealed
that they all followed a normal distribution with p values below 0.05. Subsequently, regression

Table 3 Statistical descriptions and Anderson–Darling test results of rapeseed phenotypic traits.

Plots
Minimum
value

Maximum
value

Mean
value

Coefficient of
variation (%) p value

AGBfresh (g∕m2) 342 780.01 33340.35 8043.84 68.3 < 0.05

AGBdry (g∕m2) 342 90.71 4613.21 945.30 76.5 < 0.05

LAI 288 0.80 21.38 5.22 61.6 < 0.05

Fig. 6 Relationships of different phenotypic traits in rapeseed. The linear relationship of
(a) AGBfresh and AGBdry, (b) AGBfresh and LAI, (c) AGBdry and LAI during the entire growth period;
(d) The linear relationship of AGBdry and LAI at the leaf stage and flower stage.
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analysis was used to explore the relationship of different phenotypic traits. AGBfresh showed
a strong linear correlation with AGBdry (R2 ¼ 0.93), but a relatively weak linear correlation with
LAI (R2 ¼ 0.63) during the entire growth period of rapeseed [Figs. 6(a) and 6(b)]. Similarly,
AGBdry also showed a weak linear correlation with LAI (R2 ¼ 0.53) during the entire growth
period [Fig. 6(c)].AGBdry and LAI showed different linear relationships at leaf and flower stages,
and the linear relationship was stronger at the leaf stage (R2 ¼ 0.80) [Fig. 6(d)]. Therefore, the
above-ground biomass and LAI showed different relationships at different growth stages of
rapeseed.

The ANOVA results showed that AGBfresh, AGBdry, and LAI were significantly different for
different planting sites, planting densities, and cultivars (Fig. 7). These three traits showed higher
values in Jingzhou than in Xiangyang, and increased with planting density. As for different
cultivars, ZY19 and FT had similar AGBfresh and AGBdry, both of which were lower than those
of DD 199. In contrast, LAI was significantly different among the three cultivars, with DD 199
showing the highest value, followed by ZY 19 and then FT. Therefore, crop conditions, such as
cultivar, planting site, and planting density, all had an important influence on rapeseed pheno-
typic traits.

3.2 Estimation Model Construction and Evaluation
The Pearson correlation coefficients (r) of AGBfresh, AGBdry, and LAI with canopy reflectance
and VI are presented in Table 4. Generally, the above-ground biomass showed a stronger
correlation with canopy reflectance, while LAI exhibited a higher correlation with VI. AGBfresh

and AGBdry showed the highest correlation with the reflectance of 450 nm band (R450 nm)
(r ¼ 0.34 and 0.31, respectively). LAI displayed the highest correlation with CIrededge
(r ¼ 0.42). However, the phenotypic traits showed weak correlations with canopy reflectance
and VI (r value below 0.50).

Four machine learning methods were employed to develop the estimation models of
phenotypic traits from canopy reflectance (Table 5). The comparison of rRMSE showed that
the highest estimation accuracy of AGBfresh was R2 ¼ 0.45, RMSE ¼ 4095.78 g∕m2, and

Fig. 7 ANOVA results of (a) AGBfresh, (b) AGBdry, and (c) LAI under different crop conditions.
The same lower-case letter denotes no significant difference in the tested groups.

Table 4 Pearson correlation coefficients of phenotypic traits with canopy reflectance and
vegetation index.

Reflectance Vegetation index

R450 nm R555 nm R660 nm R720 nm R750 nm R840 nm NDVI NDRE CIrededge CIgreen EVI EVI2

AGBfresh −0.34** 0.10 0.15** −0.15** −0.17** −0.11* −0.16** 0.10 0.11* −0.07 −0.25** −0.18**

AGBdry −0.31** 0.15** 0.19** −0.13** −0.19** −0.13* 0.22** 0.05 0.06 −0.15** −0.30** −0.23**

LAI −0.06 −0.31** −0.28** −0.31** 0.04 0.07 0.30** 0.42** 0.42** 0.40** 0.24** 0.28**

*Correlation is significant at the 0.05 level (two-tailed).
**Correlation is significant at the 0.01 level (two-tailed).
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rRMSE ¼ 50.9%; that of AGBdry was R2 ¼ 0.49, RMSE ¼ 517.70 g∕m2, and rRMSE ¼
54.8%; and that of LAI was R2 ¼ 0.40, RMSE ¼ 2.52 g∕m2, and rRMSE ¼ 48.2%.
Generally, SVR could achieve the highest estimation accuracy for AGBfresh, AGBdry, and
LAI, and therefore was the optimal algorithm in this study to construct estimation models for
phenotypic traits based on canopy reflectance.

3.3 Factors Influencing the Estimation Accuracy
To determine the influence of growth stage on phenotypic trait estimation, the SVR estimation
models were developed for different growth stages, respectively (Table 6). Compared with the
models established for the whole growth period (Table 5), the models developed for different
growth stages showed higher estimation accuracies ofAGBfresh,AGBdry, and LAI. Generally, the
estimation accuracy for these three phenotypic traits was the highest at the pod stage, followed by
the flower stage, while the estimation accuracy at the leaf stage was relatively lower (with higher
rRMSE). Therefore, the influence of growth stage should be considered in the estimation of
phenotypic traits during the entire growth period.

To determine the influence of crop conditions on phenotypic trait estimation, the SVR esti-
mation models were further trained and tested with different datasets (Table 7). The estimation
accuracy of AGBfresh, AGBdry, and LAI was low for different planting sites with R2 below 0.10
and rRMSE of 60.7% − 86.8%, while the estimation accuracy was relatively higher for different
cultivars with R2 of 0.20 − 0.54 and rRMSE of 46.1% − 65.3%. As for different planting
densities, the estimation accuracy of low density and high density was low with rRMSE above
50%, while higher for medium density with R2 of 0.43 − 0.49 and rRMSE of 36.9% − 45.2%.
Notably, the three phenotypic traits were overestimated for low density and underestimated for
high density (Fig. 8). In addition, the average estimation accuracy of different cultivars was

Table 5 Estimation accuracy of phenotypic traits by different algorithms based on canopy
reflectance.

Algorithm

AGBfresh (g∕m2) AGBdry (g∕m2) LAI

R2 RMSE rRMSE (%) R2 RMSE rRMSE (%) R2 RMSE rRMSE (%)

PLSR 0.19 4924.77 61.3 0.20 646.43 68.5 0.18 2.91 56.1

SVR 0.45 4095.78 50.9 0.49 517.70 54.8 0.40 2.52 48.2

RF 0.40 4258.58 52.9 0.44 540.53 57.2 0.27 2.74 52.6

ANN 0.44 4121.73 52.2 0.46 529.85 57.0 0.40 2.50 48.0

Table 6 Estimation accuracies of phenotypic traits at different rapeseed growth stages.

Growth sta ge Phenotyping trait R2 RMSE rRMSE (%)

Leaf stage AGBfresh (g∕m2) 0.62 3247.81 48.8

AGBdry (g∕m2) 0.62 410.69 56.5

LAI 0.57 2.42 42.5

Flower stage AGBfresh (g∕m2) 0.51 3924.93 39.7

AGBdry (g∕m2) 0.57 475.05 42.5

LAI 0.43 1.78 38.6

Pod stage AGBfresh (g∕m2) 0.69 2742.12 34.6

AGBdry (g∕m2) 0.69 424.10 35.4

LAI — — —
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R2 ¼ 0.37, RMSE ¼ 4344.12 g∕m2, and rRMSE ¼ 54.0% for AGBfresh, R2 ¼ 0.43, RMSE ¼
551.21 g∕m2, rRMSE ¼ 58.3% for AGBdry, R2 ¼ 0.34, RMSE ¼ 2.62, and rRMSE ¼ 50.2%

for LAI; and that of different planting densities was R2 ¼ 0.22, RMSE ¼ 4887.75 g∕m2, and
rRMSE ¼ 60.8% for AGBfresh, R2 ¼ 0.29, RMSE ¼ 609.29 g∕m2, and rRMSE ¼ 64.5% for
AGBdry, and R2 ¼ 0.16, RMSE ¼ 2.96, rRMSE ¼ 56.7% for LAI, which were lower than those
of ten-fold cross-validation in Table 5. Generally, the estimation accuracy of rapeseed phenotypic
traits depends on the training and test data, and the estimation model trained under a certain crop
condition may have poor performance under other crop conditions, such as different planting
sites, planting densities, and cultivars. In this study, the estimation of AGBfresh, AGBdry, and
LAI suffered most from the influence of planting site and cultivar, followed by planting density.

3.4 Optimization of the Estimation Model
To improve the estimation accuracy of phenotypic traits under different crop conditions, stratified
sampling was used to construct the training and test data (Table 8). The highest estimation

Table 7 Estimation accuracies of phenotypic traits in different training and test datasets.

Controlled factor of
sample division Training data Test data Phenotypic trait

Estimation accuracy
of test data

R2 RMSE rRMSE (%)

Planting site Xiangyang Jingzhou AGBfresh (g∕m2) 0.02 8090.125 77.4

AGBdry (g∕m2) 0.08 1014.61 86.8

LAI 0.06 4.34 60.7

Jingzhou Xiangyang AGBfresh (g∕m2) 0.05 4657.78 67.2

AGBdry (g∕m2) 0.08 619.02 73.5

LAI 0.10 2.56 63.2

Cultivar DD 199 ZY 19 AGBfresh (g∕m2) 0.35 4245.27 53.5

FT AGBdry (g∕m2) 0.39 503.04 55.6

LAI 0.35 2.79 50.7

ZY 19 DD 199 AGBfresh (g∕m2) 0.32 5602.88 54.3

FT AGBdry (g∕m2) 0.38 787.96 65.3

LAI 0.24 3.15 46.1

ZY 19 FT AGBfresh (g∕m2) 0.41 3785.97 52.9

DD 199 AGBdry (g∕m2) 0.54 481.37 54.5

LAI 0.20 1.90 49.9

Density Medium density Low density AGBfresh (g∕m2) 0.46 4470.15 95.0

High density AGBdry (g∕m2) 0.45 511.08 93.2

LAI 0.50 2.70 87.5

Low density Medium density AGBfresh (g∕m2) 0.43 3447.16 42.8

High density AGBdry (g∕m2) 0.49 426.76 45.2

LAI 0.43 1.93 36.9

Low density High density AGBfresh (g∕m2) 0.44 6309.13 55.4

Medium density AGBdry (g∕m2) 0.54 818.76 61.0

LAI 0.33 3.90 53.2
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accuracy was R2 ¼ 0.43, RMSE¼ 3528.60 g∕m2, and rRMSE¼ 44.9% for AGBfresh, R2 ¼ 0.44,
RMSE ¼ 425.37 g∕m2, and rRMSE ¼ 47.2% for AGBdry, and R2 ¼ 0.48, RMSE ¼ 2.25, and
rRMSE ¼ 41.0% for LAI. Compared with random sampling and sampling by the influencing
factors (Tables 5 and 7), stratified sampling improved the estimation accuracy of AGBfresh,
AGBdry, and LAI for different planting sites and cultivars, but did not improve the estimation
accuracy of medium density relative to that of low density and high density. Generally, stratified
sampling can improve the estimation accuracy of rapeseed phenotypic traits for different planting
sites and cultivars.

As shown in Table 9, k-means clustering indicated that the samples at the leaf and flower
stage fell into two different clusters based on phenotypic traits and canopy reflectance with
accuracies of 81.3% and 76.4%, respectively, while when all the leaf, flower, and pod stage
were involved, the clustering accuracy was 59.4%. Therefore, the phenotypic traits and canopy

Fig. 8 Scatter plot between estimated values and ground-measured values of (a) AGBfresh,
(b) AGBdry, and (c) LAI of different cultivars; (d) AGBfresh, (e) AGBdry and (f) LAI of different planting
densities.
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reflectance of rapeseed had significant differences between the leaf and flower stage, which can
be identified by the canopy reflectance retrieved from UAV multispectral images.

Piecewise modeling at different stages was further employed to develop the estimation
model based on stratified sampling (Table 10). The identification accuracy of rapeseed growth
stages was high by using the SVM algorithm with accuracies above 85%. Compared with the
models established for the whole growth period (Table 8), the models established for individual
growth stages had higher estimation accuracies of AGBfresh, AGBdry, and LAI for different plant-
ing sites and cultivars, while almost the same performance for different planting densities.
Therefore, integration of stratified sampling and developing models for different growth stages
respectively could improve the estimation accuracy of rapeseed phenotypic traits for different
planting sites and cultivars. As for different planting densities, the highest estimation accuracy
was achieved with training data of low and high density and test data of medium density
(Table 7).

4 Discussion
This study first determined the statistical characteristics of ground-measured phenotypic traits of
rapeseed. AGBdry showed a high linear correlation with AGBfresh, but a weak correlation with
LAI during the entire growth period of rapeseed (Fig. 6). Similarly, Duan et al.41 found that rice
AGB has a weak correlation with LAI during the entire growth period and inferred that the weak
correlation is caused by changes of structure in rice canopy after the heading stage, when the
main element of canopy changes from leaves to both leaves and panicles. Compared with those in
rice, the structural changes in rapeseed canopy are more significant during the entire growth
period. Rondanini et al.42 suggested that rapeseed has a complex developmental phenotypic pat-
tern as it evolves from an initial rosette to the main stem elongation and then indeterminate
growth of floral raceme (Fig. 1). Due to the disturbance of flowers, the correlation between

Table 8 Estimation accuracy of phenotypic traits by stratified sampling.

Controlled factor
of sample division Training data Test data Phenotypic trait

Estimation accuracy
of test data

R2 RMSE rRMSE (%)

Planting site Xiangyang (70%) Xiangyang (30%) AGBfresh ðg∕m2Þ 0.41 3958.90 49.4

Jingzhou (70%) Jingzhou (30%) AGBdry ðg∕m2Þ 0.47 483.77 51.7

LAI 0.43 2.66 48.7

Cultivar ZY 19 (70%) ZY 19 (30%) AGBfresh ðg∕m2Þ 0.40 4307.84 52.1

DD 199 (70%) DD 199 (30%) AGBdry ðg∕m2Þ 0.44 530.28 55.3

FT (70%) FT (30%) LAI 0.41 2.64 46.1

Planting density Low density (70%) Low density (30%) AGBfresh ðg∕m2Þ 0.43 3528.60 44.9

Medium density (70%) Medium density (30%) AGBdry ðg∕m2Þ 0.44 425.37 47.2

High density (70%) High density (30%) LAI 0.48 2.25 41.0

Table 9 Identification of rapeseed growth stages based on k-means clustering.

Input Label n Accuracy (%)

AGBdry, LAI Leaf stage, Flower stage 288 81.3

R450 nm, R555 nm, R660 nm,
R720 nm, R750 nm, R840 nm

Leaf stage, Flower stage 288 76.4

Leaf stage, Flower stage, Pod stage 342 59.4
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AGBdry and LAI was weak at the flower stage and decreased during the entire growth period. In
addition, the structure of the rapeseed canopy also depends on the plant growth characteristics
and planting density. The growth characteristics of rapeseed plants are related to the inherent
quality of plants (such as plant type and cultivar) and environment (such as temperature, pre-
cipitation, and sunshine). Therefore, AGBfresh, AGBdry, and LAI of rapeseed showed significant
differences under different crop conditions (Fig. 7), which is consistent with the findings of pre-
vious studies. Li et al.43 found that natural variations in silique number in rapeseed cultivars lead
to differences in biomass accumulation. Wenyu et al.44 reported that rapeseed AGB differs among
different cultivars and planting densities. Based on Eqs. (1) and (2), these three population traits
were positively correlated with the single plant traits and planting density. Rapeseed plants gen-
erally have stronger growth at higher temperature,45 and thus AGBfresh, AGBdry, and LAI of
Jingzhou were higher than those in Xiangyang (Fig. 2). Similarly, the three traits increased with
planting density, and the increment was evenly coupled with the increase in planting density
level. Therefore, rapeseed phenotypic traits are influenced by the growth stage, cultivar, planting
density, and planting site. Since the performance of estimation models developed by machine
learning depends on the representativeness of the training data, it can be inferred that the esti-
mation accuracy is also influenced by these factors.

Our results showed weak correlations of phenotypic traits with canopy reflectance and
VI (r below 0.5) (Table 4), which is inconsistent with the findings of previous studies. In the
studies of Peng et al.25 and Liu et al.,46 VI showed a high correlation with LAI with r above 0.5
with the same rapeseed cultivar under different nitrogen fertilizer treatments at the leaf stage.
In contrast, this study involved different growth stages, cultivars, planting densities, and planting
sites, and these multiple factors may together cause the weak correlation. Notably, VI showed no
obviously stronger correlation with LAI than canopy reflectance, and AGB even had a weaker
correlation with VI than with canopy reflectance. Therefore, the canopy reflectance obtained by
UAV multispectral images was directly used to develop the estimation models of phenotypic
traits by using machine learning. Wittenberghe et al.47 suggested that the information to predict
a leaf parameter of trees by machine learning should not be restricted to one or a few spectral
bands, and more bands should be taken into account to reduce the influence of data noise. To
make better use of the spectral bands, the canopy reflectance of all six bands was utilized to
develop the estimation models. The results of ten-fold cross-validation showed that SVR was

Table 10 Estimation accuracy of phenotypic traits by integrating stratified sampling and devel-
oping models respectively for different growth stages.

Controlled factor
of sample division Training data Test data

Identification
accuracy
of stage

Phenotyping traits estimation accuracy

Traits R2 RMSE
rRMSE
(%)

Planting site Xiangyang (70%) Xiangyang (30%) 89.4% AGBfresh ðg∕m2) 0.49 3251.51 43.9

Jingzhou (70%) Jingzhou (30%) AGBdry ðg∕m2Þ 0.52 373.93 45.4

LAI 0.29 2.29 48.4

Cultivar ZY 19 (70%) ZY 19 (30%) 94.0% AGBfresh ðg∕m2Þ 0.54 3554.78 42.7

DD 199 (70%) DD 199 (30%) AGBdry ðg∕m2Þ 0.59 402.95 44.5

FT (70%) FT (30%) LAI 0.43 2.27 41.2

Density Low density
(70%)

Low density (30%) 98.8% AGBfresh ðg∕m2Þ 0.40 3895.56 44.2

Medium
density (70%)

Medium
density (30%)

AGBdry ðg∕m2Þ 0.60 377.57 49.0

High density
(70%)

High
density (30%)

LAI 0.30 1.89 41.1

Duan et al.: Remote estimation of rapeseed phenotypic traits under different crop. . .

Journal of Applied Remote Sensing 018503-15 Jan–Mar 2024 • Vol. 18(1)



the optimal algorithm to develop the estimation models, which is consistent with the reports of
Teodoro et al.20 and Teshome et al.21

The estimation accuracy of AGBfresh, AGBdry, and LAI during the entire growth period was
low (Table 5), and development of estimation models for different stages respectively greatly
improved the estimation accuracy (Table 6). Similarly, Fang et al.48 found that the estimation
accuracy of vegetation fraction in rapeseed with UAV data was low when the models were devel-
oped for the leaf stage and flower stage together, and the accuracy was improved when the model
was developed respectively for the two stages. Besides, a low accuracy was found in the esti-
mation ofAGBfresh, AGBdry, and LAI for different cultivars, planting sites, and planting densities
(Table 7). Liang et al.49 revealed that the estimation accuracy of leaf nitrogen content decreased
for different rice cultivars. They found that dividing the cultivars into early and late maturation
type and then developing estimation models respectively for the two types could improve the
accuracy. Similarly, stratified sampling, which constructs training data and test data with the
same crop conditions (cultivar, planting site, or planting density), improved the estimation accu-
racy of rapeseed phenotypic traits in this study (Table 8). Their results indicated that developing
estimation models for different growth stages respectively and construction of training data and
test data by stratified sampling may improve the estimation accuracy of rapeseed phenotypic
traits under different crop conditions during the entire growth period.

Fang et al.48 proposed a threshold segmentation method of VI to identify the leaf stage and
flower stage of rapeseed, and then the model was automatically selected for the leaf stage or
flower stage to estimate vegetation fraction. In this study, k-means clustering indicated that both
phenotypic traits and canopy reflectance could distinguish the leaf and flower stage into two
clusters (Table 9), which means that the leaf and flower stage can be automatically identified
by canopy reflectance. Thus, a support vector machine classifier was used to identify the growth
stage of rapeseed. Integration of stratified sampling and developing estimation models for differ-
ent growth stages respectively improved the estimation accuracy of AGBfresh, AGBdry, and LAI
for different cultivars and planting sites during the entire growth period. However, for different
planting densities, this method showed no better performance than construction of training data
with low and high density and test data with medium density. According to Eqs. (1) and (2), there
was a nearly linear relationship between these three phenotypic traits and planting density. The
reason may be that the effect of planting site and cultivar on phenotypic traits is hard to quantify,
while that of planting density is quantifiable. These results indicated that construction of the
training data by considering the growth stage and crop conditions helps improve the estimation
accuracy of phenotypic traits under varying crop conditions during the entire growth period.

This study developed an optimized strategy for training data to improve the estimation accu-
racy of rapeseed phenotypic traits. The results indicated that the influence of growth stage and
crop conditions on phenotypic traits needs to be considered when estimating phenotypic traits by
UAV data and machine learning methods. Instead of utilizing more powerful methods or more
image features to develop the estimation model, it may be more effective and simpler to construct
the training data by considering both the growth stage and crop conditions. The results of this
work can provide a novel solution for the accurate estimation of crop phenotypic traits from the
perspective of data optimization. This approach may introduce an agricultural background to the
estimation model developed by machine learning methods and provide a new perspective for the
cooperation of agriculture and RS. Our future work will apply this approach in other crop species
and crop conditions, and explore the time information of multi-temporal UAV data for improving
the estimation accuracy of phenotypic traits.

5 Conclusions
This study explored the influence of growth stage and crop conditions on the estimation of rape-
seed phenotypic traits by using machine learning and UAV data, and proposed an optimized
strategy for constructing training data by considering the influence of the growth stage and crop
conditions on phenotypic traits to improve the estimation accuracy. The experiments were con-
ducted at Jingzhou and Xiangyang, Hubei province of China, which included different rapeseed
cultivars and planting densities. UAV images and data of three phenotypic traits of AGBfresh,
AGBdry, and LAI were collected during the entire growth period of rapeseed. The results showed
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that growth stage and crop conditions have great influence on the phenotypic traits. Four machine
learning methods, PLSR, SVR, RF, and ANN, were used to develop estimation models of
rapeseed phenotypic traits based on canopy reflectance obtained by UAV multispectral images,
with SVR showing the best performance. The models established for a certain cultivar, planting
site, or planting density had low estimation accuracies for other cultivars, planting sites, and
planting densities during the entire growth period. Integration of stratified sampling and devel-
oping estimation model for different growth stages respectively could improve the estimation
accuracy for different cultivars and planting sites, and construction of training data with samples
of both low and high planting densities could improve the estimation accuracy for different
planting densities. Therefore, construction of training data according to the growth stage and
crop conditions is important when using machine learning to estimate crop phenotypic traits
with UAV data.
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