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Abstract. For inverse synthetic aperture radar (ISAR) imaging of targets with nonsevere maneu-
verability, the Doppler frequencies of scatterers are actually time-varying and azimuth echoes of
a range cell have to be modeled as multicomponent linear frequency modulation (LFM) signals
after the range alignment and the phase adjustment. In ISAR imaging with the LFM signal
model, the chirp rate deteriorates the target image and an effective parameter estimation algo-
rithm is required. By employing a symmetric instantaneous self-correlation function and the
modified scaled Fourier transform, an effective parameter estimation algorithm, known as the
centroid frequency chirp rate distribution (CFCRD), is proposed and applied to ISAR imaging.
Compared to two representative parameter estimation algorithms, the modified Wigner-Ville
distribution and the Lv’s distribution, the proposed CFCRD can acquire a higher antinoise per-
formance without spectrum aliasing and brute-force searching. Through simulations and analy-
ses of the synthetic radar data and the real radar data, we verify the effectiveness of CFCRD and
the corresponding ISAR imaging algorithm. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.095065]
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1 Introduction

Inverse synthetic aperture radar (ISAR) imaging has attracted the attention of radar researchers in
the past three decades due to its all-weather suitability and day and night availability.1–4 The
primary steps for ISAR imaging are the range alignment (compensating the translational and
rotational range migrations)5–8 and the phase adjustment (removing the Doppler phase induced
by the translation).9,10 Then the traditional range-Doppler (RD) method can be used to obtain the
well-focused ISAR image for targets with smooth motions. However, for targets with nonsevere
maneuverability, the traditional RD algorithm cannot work due to the time-varying Doppler
frequencies of the scatterers. This ISAR imaging problem has motivated the research on the
range-instantaneous Doppler (RID) technique11,12 and the range instantaneous chirp rate (RIC)
technique.13,14

Based on the RID technique or RIC technique, azimuth echoes of targets with nonsevere
maneuverability can be modeled as multicomponent linear frequency modulation (LFM) signals.
In Refs. 11 and 12, the real radar data and the synthetic data have been utilized to validate the
LFM signal model for ISAR imaging of targets with nonsevere maneuverability. For ISAR im-
aging with the LFM signal model, the chirp rate is identified as the cause of the image defocus
and an effective parameter estimation algorithm is required. With regard to the parameter esti-
mation of the LFM signal, many algorithms have been proposed. The cyclostationarity based
algorithm,15 the Wigner-Ville distribution,16 the cubic phase function,17,18 and the ambiguity
function19 are popular bilinear transforms, whose essences are to reduce the order of the LFM
signal. Although the aforementioned bilinear algorithms have low computational cost and high
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resolution, the cross-term interference and the low antinoise performance limit their realistic
applications. To resolve problems of the aforementioned bilinear algorithms, the integrated
cubic phase function,20 the Radon-ambiguity transform,21 the keystone-Wigner transform,12,22

the fractional Fourier transform,23,24 and the modified discrete chirp Fourier transform25,26 are
proposed. They employ the brute-force searching of the unknown chirp rate to accumulate the
signal energy, which benefits the cross-term suppression and the antinoise performance.
However, the brute-force searching will require a complicated radar system and a high computa-
tional cost [OðMN log2 NÞ], where M is the searching time and is always much larger than the
number of echoes N in the high-resolution ISAR imaging application due to the high carrier
frequency and the large frequency bandwidth.11,27,28

In order to overcome the problems of the aforementioned algorithms,15–26 the modified
Wigner-Ville distribution and the Lv’s distribution are proposed in Refs. 11 and 27, respectively.
These two algorithms eliminate the brute-force searching and only require complex multiplica-
tion, the fast Fourier transform (FFT), and the inverse FFT to complete the signal energy accu-
mulation. However, challenges still exist for these two algorithms and include (1) the modified
Wigner-Ville distribution has a low antinoise performance and cannot avoid the problem of spec-
trum aliasing and (2) although the Lv’s distribution can use the redundancy information to avoid
spectrum aliasing, this is at the cost of the antinoise performance loss.

In this paper, an effective parameter estimation algorithm, known as the centroid frequency
chirp rate distribution (CFCRD), is proposed by employing a novel symmetric instantaneous
self-correlation function and the modified scaled Fourier transform (MSFT). The novel symmet-
ric instantaneous self-correlation function benefits the antinoise performance and the MSFT
helps the CFCRD avoid spectrum aliasing. The MSFT can be implemented with the FFT
based chirp-z transform. Thus, the brute-force searching is eliminated in CFCRD. Through sim-
ulations and analyses, we demonstrate that, without spectrum aliasing, CFCRD can acquire a
higher antinoise performance than the modified Wigner-Ville distribution and the Lv’s distri-
bution, which makes the CFCRD more practical. Thereafter, based on CFCRD, a novel ISAR
imaging algorithm is presented and verified with synthetic data and real radar data.

The remainder of this paper is organized as follows. In Sec. 2, by employing the symmetric
instantaneous self-correlation function and MSFT, CFCRD is proposed for the parameter esti-
mation of the LFM signal. In addition, the cross-term and the selection criterion of the zoom
factor are also analyzed for CFCRD. Section 3 gives analyses of the computational cost and the
antinoise performance. Based on CFCRD, a novel ISAR imaging algorithm is presented for
targets with nonsevere maneuverability in Sec. 4. Its application and the conclusion are
given in Secs. 5 and 6, respectively.

2 Centroid Frequency Chirp Rate Distribution for Parameters
Estimation of Linear Frequency Modulation Signal

The geometry for ISAR imaging used here is based on the model in Ref. 11. In this paper, we will
not discuss the range alignment and the phase adjustment in detail, and will just focus on the
processing of the Doppler frequency shift. With regard to the range alignment and the phase
adjustment, we can refer the reader to Refs. 5–10 for corresponding processing algorithms.
We assume that all scatterers of the target have been corrected into the right range cell after
the range alignment and the phase adjustment, and the coupling between the envelope and
the Doppler frequency29–31 will not be discussed in this paper. Assume the number of scatterers
in the a’th range cell is P and the azimuth echo takes the form of multicomponent LFM signals

EQ-TARGET;temp:intralink-;e001;116;164sðtÞ ¼
XP
p¼1

Ap exp½jϕpðtÞ� þ zðtÞ ¼
XP
p¼1

Ap exp

�
j2π

�
fptþ

1

2
γpt2

��
þ zðtÞ; (1)

where t denotes the slow time, and Ap and ϕpðtÞ are the amplitude and the signal phase of the
p’th scatterer, respectively. zðtÞ is additive complex white Gaussian noise with a variance of δ2.
fp and γp denote the centroid frequency and the chirp rate, respectively. According to Ref. 11, fp
and γp correspond to the coordinate. Thus, different scatterers correspond to different fp and γp,
and it is necessary to estimate the centroid frequency and the chirp rate for different scatterers.
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In ISAR imaging with the LFM signal model, the chirp rate causes the Doppler frequency
shift and deteriorates the image quality. Thus, in order to reconstruct a well-focused ISAR
image, the CFCRD is proposed in this section by employing a novel symmetric instantaneous
self-correlation function and the MSFT. The following three sections will discuss the prin-
ciple of CFCRD, the cross-term suppression, and the selection criterion of the zoom factor,
respectively.

2.1 Centroid Frequency Chirp Rate Distribution with Multicomponent Linear
Frequency Modulation Signal

Based on the format of Eq. (1) and the analyses in Ref. 11, a novel symmetric instantaneous self-
correlation function is defined as

EQ-TARGET;temp:intralink-;e002;116;590Rsðt; τÞ ¼ sðtþ τÞs�ðt − τÞ ¼
XP
p¼1

A2
p exp½j2πð2fpτ þ 2γptτÞ� þ Rs;crossðt; τÞ þ ZR;noiseðt; τÞ;

(2)

where * and τ denote the complex conjugation and the lag-time variable, respectively.
Rs;crossðt; τÞ and ZR;noiseðt; τÞ denote the cross-term and the noise after the symmetric instanta-
neous self-correlation function, respectively.

It is worthwhile noting that the symmetric instantaneous self-correlation function defined in
Eq. (2) is different from that in Ref. 11. As we know, due to the bilinearity, half of the energy of
the original signal will be lost,32,33 which can be seen from Fig. 1(a). Thus, the symmetric instan-
taneous self-correlation function defined in Ref. 11 has a 3 dB antinoise performance loss.
However, if there are enough samplings for the symmetric instantaneous self-correlation func-
tion as defined in Ref. 11, the antinoise performance loss may be saved. References 27 and 28
indicate that the previously processed data are useful and can be used as the redundancy infor-
mation. Thus, for the symmetric instantaneous self-correlation function defined in Eq. (2), the
previously processed data are used as the redundancy information to save the antinoise perfor-
mance loss, which is shown in Fig. 1(b) (red triangles correspond to the data obtained with the
previously processed data).

In the exponential phase term of Eq. (2), a linear coupling exists between t and τ. In order to
remove the coupling, Ref. 11 proposes the scaled Fourier transform. However, because the esti-
mation range of the chirp rate is fixed, spectrum aliasing easily occurs on the scaled Fourier

Fig. 1 Symmetric instantaneous self-correlation functions defined in Ref. 11 and Eq. (2): (a) sym-
metric instantaneous self-correlation function defined in Ref. 11 and (b) symmetric instantaneous
self-correlation function defined in Eq. (2).
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transform and disables the modified Wigner-Ville distribution. Here, in order to remove the cou-
pling without spectrum aliasing, we propose MSFT, which takes the form

EQ-TARGET;temp:intralink-;e003;116;711Tsðτ; ftτ; ξÞ ¼ MSFTtτ½Rsðt; τÞ� ¼
Z
tτ
Rsðt; τÞ exp½−j2πftτξtτ�dtτ; (3)

where MSFTtτð·Þ denotes the MSFT operator. Because of the introduction of the zoom factor ξ,
the estimation range of the chirp rate can be enlarged and the problem of the spectrum aliasing
will be resolved. In order to distinguish it from the scaled Fourier transform, we define it as
MSFT. ftτ is the frequency domain with respect to tτ. ξ denotes a zoom factor, which is
used to solve the spectrum aliasing. The selection criterion of the zoom factor will be discussed
in Sec. 2.3. Obviously, when ξ ¼ 1, the scaled Fourier transform proposed in Ref. 11 is only a
special case of MSFT.

Substituting Eq. (2) into Eq. (3), we have the lag-time chirp rate distribution

EQ-TARGET;temp:intralink-;e004;116;572Tsðτ; ftτ; ξÞ ¼
XP
p¼1

A2
p expðj4πfpτÞδ

�
ftτ −

2γp
ξ

�
þ Ts;crossðτ; ftτ; ξÞ þ TR;noiseðτ; ftτ; ξÞ; (4)

where Ts;crossðτ; ftτ; ξÞ and TR;noiseðτ; ftτ; ξÞ denote the cross-term and the noise after MSFT,
respectively.

After MSFT, the coupling is eliminated and the signal energy peaks along the beeline
ftτ − 2γp∕ξ ¼ 0. Applying FFT to Tsðτ; ftτ; ξÞ along the τ dimension, we get the CFCRD

EQ-TARGET;temp:intralink-;e005;116;473Dsðfτ; ftτ; ξÞ ¼ FFTτ½Tsðτ; ftτ; ξÞ�

¼
XP
p¼1

A2
pδðfτ − 2fpÞδ

�
ftτ −

2γp
ξ

�
þDs;crossðfτ; ftτ; ξÞ þDR;noiseðfτ; ftτ; ξÞ;

(5)

where FFTτð·Þ denotes the FFT operator. fτ is the frequency domain with respect to τ.
Ds;crossðfτ; ftτ; ξÞ and DR;noiseðfτ; ftτ; ξÞ denote the cross-term and the noise after the FFT oper-
ation, respectively.

In Eq. (5), each scatterer corresponds to a sole peak at the point ð2fp; 2γp∕ξÞ on the centroid
frequency and the chirp rate plane. Thus, if the cross-term does not accumulate as the self-term
(this will be verified in the next section) and the CFCRD has a high antinoise performance (this
will be verified in Sec. 3), parameters fp and γp can be estimated as ðf 0

τ∕2; ξf 0
tτ∕2Þ with the peak

detection technique.11,27

The MSFT defined in Eq. (3) can be implemented with the FFT based chirp-z transform and
we can refer to Appendix A for its implementation. Thus, just as with the modified Wigner-Ville
distribution and the Lv’s distribution, our proposed CFCRD can also complete the parameters’
estimation of the LFM signal without the brute-force searching. Eliminations of the brute-force
searching procedure benefit the radar system complexity.27 In the next two sections, the cross-
term and the selection criterion of the zoom factor will be analyzed for CFCRD.

2.2 Cross-Term Analysis

Due to the bilinearity of the symmetric instantaneous autocorrelation function, the cross-term
Ds;crossðfτ; ftτ; ξÞ appears in the CFCRD and may influence the detection of the self-term. Thus,
in Appendix B, we analyze characteristics of the cross-term and the obtained lemma are
listed below.

Lemma. Let ∇fp1;p2
¼ fp1

þ fp2
, Δfp1;p2

¼ fp1
− fp2

, ∇γp1;p2
¼ ðγp1

þ γp2
Þ∕2, Δγp1;p2

¼
ðγp1

− γp2
Þ∕2, f̃tτ ¼ ftτ − 2∇γp1;p2

∕ξ, and f̃τ ¼ fτ − ∇fp1;p2
. The corresponding cross-term

can be expressed as
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1. for γp1
¼ γp2

, fp1
≠ fp2

, and f̃tτ ¼ 0

EQ-TARGET;temp:intralink-;e006;116;723Ds;crosðfτ; ftτ; ξÞ ¼ 0; (6)

2. for γp1
¼ γp2

, fp1
≠ fp2

, and f̃tτ ≠ 0

EQ-TARGET;temp:intralink-;e007;116;679Ds;crosðfτ; ftτ; ξÞ ¼ 2Ap1
Ap2

Δfp1;p2

ξf̃2tτ
cos

�
2π

Δfp1;p2

ξf̃tτ
f̃τ

�
; (7)

3. for γp1
≠ γp2

EQ-TARGET;temp:intralink-;e008;116;621Ds;crosðftτ; fτ; ξÞ ¼
8Ap1

Ap2
ξjf̃τΔγp1;p2

j
jξ2f̃2tτ þ Δγ2p1;p2

j3∕2 cos

�
sgnðΔγp1;p2

Þ π
4
½1

þ sgnðξ2f̃2t þ Δγ2p1;p2
Þ� þ 2f̃2τΔγp1;p2

ξ2f̃2tτ þ Δγ2p1;p2

−
Δf2p1;p2

2Δγp1;p2

�
: (8)

Obviously, under multicomponent LFM signals, the cross-term of the CFCRD cannot accu-
mulate as the self-term and has a cosine structure. Thus, for the self-term, the effect of the cross-
term can be neglected. In the following, an example will be given to show how the CFCRD
accumulates the self-term and suppresses the cross-term.

Example 1: We consider two LFM signals denoted by Au1 and Au2. The pulse repetition
frequency (PRF) and the number of effective integration pulses N are 128 Hz and 128, respec-
tively. Parameters of Au1 and Au2 are set as follows: A1 ¼ 1, f1 ¼ 10 Hz, γ1 ¼ 20 Hz∕s;
A2 ¼ 1, f2 ¼ −10 Hz, γ2 ¼ 100 Hz∕s. Figure 2 gives the simulation results.

With the FFT operation along the slow time axis of Rsðt; τÞ, Fig. 2(a) gives the lag-time-
Doppler frequency distribution. Obviously, the coupling between t and τ induces inclined

Fig. 2 Simulation results of example 1: (a) contour of the lag-time Doppler frequency distribution,
(b) contour of the lag-time chirp rate distribution after themodified scaled Fourier transform, (c) con-
tour of the centroid frequency chirp rate distribution (CFCRD), and (d) stereogram of CFCRD.
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lines. It is worthwhile noting that, as shown in Fig. 2(a), the spectrum aliasing happens to Au2
due to its great chirp rate. We apply the MSFT of Eq. (3) to remove the coupling of Rsðt; τÞ with
the zoom factor ξ ¼ 4 (this zoom factor can solve the problem of spectrum aliasing and its
selection criterion will be discussed in Sec. 2.3). In Fig. 2(b), after MSFT, the spectrum aliasing
is eliminated and the self-term is corrected into beelines. However, the MSFT does not work on
the cross-term, which is still typically dispersed on the lag-time chirp rate plane. Performing the
FFT operation along the lag-time axis of Fig. 2(b), we obtain Fig. 2(c), where only the self-term
accumulates into sole peaks. Figure 2(d) gives the stereogram of Fig. 2(c). In Fig. 2(d), with the
peak detection technique, ðγ1; f1Þ and ðγ2; f2Þ can be estimated as (20 Hz∕s, 10 Hz) and
(100 Hz∕s, −10 Hz), respectively.

The aforementioned analyses and simulations are under the situation of multicomponent
LFM signals with the same amplitude. However, in realistic applications, amplitudes are usually
different.27 In general, weak LFM signals may be submerged in the residual cross-term generated
by strong LFM signals. Therefore, under multicomponent LFM signals with different ampli-
tudes, similar to other parameter estimation algorithms, the clean technique23–25 should be per-
formed to separate weak LFM signals from strong LFM signals.

2.3 Selection Criterion of the Zoom Factor

For the MSFT proposed in Eq. (3), the zoom factor ξ is introduced to avoid the spectrum aliasing
and eliminate the estimation error. In this section, we will employ the analytical method utilized
in Ref. 34 to discuss the selection criterion of the zoom factor ξ in detail.

After the energy accumulation, the unknown chirp rate γp can be estimated as γ̂p through the
peak detection technique.34

EQ-TARGET;temp:intralink-;e009;116;447γ̂p ¼ ftτξ∕2: (9)

Considering the sampling frequency is Fϒ þ 1 (Fϒ is even integer), we can obtain the range
of ftτ for the CFCRD

EQ-TARGET;temp:intralink-;e010;116;390−Fϒ∕2 ≤ ftτ ≤ Fϒ∕2: (10)

In order to avoid spectrum aliasing, it is assumed that jγpj ≤ F2
ϒ∕N.18 Thus, based on

Eq. (10), the ranges of the zoom factor should be

EQ-TARGET;temp:intralink-;e011;116;334ξ ≥ 4Fϒ∕N: (11)

This means that if the zoom factor satisfies Eq. (11), the spectrum aliasing and the estimation
error can be totally eliminated. However, according to Eq. (9), a smaller zoom factor can be
utilized to increase the estimation accuracy. Therefore, the selection criterion of the zoom factor
should combine Eq. (11) with the requirement of the estimation precision in realistic ISAR im-
aging. Based on the analyses in Ref. 34, in order to obtain a balance between Eq. (11) and the
estimation precision,11,29 we suggest ξ ¼ 4Fϒ∕N for CFCRD.

3 Antinoise Performance Analysis and Computational Cost

In this section, we will analyze the antinoise performance and the computational cost of the
CFCRD, which play important roles in the parameters’ estimation.27,28,35–37 The modified
Wigner-Ville distribution algorithm and the Lv’s distribution algorithm are chosen as references.

3.1 Antinoise Performance

In this section, the input-output signal-to-noise ratio (SNR)35–37 and the mean square error26,37–39

are utilized to evaluate the antinoise performance of CFCRD.
Example 2: A monocomponent LFM signal Bu, which is contaminated with the zero-mean

complex white Gaussian noise, is taken into account in this example. The PRF and the number of
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effective integration pulses N are 256 Hz and 256, respectively. The signal parameters are A ¼ 1,
f ¼ 60 Hz, γ ¼ 200 Hz∕s. The tested input SNRs are SNRin ¼ ½−14: − 8�, and 100 trials are
performed for each SNRin value. According to the selection criterion of the zoom factor, we set
the zoom factor to four in this example. Figure 3 gives the simulation results.

The input-output SNR comparison is shown in Fig. 3(a), where the result of the matched filter
for the LFM signal Bu in example 2 is also shown with the solid line. The chirp rate of Bu
exceeds the range of the traditional scaled Fourier transform for the modified Wigner-Ville dis-
tribution. Thus, the spectrum aliasing appears and the estimation error happens to the modified
Wigner-Ville distribution algorithm in Fig. 3(a). For the Lv’s distribution, the problem of the
spectrum aliasing can be avoided by increasing the value of the parameter h according to Eq. (7)
in Ref. 27. According to the principle of the Lv’s distribution, the parameter h should be set to 2
to avoid the spectrum aliasing. However, due to the limitation of ah ¼ 1, the time delay a ¼ 1∕2
influences the antinoise performance.28 In Figs. 3(b)–3(c), we can see that the threshold SNR of
the Lv’s distribution is −11 dB. In CFCRD, the novel symmetric instantaneous self-correlation
function benefits the antinoise performance, and the antinoise performance will not be influ-
enced by the variety of the value of ξ. Therefore, the threshold SNR of CFCRD is −12 dB,
which can make CFCRD more suitable for realistic applications than the modified Wigner-
Ville distribution and the Lv’s distribution.

The observed mean square errors (MSEs) for the centroid frequency and the chirp rate are
plotted in Figs. 3(b)–3(c) as a function of SNR, respectively. The corresponding Cramer-Rao
bounds (CRBs) are also shown in solid lines in Figs. 3(b)–3(c), and the expressions of the cor-
responding CRBs can be obtained from Refs. 40 and 41. Figures 3(b) and 3(c) show that, as
expected, both MSEs of the centroid frequency and chirp rate estimations are inversely propor-
tional to the input SNRs. The MSEs of the centroid frequency and chirp rate estimation are close
to CRB when SNR ≥ −12 dB, which further validates the results shown in Fig. 3(a).

3.2 Computational Cost

In Sec. 3.1, we analyze the antinoise performance of CFCRD and demonstrate that CFCRD can
obtain a higher antinoise performance than the modified Wigner-Ville distribution and the Lv’s
distribution. In this section, the computational cost of CFCRD will be analyzed.

For the modified Wigner-Ville distribution,11 its main implementation procedures include the
defined self-correlation function [OðN2Þ], the scaled Fourier transform [OðN2 log2 NÞ], and the
FFToperation along the lag-time axis [OðN2 log2 NÞ]. Thus, the computational cost of the modi-
fied Winger-Ville distribution is the order of OðN2 log2 NÞ. For the Lv’s distribution,27 its main
implementation procedures include the defined self-correlation function [OðN2Þ], the keystone
transform [OðN2 log2 NÞ], and the FFT operation along the lag-time axis [OðN2 log2 NÞ]. Thus,
the computational cost of the Lv’s distribution is the order of OðN2 log2 NÞ. The main imple-
mentation procedures of CFCRD include the defined parameter symmetric self-correlation func-
tion [OðN2Þ], the MSFT [OðN2 log2 NÞ], and the FFT operation along the lag-time axis
[OðN2 log2 NÞ]. Therefore, the computational cost of CFCRD is in the order of OðN2 log2 NÞ.

Fig. 3 Analysis of the antinoise performance: (a) input-output signal-to-noise ratio performance,
(b) mean square error (MSE) of centroid frequency estimation, and (c) MSE of chirp rate
estimation.
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Table 1 gives the computational costs of these three algorithms. According to Table 1, we know
that the computational cost of CFCRD is in the same order as those of the modified Winger-Ville
distribution and the Lv’s distribution.

4 Inverse Synthetic Aperture Radar Imaging Algorithm Based on
Centroid Frequency Chirp Rate Distribution

With the simulations and analyses in Secs. 2 and 3, we know that, considering the elimination of
the brute-force searching, the cross-term suppression, the settlement of the spectrum aliasing, the
computational cost, and the antinoise performance, our proposed CFCRD is more practical than
the modified Winger-Ville distribution and the Lv’s distribution. Therefore, in this section, by
employing CFCRD, a novel imaging algorithm is proposed for targets with nonsevere maneu-
verability and its implementation is illustrated as follows.

Step 1: Complete the range compression of radar echoes with the matched filter

EQ-TARGET;temp:intralink-;e012;116;467Hðt̂Þ ¼ rectðt̂∕TsÞ expðjπγt̂2Þ; (12)

where

EQ-TARGET;temp:intralink-;sec4;116;424rect½x� ¼
�
1; jxj ≤ 1∕2
0; jxj > 1∕2 :

t̂, Ts, and γ are the fast time, the pulse width, and the frequency modulation rate,
respectively.

Step 2: Compensate the translational range migration, the rotational range migration, and the
Doppler spread induced by the translation.

Step 3: Get the data slðtÞ of the l’th (where 1 ≤ l ≤ L and L is the number of range cells)
range cell.

Step 4: Apply CFCRD to the data slðtÞ, and then the peak detection technique29,32 can be uti-
lized to estimate the magnitude Ap, the centroid frequency fp, and the chirp rate γp

EQ-TARGET;temp:intralink-;e013;116;296

�
A 0
p ¼ D 0

N2
; f 0

p ¼ fτ
2
; γ 0

p ¼ ftτξ
2

�
¼ argmax

ðfτ; ftτÞ
jDslðfτ; ftτ; ξÞj; (13)

where D 0 denotes the amplitude of the peak. f 0
p and γ 0

p are estimations of the centroid fre-
quency and the chirp rate for the p’th LMF of slðtÞ. argmax denotes the argument that
maximizes. Dslðfτ; ftτ; ξÞ denotes the result after applying CFCRD on slðtÞ.

Step 5: Subtract the estimated p’th LFM from the original signal slðtÞ

EQ-TARGET;temp:intralink-;e014;116;207slðtÞ ¼ slðtÞ − A 0
p exp

�
j2π

�
f 0
ptþ

1

2
γ 0
pt2

��
: (14)

Step 6: Repeat steps 4 and 5 until the residual signal energy E is less than EH (say, 5% of the
original signal),29,32 which is an energy threshold.

Step 7: If l < L, set l ¼ lþ 1 and repeat steps 3 to 6 until l ¼ L.
Step 8: Reconstruct the azimuth echo as slðtÞ ¼

P
P
p¼1 A

0
p expðj2πf 0

ptÞ, 1 ≤ l ≤ L, and finally,
obtain the ISAR imaging via FFT operation.

Above is the proposed ISAR imaging algorithm based on CFCRD. With the estimated
parameters, we can reconstruct the well-focused ISAR image for targets with nonsevere
maneuverability.

Table 1 Computational cost.

Estimation algorithms Modified Winger-Ville distribution Lv’s distribution
Centroid frequency chirp

rate distribution

Computational cost OðN2 log2 NÞ OðN2 log2 NÞ OðN2 log2 NÞ
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5 Verification of the Proposed Inverse Synthetic Aperture Radar
Imaging Algorithm

5.1 Inverse Synthetic Aperture Radar Imaging with Synthetic Ship Model

In this section, ISAR imaging algorithms, which utilize the modified Winger-Ville distribution,
the Lv’s distribution, and CFCRD are compared. Similar to Refs. 12, 14, 34, and 37–39, a fluc-
tuating ship shown in Fig. 4(a) is modeled as a set of ideal scatterers. The unit vector of the radar
line of sight is ð2∕ ffiffiffiffiffi

69
p

;−8∕
ffiffiffiffiffi
69

p
; 1∕

ffiffiffiffiffi
69

p Þ. Figure 4(b) shows the result of the ideal RD algo-
rithm under the absence of the range migration and the Doppler frequency, while Fig. 4(c) is the
result of the RD algorithm with the Doppler frequency shift after the motion compensation. The
parameters of the radar and the ship model are listed in Table 2.

The comparison between Figs. 4(b) and 4(c) demonstrates that the existence of the chirp rate
induces the Doppler frequency shift and degrades the quality of the ISAR image. Therefore, for
ISAR imaging of targets with nonsevere maneuverability, we should estimate the chirp rate and
compensate the corresponding Doppler frequency shift.

In Fig. 5, the ISAR imaging algorithms based on the modified Wigner-Ville distribution and
the Lv’s distribution are utilized to compare with the ISAR imaging algorithm based on CFCRD
under the situation of SNRin ¼ −11 dB. The zoom factor ξ of CFCRD is set to 4, and the param-
eter h of the Lv’s distribution is set to 2. The results of Fig. 5 are normalized, and the entropy of
Eq. (15) is utilized as a criterion to measure the quality of the image Iðh; nÞ in Table 3.34,37

EQ-TARGET;temp:intralink-;e015;116;488ENT ¼ −
XH
h¼1

XN
n¼1

jIðh; nÞj2 ln jIðh; nÞj2: (15)

Table 2 Radar parameters and moving parameters of the ship model.

Carrier frequency f c 5 GHz Wave length λ 0.06 m

Bandwidth B 100 MHz Fast time sampling frequency f s 100 MHz

Pulse repetition frequency Fs 256 Hz Effective echo pulses N 256

Translation coefficient Velocity Acceleration

30 m∕s 2 m∕s2

Rotating coefficient X axis Y axis Z axis

Constant term 0.03 rad∕s 0.01 rad∕s 0.02 rad∕s

Acceleration term 0.06 rad∕s2 0.03 rad∕s2 0.06 rad∕s2

Fig. 4 Ship model and results of range-Doppler (RD) algorithm: (a) ship model, (b) ideal RD
image, and (c) RD image with Doppler frequency shift.
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Figure 5(a) gives the result of the modified Wigner-Ville distribution-based ISAR imaging
algorithm. Because the chirp rates of some scatterers exceed the estimation range of the tradi-
tional scaled Fourier transform, spectrum aliasing occurs and the Doppler frequency cannot be
correctly estimated by the modified Winger-Ville distribution. Therefore, due to spectrum alias-
ing and a low SNRin, the modified Wigner-Ville distribution-based ISAR imaging algorithm
cannot reconstruct a well-focused image. The Lv’s distribution-based ISAR imaging algorithm
and the CFCRD-based ISAR imaging algorithm can both solve the spectrum aliasing and have a
good antinoise performance. Thus, the entropies of Figs. 5(b) and 5(c) are lower than that of
Fig. 5(a). Compared to Lv’s distribution, CFCRD has a higher antinoise performance. Therefore,
the quality of Fig. 5(c) is better than that of Fig. 5(b). The results of Fig. 5 demonstrate that the
CFCRD-based ISAR imaging algorithm outperforms the modified Wigner-Ville distribution-
based ISAR imaging algorithm and the Lv’s distribution-based ISAR imaging algorithm.

5.2 Inverse Synthetic Aperture Radar Imaging with Real Data

In this section, the real data of a ship are utilized to validate the CFCRD-based ISAR imaging
algorithm. For the Ku-band radar, the bandwidth is 240 MHz and the PRF is 125 Hz. The zoom
factor of the CFCRD is set to 4. In simulations below, effective echoes are 125. Figure 6(a)
presents the result after motion compensation. With the Wigner-Ville distribution, the time-fre-
quency analysis of the 81st range cell is given in Fig. 6(b). Based on the result shown in Fig. 6(b)
and the characteristic of the LFM signal, we know that the echoes of this ship should be modeled
as multicomponent LFM signals.

The synthetic data have already been utilized to verify the effectiveness of CFCRD in the
aforementioned sections. Here, before ISAR imaging with the real radar data, we utilize the real
data of the 81st range cell to verify the effectiveness of CFCRD and the simulation results are
shown in Fig. 7.

Figure 7(a) gives the lag-time Doppler frequency distribution after the FFT operation along
the slow time axis of Rsðt; τÞ. Similar to example 1, an inclined line appears in Fig. 7(a). In order
to correct the inclined line, MSFT is performed and the lag-time chirp rate distribution is shown
in Fig. 7(b), where a beeline appears. On performing FFT operation along the lag-time axis of
Fig. 7(b), we obtain the CFCRD in Fig. 7(c). Obviously, the signal energy accumulates into a
sole peak. With the peak detection technique, the centroid frequency and the chirp rate are esti-
mated as −10.25 Hz and −13 Hz∕s, respectively. By compensating the Doppler frequency shift
pertaining to the estimated chirp rate and performing an FFT, we obtain Fig. 7(d), where the
result of the conventional RD algorithm is also shown. Due to the Doppler spread induced by the

Table 3 Entropies of inverse synthetic aperture radar (ISAR) imaging in Fig. 5.

Figure 5(a) Figure 5(b) Figure 5(c)

Entropies 109.2346 53.5553 40.4453

Fig. 5 Results of three inverse synthetic aperture radar (ISAR) imaging algorithms: (a) result of the
modified Wigner-Ville distribution-based ISAR imaging algorithm, (b) result of the Lv’s distribution-
based ISAR imaging algorithm, and (c) result of the CFCRD-based ISAR imaging algorithm.
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chirp rate, the conventional RD algorithm cannot focus the signal energy to the correct Doppler
frequency cell. It is known that several scatterers may exist in one range cell. Thus, steps 4 to 6 of
the CFCRD-based ISAR imaging algorithm can be employed to relocate other potential scat-
terers in the 81st range cell. The results of Fig. 7 demonstrate that the CFCRD works well for the
real radar data of the fluctuating ship.

It is known that, due to the complicated and unknown realistic environment, we cannot con-
trol the characteristics of the received real data, such as the antinoise performance and the num-
ber of scatterers in each range cell. Thus, similar to Refs. 38 and 42, we utilize only the real radar
data to verify whether the proposed ISAR imaging algorithm can work in realistic applications.
The advantages of the proposed algorithm can be validated with synthetic data, such as simu-
lations in Sec. 5.1. Figure 8 gives the ISAR imaging results, which are normalized.

Fig. 6 Processing results of the real data: (a) azimuth echoes after the range alignment and the
phase adjustment and (b) Wigner-Ville distribution of the 81th range cell.

Fig. 7 Simulation results based on CFCRD: (a) contour of the lag-time Doppler frequency distri-
bution, (b) contour of the lag-time chirp rate distribution, (c) stereogram of CFCRD, (d) conventional
RD algorithm and the result after the Doppler spread compensation with CFCRD.
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Figure 8(a) is the result of the conventional RD algorithm. Obviously, due to the Doppler
spread induced by the chirp rate, the conventional RD algorithm cannot reconstruct a well-
focused image for the fluctuating ship. CFCRD can estimate parameters of multicomponent
LFM signals with good cross-term suppression and a high antinoise performance. Thus,
most scatterers of the fluctuating ship can be relocated correctly and few spurious scatterers
appear in Fig. 8(b), where the mast, bow, stern, and bulk can be easily discerned. The entropies
listed in Table 4 also demonstrate that the CFCRD-based ISAR imaging algorithm is suitable for
realistic applications.

6 Conclusion

A nonsearching parameter estimation algorithm, referred to as CFCRD, is proposed by employ-
ing a symmetric instantaneous self-correlation function and MSFT. In this paper, the cross-term,
the antinoise performance, the selection of the zoom factor, the implementation, and the com-
putational cost of CFCRD are analyzed. Due to the symmetric instantaneous self-correlation
function and MSFT, CFCRD can obtain a higher antinoise performance without a spectrum
than the modified Winger-Ville distribution and the Lv’s distribution. With the proposed
CFCRD, an ISAR imaging algorithm is proposed. Thereafter, we utilize the synthetic data
and the real data to validate the effectiveness of the CFCRD-based ISAR imaging algorithm.

Appendix A
We utilize the chirp-z transform to implement the modified scaled Fourier transform (MSFT).
The details are as follows.

Consider the discrete format of Eq. (4).

EQ-TARGET;temp:intralink-;e016;116;133Tdðftτ; nτ; ξÞ ¼
X
nt

A2 expfj2π½2fnnτTs þ ð2γn − ftτξÞntnτT2
s �g; (16)

where nτ and nt correspond to τ and t, respectively; Ts denotes the sampling interval.

Fig. 8 ISAR imaging results with the real radar data: (a) result of the conventional RD algorithm
and (b) result of the CFCRD-based ISAR imaging algorithm.

Table 4 Entropies of ISAR imaging in Fig. 8.

Figure 8(a) Figure 8(b)

Entropies 146.9266 98.9293
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In order to reduce the computational cost, Eq. (16) can be rewritten as
EQ-TARGET;temp:intralink-;e017;116;723

Tdðftτ; nτ; ξÞ ¼ A2 exp½j2πð2fnnτTsÞ� exp
�
j2π

−f2tτ
2

ξnτT2
s

�

·
X
nt

A2 exp

�
j2π

��
2γnnt −

n2t
2
ξ

�
nτT2

s

��
exp

�
j2π

ðftτ − ntÞ2
2

ξnτT2
s

�
: (17)

In Eq. (17), the item Tcðftτ; nτ; ξÞ can be written as

EQ-TARGET;temp:intralink-;e018;116;632Tcðftτ; nτ; ξÞ ¼
X
nt

A2 exp

�
j2π

��
2γnnt −

n2t
2
ξ

�
nτT2

s

��
exp

�
j2π

ðftτ − ntÞ2
2

ξnτT2
s

�
: (18)

It is obvious that Tcðftτ; nτ; ξÞ can be regarded as a convolution. Thus, we can use fast
Fourier transform (FFT) to implement it.

Appendix B
After FFT and MSFT operators, the cross-term Ds;crosðfτ; ftτ; ξÞ, which influences the perfor-
mance of CFCRD, still exists inDsðfτ; ftτ; ξÞ. Therefore, characteristics of the cross-term should
be analyzed.

For a given p1 ∈ ½1; K − 1� and p2 ∈ ½p1 þ 1; K�, the cross-term in Rs;crosðt; τÞ can be rep-
resented as

EQ-TARGET;temp:intralink-;e019;116;454

Rp1;p2
ðt;τÞ¼2Ap1

Ap2
exp

�
j2π

�
ðfp1

þfp2
Þτþ

�
γp1

2
þγp2

2

�
2tτ

��

·cos

�
2π

�
ðfp1

−fp2
Þtþ

�
γp1

2
−
γp2

2

�
ðt2þτ2Þ

��
¼2Ap1

Ap2
Rp1;p2;1ðt;τÞRp1;p2;2ðt;τÞ;

(19)

where

EQ-TARGET;temp:intralink-;e020;116;360Rp1;p2;1ðt; τÞ ¼ exp

�
j2π

�
ðfp1

þ fp2
Þτ þ

�
γp1

2
þ γp2

2

�
2tτ

��
; (20)

EQ-TARGET;temp:intralink-;e021;116;320Rp1;p2;2ðt; τÞ ¼ cos

�
2π

�
ðfp1

− fp2
Þtþ

�
γp1

2
−
γp2

2

�
ðt2 þ τ2Þ

��
: (21)

The cross-term Ds;crosðfτ; ftτ; ξÞ can be represented as

EQ-TARGET;temp:intralink-;e022;116;267Ds;crosðfτ; ftτ; ξÞ ¼ 2Ap1
Ap2

FFTτfMSFTtτ½Rp1;p2;1ðt; τÞRp1;p2;2ðt; τÞ�g: (22)

1°: γp1
¼ γp2

and fp1
≠ fp2

. Performing FFT and MSFT operators on Rp1;p2;1ðt; τÞ and
Rp1;p2;2ðt; τÞ, we obtain

EQ-TARGET;temp:intralink-;e023;116;193

Dp1;p2;cros;1ðfτ; ftτ; ξÞ ¼ FFTτðMSFTtτfexp½j2πð∇fp1;p2
τ þ ∇γp1;p2

2tτÞ�gÞ

¼ δðfτ − ∇fp1;p2
Þδ
�
ftτ −

2∇γp1;p2

ξ

�
; (23)

EQ-TARGET;temp:intralink-;e024;116;131Dp1;p2;cros;2ðfτ; ftτ; ξÞ ¼ FFTτfMSFTtτ½cosð2πΔfp1;p2
tÞ�g

¼ Δfp1;p2

ξf2tτ
cos

�
2π

Δfp1;p2

ξftτ
fτ

�
: (24)
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Combining Eqs. (23) and (24) and exploiting the two-dimensional (2-D) convolution
theorem lead to the following:

1. If f̃tτ ¼ 0, we obtain

EQ-TARGET;temp:intralink-;e025;116;693Ds;crosðfτ; ftτ; ξÞ ¼ 0: (25)

2. If f̃tτ ≠ 0, we obtain

EQ-TARGET;temp:intralink-;e026;116;649Ds;crosðfτ; ftτ; ξÞ ¼ 2Ap1
Ap2

Δfp1;p2

ξf̃2tτ
cos

�
2π

Δfp1;p2

ξf̃tτ
f̃τ

�
: (26)

2°: γp1
≠ γp2

. Dp1;p2;cros;1ðfτ; ftτ; ξÞ is the same as Eq. (23).

As with the analyses in the Lv’s distribution,25 the principle of the stationary phase is utilized.
EQ-TARGET;temp:intralink-;e027;116;574

Dp1;p2;cros;2ðftτ; fτ; ξÞ ¼ D 0 0
s;cros;2ðftτ; fτ; ξÞ þD 0 0 0

s;cros;2ðftτ; fτ; ξÞ ¼
4ξjfτΔγp1;p2

j
jξ2f2tτ þ Δγ2p1;p2

j3∕2

· cos

�
sgnðΔγp1;p2

Þ π
4
½1þ sgnðξ2f2tτ þ 4Δγ2p1;p2

Þ� þ 2f2τΔγp1;p2

ξ2f2tτ þ Δγ2p1;p2

−
Δf2p1;p2

2Δγp1;p2

�
: (27)

Then the 2-D convolution theorem is utilized to obtain
EQ-TARGET;temp:intralink-;e028;116;484

Ds;crosðftτ; fτ; ξÞ ¼
8Ap1

Ap2
ξjf̃τΔγp1;p2

j
jξ2f̃2tτ þ Δγ2p1;p2

j3∕2

· cos

�
sgnðΔγp1;p2

Þ π
4
½1þ sgnðξ2f̃2t þ Δγ2p1;p2

Þ� þ 2f̃2τΔγp1;p2

ξ2f̃2tτ þ Δγ2p1;p2

−
Δf2p1;p2

2Δγp1;p2

�
: (28)

Above is the proof of the lemma listed in Sec. 2.2.
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