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Abstract. Angular super-resolution imaging in the forward-looking area of a scanning radar
platform plays an important role in the application of scanning radar. However, the angular res-
olution of scanning radar is limited by the system parameters. Thus, improving the angular res-
olution of scanning radar beyond the limitation of the given system parameters is desired. We
present an angular super-resolution imaging method by solving the associated deconvolution
problem. We first formulate an angular super-resolution problem in scanning radar as a decon-
volution task and then convert it to a constrained optimization problem by incorporating the prior
information of the target in the scene. We then solve the constrained optimization problem in
convex optimization framework using an augmented Lagrangian method. In order to solve the
constrained optimization problem, a corresponding augmented Lagrangian function is con-
structed and its saddle point is found using alternating direction method. The advantages of
the proposed method for angular super-resolution imaging in scanning radar are that the pro-
posed method can not only realize the angular super-resolution imaging in scanning radar but
also has high precision. Simulation and experiment results are given at the end to verify the
validity of the proposed method compared with a Wiener filter that is applicable for angular
super-resolution in scanning radar. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.096055]
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1 Introduction

Due to advantages over optical sensing tools, such as robust performance under all-time and all-
weather circumstances, radar plays an important role in such realms as earth observation, oceanic
monitoring, and military reconnaissance.1,2 To realize these applications, two-dimensional high
resolution is usually required. The high range resolution can be obtained by transmitting the
wideband signal and using the pulse compression technique. The high resolution in azi-
muth/angular can be realized using synthetical aperture technique or Doppler beam sharpening
approaches. However, these techniques are unable to realize radar imaging in the forward-look-
ing area of the radar platform. The reason is that the Doppler resolution and the range resolution
in the forward-looking area are parallel.3

Scanning radar works as a noncoherent sensor, which is suitable for any geometrical situation
and is able to realize two-dimensional radar imaging in the forward-looking area of the radar
platform. In the same way, the pulse compression provides the high range resolution, while the
angular resolution is usually poor when compared with the range resolution. For scanning radar,
the upper limit of angular resolution is determined by the effective wavelength and the size of the
antenna. Moreover, the angular resolution suffers and degrades as a function of target distance.
One method to improve the angular resolution in scanning radar image can be accomplished by
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increasing the physical size of the antenna aperture. However, there may be insufficient space to
accommodate such a large size antenna in the application. Therefore, an improvement in the
angular resolution of the scanning radar with fixed parameters using signal processing methods
is considered.

According to Refs. 4 and 5, the echo of scanning radar can be modeled as the convolution of
the transmitted signal with the scattering coefficients of the targets. Therefore, in theory, a decon-
volution method can enhance the angular resolution of the scanning radar.6 Deconvolution aims
at removing the transfer function, system noise, and other nonidealities of the imaging process,
thereby improving the imaging resolution.7 The deconvolution approach has been widely used
for video restoration,8 image processing,9 sparse signal restoration,10 and through-wall radar
imaging,11 while less work on the deconvolution approach for angular super-resolution imaging
in scanning radar has been reported.

This paper presents a deconvolution method for improving the angular resolution of scanning
radar. We first convert the angular super-resolution imaging task in scanning radar into an equiv-
alent deconvolution problem. It is well-known that the deconvolution problem is ill-posed, which
means the solution to the deconvolution problem is unstable and sensitive to the noise. To sta-
bilize the solution of the deconvolution problem, we must utilize some prior information of the
solution to the deconvolution problem. This paper focuses on some applications such as the
detection of detecting and city area imaging, and the case where a small number of dominant
scatterers are distributed in the scene. In these applications, large coefficients of the scatterers can
capture most of the information of the scene.12 Inspired by the Bayesian compressive sensing,13

the statistic characteristics of the dominant scatterers in the illuminated scene can be represented
by l1-norm. Then the deconvolution technique for dominant scatterers in angular super-resolu-
tion imaging can be converted into the corresponding l1 optimization problem. Therefore, the l1
regularization is adopted and the deconvolution problem can be written with a constrained opti-
mization form. Recently, applications of l1-norm minimization can be found in Ref. 14 for ISAR
imaging,15 for feature enhanced, and for through-wall radar image.16 In this paper, we are
focused on solving the deconvolution problem, which corresponds to the task of angular
super-resolution imaging in the forward-looking area of radar platform. Finally, the constrained
optimization problem is solved using an augmented Lagrangian method. The rationale behind
the augmented Lagrangian method is to find a saddle point of the associated augmented
Lagrangian function, which combines the function to be optimized with a Lagrange multiplier
term and a penalty term for the constraints.17 This leads to an alternating direction method for
finding the saddle point of the augmented Lagrangian function. Compared with the traditional
Lagrangian multiplier method, the augmented Lagrangian method overcomes numerical diffi-
culties due to the penalty going to infinity.18 Based on simulation and experimental results, we
demonstrate that the proposed deconvolution algorithm has better angular super-resolution
performances.

The rest of this paper is organized as follows: Sec. 2 presents the signal model for scanning
radar and converts the angular super-resolution problem into an equivalent deconvolution prob-
lem. Section 3 presents an augmented Lagrangian method to solve the corresponding deconvo-
lution problem. In Sec. 4, simulation and experimental results are given to demonstrate the
validity of the proposed method. Finally, the conclusions are given in Sec. 5.

2 Signal Model for Scanning Radar in Azimuth

In this section, we introduce the signal model for scanning radar and convert the angular super-
resolution problem into an equivalent deconvolution problem. The details of the deconvolution
algorithm for the angular super-resolution problem will be subsequently provided.

Suppose that the radar works in the scanning mode. The geometrical model of scanning radar
is illustrated in Fig. 1. The radar platform at the altitude H is moving along the Y-axis corre-
sponding to the range direction, while the antenna scans the scene along the X-axis correspond-
ing to the azimuth direction with constant angular velocity ω and then receives the echo data
from the observed scene. Assume that the target in the azimuth can be considered as an ideal
point. For an isolated target scatter, the received signal at the receiver output is proportional to the
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antenna pattern. The left part of Fig. 1 shows that the scanning radar collects echo data, while it
scans in the azimuth across the target field. It is noted that the adjacent echoes mostly cover the
same target features on the observed scene but with different contributions to the overall signal,
which is shown in the bottom part of Fig. 1.

At first, the conventional range compression and range migration correction are applied to the
echo data with the current approaches.2,19 The range compression and range migration to correct
data are denoted by gðθ;φ; rÞ, where r is the slant range from the radar to the target and θ, φ
denote the angle between the direction of the antenna to the target and flight direction and the
incident angle of the beam, respectively, which are smaller than 10 deg. On the other hand, it is
assumed that the antenna pattern is of relative isotropy to the imaging scene. Then the received
signal of the scanning radar along the range profile can be recognized as a convolution kernel
comprising the antenna power pattern in the angle coordinates and the pulse modulation function
in the range dimension,20 which could be expressed as

gðφ; θ; rÞ ¼ fðφ; θ; rÞ �
�
aðφ; θÞx

�
2r
c

��
; (1)

where * denotes the convolution operator, gðφ; θ; rÞ is the received signal of the scanning radar
after range compression and range cell migration, fðφ; θ; rÞ is the effective scattering coefficient,
aðφ; θÞ is the antenna pattern, xð2r∕cÞ denotes the pulse modulation function, and c represents
the speed of light.

Without loss of generality, we consider the variation in scattering with the azimuth angle θ for
a fixed range r0 and a fixed angle φ. Note that with the limited range resolution, the range aver-
aging scattering would be exactly equal to the effective scattering evaluated at the range of the
interested r0. Thus, we only consider the azimuth variation in Eq. (1) that can be written as

gðφ0; θ; r0Þ ¼ fðφ0; θ; r0Þ �
�
aðφ0; θÞx

�
2r0
c

��
: (2)

For mathematical simplicity, we only consider the azimuth variation. Then we can rewrite
Eq. (2) as

Noise Receiver

Fig. 1 The geometrical model of the scanning radar.
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gðθÞ ¼ fðθÞ � aðθÞ: (3)

In addition, the presence of the noise contaminates the data gðθÞ. The formation of the data
gðθÞ can be described as

gðθÞ ¼ fðθÞ � aðθÞ þ nðθÞ; (4)

where nðθÞ represents the noise.
In the case of observing a certain scene Ω, the echo returned to the radar is the whole scene.

The reflectivity of Ω can be denoted as a two-dimensional matrix

Ω ¼

2
6664
fðφ1; θ1Þ; fðφ1; θ2Þ; · · · fðφ1; θAÞ
fðφ2; θ1Þ; fðφ2; θ2Þ; · · · fðφ2; θAÞ

..

. . .
. ..

.

fðφR; θ1Þ; fðφR; θ2Þ; · · · fðφR; θAÞ

3
7775
R×A

; (5)

where R represents the discretization cells of the scene in the range direction, and A denotes the
discretization cells of the scene in the azimuth direction.

To attain the corresponding discrete convolution equation, we represent the scene Ω as a
vector by stacking the columns of the matrix:

f ¼ vecðΩÞ
¼ ½fðφ1;θ1Þ : : : fðφ1;θAÞ; fðφ2;θ1Þ : : : fðφ2;θAÞ; · · · ; fðφR;θ1Þ : : : fðφR;θAÞ �T;

(6)

where vec maps ΩR×A to ΩRA×1 by stacking the rows of a matrix in a vector, and ½·�T is used for
the matrix-vector transposition. Likewise,

g¼ ½gðφ1;θ1Þ : : : gðφ1;θAÞ; gðφ2;θ1Þ : : : gðφ2;θAÞ; · · · ; gðφR;θ1Þ : : : gðφR;θAÞ �T
(7)

and

n¼ ½nðφ1;θ1Þ : : : nðφ1;θAÞ; nðφ2;θ1Þ : : : nðφ2;θAÞ; · · · ; nðφR;θ1Þ : : : nðφR;θAÞ �T:
(8)

According to Ref. 21, a discrete convolution equation corresponding to Eq. (4) can be written
as

g ¼ Hf þ n; (9)

where g; f, and n are of dimension AR × 1, and H is of dimension AR × AR and is ordered as

H ¼

2
6664
H1 HR · · · H2

H2 H1 · · · H3

..

. ..
. . .

. ..
.

HR HR−1 · · · H1

3
7775
RA×RA

: (10)

The matrix H is a block circulant consisting of circulant blocks with dimensions RA × RA.
Each partition of Hiði ¼ 1;2; · · · RÞ has the size A × A, which is constructed from the i’th scan-
ning antenna pattern. Each partition Hi can be written as
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Hi ¼

2
666664

aðθ1;φiÞ aðθA;φiÞ · · · aðθ2;φiÞ
aðθ2;φiÞ aðθ1;φiÞ · · · aðθ3;φiÞ
aðθ3;φiÞ aðθ2;φiÞ · · ·

..

. ..
. . .

. ..
.

aðθA;φiÞ aðθA−1;φiÞ · · · aðθ1;φiÞ

3
777775
A×A

: (11)

The goal of angular super-resolution in scanning radar is to infer f from the g, as accurately
as possible. This task is called the deconvolution problem in this paper. The challenge is that the
data g recorded at the output of the radar system are a low-pass-filtered version of the original
data f due to the “low-pass” filtering effect of the antenna. So the high-frequency parts of the g
are lost by the antenna, which leads to the decrease of the azimuth resolution of the scanning
radar system.

3 Augmented Lagrangian Solver for Angular Super-Resolution Imaging

In this section, we first analyze the phenomenon of noise amplification in the conventional
inverse filter methods for solving a deconvolution problem. The deconvolution problem is con-
verted into a constrained optimization task. Then the augmented Lagrangian method is presented
as the foundation of the following deconvolution method. Finally, the angular super-resolution is
realized by solving the constrained optimization via augmented Lagrangian method.

3.1 Deconvolution Problem and Constrained Optimization Problem

The conventional linear deconvolution method would be a simple division of data g by the trans-
ferring function in the Fourier domain. Using the Fourier transform, Eq. (4) can be written as

GðwÞ ¼ HðwÞFðwÞ þ NðwÞ; (12)

where GðwÞ, HðwÞ, FðwÞ, and NðwÞ are the Fourier transforms of g, h, f, and n, respectively.
The linear deconvolution approach can be stated as the task of finding a linear operator T such as

F̂ðwÞ ¼ GðwÞ
TðwÞ ¼ FðwÞ þ NðwÞ

HðwÞ : (13)

The challenge consists in that the convolution in the Fourier corresponds to multiplication
while the deconvolution is Fourier division. For a radar system, the multipliers are often small for
high frequencies, and the inverse filter 1∕TðwÞ is large when TðwÞ is very small. This results in
large noise amplification, thus the angular super-resolution performance might be degraded. In
order to solve the deconvolution problem, we employ the framework of regularization theory
which provides the most likely solution given the recorded data and a reasonable assumption of
the true scene. The details of the proposed methods are presented next.

To perform the deconvolution, we employ the framework of regularization theory, which not
only suppresses the noise amplification but also allows for solutions that reflect reality.
Regularization theory allows us to incorporate the prior information about the targets. In
order to apply the regularization theory to the deconvolution problem, we first transform the
deconvolution problem into an equivalent constrained optimization problem by adding the
prior information of the targets.

In some applications of radar imaging, such as detection of ocean ships and aircraft mon-
itoring, the number of dominant scattering targets is much smaller than the number of the overall
samples. Therefore, the few large coefficients of the scatterers can capture most of the informa-
tion of the scene while the weak scattering center is regarded as the noise in the radar imaging.12

Considering the points that lie on the constant l1-norm curve, the ones with two coordinates
having equal magnitudes are favored by minimization of the lk-norm.22 The effect of the l1-norm
favors a field with smaller number of dominant scatterers and better preserves the scatterers and
their magnitudes. The deconvolution problem can be solved by constrained optimization based

Zha, Huang, and Yang: Augmented Lagrangian method for angular super-resolution imaging. . .

Journal of Applied Remote Sensing 096055-5 Vol. 9, 2015



on l1-norm. Finally, the regularization theory for angular super-resolution by solving the cor-
responding deconvolution problem leads to the following constrained optimization problem:

arg min
f

kLfk1 subject to∶kg −Hfk22 ≤ ε; (14)

where L denotes a discrete approximation of a regularization operator and ε ≥ 0 is a parameter
which depends upon the noise variance.

Equation (14) can be written as an equivalent unconstrained optimization problem, which
yields the following equation:

arg min
f

λkLfk1 þ
1

2
kg −Hfk22: (15)

It should be noted that the problem in Eq. (15) can be seen as the Lagrangian problem
[Eq. (14)]. From the optimization, the solution of Eq. (15) well approximates that of
Eq. (14) only when λ becomes large, which results in difficulty in numerically solving the equa-
tion. To avoid λ going to infinity, the augmented Lagrangian method is used to solve Eq. (15),
which avoids numerical instabilities that would occur as λ → ∞. The details of this approach are
presented next.

3.2 General Framework of Augmented Lagrangian Method

In this section, the general framework of the augmented Lagrangian method is presented as the
foundation of the following discussion. The basic idea of the augmented Lagrangian method
goes back to the work of Gabay and Mercier23 and Glowinski and Marocco.24

Considering an unconstrained optimization problem of the form

arg min
f

fθ1ðLfÞ þ θ2ðHfÞg; (16)

where θ1 and θ2 are the convex functions and L is the continuous linear operator. By introducing

an auxiliary variable z ¼
h u
v

i
, to serve as the augment of θ1 and θ2, under the constraint of z ¼hH

L

i
f, Eq. (16) can be transformed into an equivalent constrained optimization problem as

follows:

arg min
f;z

fθ1ðvÞ þ θ2ðuÞg subject to∶
�
u
v

�
¼

�
H
L

�
f: (17)

Therefore, the augmented Lagrangian function associated with Eq. (17) is defined as

LAðf; u; v; γu; γvÞ ¼ θ1ðvÞ þ θ2ðuÞ þ γTv ðv − LfÞ þ γTuðu −HfÞ
þ ρv

2
kv − Lfk22 þ

ρu
2
ku −Hfk22; (18)

where γu and γv are the vectors of Lagrange multipliers, and ρu and ρv are called the penalty
parameters.25

The idea of the augmented Lagrangian method is to find a saddle point of LAðf; u; v; γu; γvÞ,
which is also the solution to the original problem in Eq. (16). Then the saddle point of the aug-
mented Lagrangian function [Eq. (18)] can be found using the alternating direction method,
which results in the iterative scheme in Table 1.

The convergence of the augmented Lagrangian method is guaranteed by the theorem in
Ref. 26. The augmented Lagrangian method has been recently used for an imaging inverse prob-
lem.25,27 In Ref. 8, the augmented Lagrangian method is used to restore video. It is also studied in
computed tomography.28 In the following, we apply the idea of the augmented Lagrangian
method to solve Eq. (14).
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3.3 Applying Augmented Lagrangian Method to Deconvolution Problem

Starting from Eq. (14), we introduce auxiliary constraint variables u and v. The unconstrained
optimization problem [Eq. (14)] can be written in the form of Eq. (17) as

θ1ðfÞ ¼ λkLfk1 θ2ðHfÞ ¼ 1

2
kg −Hfk22 u ¼ Hf; v ¼ Lf: (19)

The unconstrained optimization problem is

arg min
f;u;v

fEðf; u; vÞ ¼ λkvk1 þ
1

2
kg − uk22g subject to∶u ¼ Hf; v ¼ Lf: (20)

The authors of Refs. 27 and 29 have also utilized this method in the context of imaging
restoration. However, our emphasis here is on angular super-resolution in scanning radar.
Before processing, we rewrite Eq. (17) concisely as

arg min
z

EðzÞ subject to∶z ¼ Cf; (21)

where z ¼
h u
v

i
and C ¼

hH
L

i
. Since Eq. (21) is equivalent to Eq. (14), solving Eq. (21) with

respect to f yields the desired radar image with angular super-resolution.
The augmented Lagrangian equation associated with Eq. (21) is

LAðf; z; γÞ ¼ EðzÞ þ γTðz − CfÞ þ μ

2

����z − Cf

����
2

2

; (22)

which combines a multiplier term γTðz − CfÞ with Lagrangian multipliers γ ≜ ½γTu ; γTu �T and a
quadratic penalty term μ∕2kz − Cfk22.28 For easier manipulation, the multiplier term can be
absorbed into the penalty term in Eq. (22), which leads to the following equation:

LAðf; z; γÞ ¼ EðzÞ þ μ
2
kz − Cf − ηk22 þ const ; (23)

where η ≜ ½ηTu ; ηTv �T ¼ ð−1∕μÞγ is a constant independent of f and z, and const ¼ ð−μ∕2Þkηk22.
Next, we find the saddle point of Eq. (23) using the alternating direction method shown in

Table 1, which results in the following equations:

fkþ1 ¼ arg min
f

���zk − Cf − ηk

���2
2
; (24)

Table 1 Augmented Lagrangian method.

Augmented Lagrangian method for Eq. (18)

Input: Set k ¼ 0, started at ρu , ρv , uk , vk , ðγuÞk and ðγv Þk
Repeat

Step 1: f kþ1 ¼ argmin
f

�� ðγv Þk
ðγuÞk

�
T
�
vk − Lf
uk − Hf

�
þ
����
� ffiffiffiffiρv

2

p ðvk − Lf Þffiffiffiffiρu
2

p ðuk − Hf Þ
�����

2

2

	

Step 2: vkþ1 ¼ arg min
v

fθ1ðvÞ þ ½ðγv Þk �T ðvk − Lf kþ1Þ þ ρv
2 kv − Lf kþ1k22g.

Step 3: ukþ1 ¼ arg min
u

fθ2ðuÞ þ ½ðγuÞk �T ðuk − Hf kþ1Þ þ ρu
2 ku − Hf kþ1k22g.

Step 4: ðγv Þkþ1 ¼ ðγv Þk − ρv ðvkþ1 − Lf kþ1Þ.

Step 5: ðγuÞkþ1 ¼ ðγuÞk − ρuðukþ1 − Hf kþ1Þ.

Step 6: k ¼ k þ 1.

Until stopping criterion is satisfied.
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zkþ1 ¼ arg min
z

EðzÞ þ μ

2

���z − Cfkþ1 − ηk

���2
2
; (25)

ηkþ1 ¼ ηk − ðzkþ1 − Cfkþ1Þ: (26)

We now solve these equations one by one.

3.3.1 f-subproblem

By dropping the index k, the solution of Eq. (24) is found by considering the normal equation as
follows:

CTCf ¼ CTðzk þ ηkÞ; (27)

or, equivalently,

ðHTH þ LTLÞf ¼ HT ½uk þ ðηuÞk� þ ½vk þ ðηvÞk�: (28)

The convolution matrix H in Eq. (28) is a Block Toeplitz matrice, with each element of it
being the Toeplitz block structure. This leads to an efficient solution for Eq. (28) using the pre-
conditioned conjugate gradient method. Therefore, Eq. (28) has the following solution:

f ¼ F−1
�
FðHÞTF½uk þ ðηuÞk� þF½vk þ ðηvÞk�

FðHÞTFðHÞ þFðLÞTFðLÞ
	
; (29)

where F represents the Fourier transform operator. The matrix FðHÞ can be precalculated out-
side the main loop. In application where a high number of data are collected, the computation
burden of the method is primarily determined by how Eq. (29) is solved, which in turn requires
only one forward FFT and one inverse FFT per iteration. Therefore, at each iteration, the main
complexity of solving Eq. (28) is in the order of OðAR logAÞ operations.

3.3.2 z-subproblem

We see that due to the structure of EðzÞ and C, Eq. (25) can be separated into the following parts:

ukþ1 ¼ arg min
u

�
1

2
kg − uk22 þ ðγTu Þkðu −Hfkþ1Þ þ

μ

2
ku −Hfkþ1k22

	
; (30)

vkþ1 ¼ arg min
v

�
λkvk1 þ ðγTv Þkðv − fkþ1Þ þ

μ

2

���v − fkþ1

���2
2

	
: (31)

Equations (30) and (31) are independent of each other and can be solved simultaneously.
Equation (30) is quadratic and has a closed solution.

ukþ1 ¼ ð1þ μÞ−1½μHfkþ1 þ g − ðηuÞk�: (32)

According to Ref. 30, Eq. (31) can be solved using the shrinkage equation. Then, Eq. (31)
becomes

vkþ1 ¼ shrinkλ
μ
½vk − fkþ1 − ðηvÞk�

¼ vk − fkþ1 − ðηvÞk
kvk − fkþ1 − ðηvÞkk2

×max

�
kvk − fkþ1 − ðηvÞkk2 −

λ

μ
; 0

	
; (33)

where 0 · ð0∕0Þ ¼ 0 is assumed.
Finally, the parameter ηu and ηv are updated as

ðηuÞkþ1 ¼ ðηuÞk − ðukþ1 −Hfkþ1Þ; (34)
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ðηvÞkþ1 ¼ ðηvÞk − ðvkþ1 − fkþ1Þ: (35)

To make this clear, the main flowchart of the proposed decovolution algorithm for angular
super-resolution in scanning radar is shown in Fig. 2.

4 Experimental Results

In order to show the validity of the proposed deconvolution method for angular super-resolution
in scanning radar, simulation and experimental results are presented in this section.

4.1 Simulations

In this section, the simulation results are presented to demonstrate the performance of the pro-
posed deconvolution method for angular super-resolution in scanning radar. The simulation
scene is shown in Fig. 3. The results are compared with those obtained by the Wiener filter
method and the operator L is chosen as the I, where I represents the identity matrix. In the
tests, the iteration was manually adjusted to yield the best angular super-resolution result for
each experimental condition. To get the final result of the solution, the parameter μ is essential.
The issue of how to optimally select μ is important, but is outside of the scope of this work. In
this paper, the parameter is set as 10 for all simulations and experiments according to the method
from the authors of Ref. 31.

Some related scanning radar system parameters are set as follows: the radar carrier frequency
is 10 GHz and the pulse repetition frequency is 4000 Hz with an antenna scanning speed
20 deg ∕s. The bandwidth of the transmitted signal is 2 MHz and the 3-dB width of the
real beam is about 3 deg.

In order to quantify and compare the angular super-resolution performance of the proposed
deconvolution method on the simulation data, relative error (ReErr),32 structure similarity
(SSIM),33 and the peak-to-valley point difference in decibels are used in the simulations.
They are defined as follows:

ReErr ¼

���f̂ − f
���
2���f���

2

; SSIM ¼
2ρðf̂;fÞ · ð2μf̂ · μfÞ
ðμ2

f̂
þ μ2fÞðσ2f̂ þ σ2fÞ

; (36)

where μ, σ, and ρ are the mean, standard deviation of the vectors, and the correlations
corresponding to the vectors f and f̂. f̂ and f represent the obtained angular super-resolution
result and the original targets, respectively. The SSIM is a quality measurement between the

Create deconvolution model corresponding 
to angular super-resolution imaging    

Scanning radar data

Range compression and range cell 
migration

Solving the deconvolution problem using 
the augmented Lagrangian method

Angular super-resolution imaging

Fig. 2 The flowchart of the presented deconvolution algorithm for angular super-resolution
imaging.
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super-resolution result and the original scene. The value of SSIM is between −1 and 1, and 1
denotes full identification with the original scene. The peak-to-valley point difference in decibels
is defined in Fig. 4 and quantifies the ability of an angular super-resolution algorithm to separate
two closely spaced targets. The difference of the peak-to-valley point in decibels is between 0
and −∞, where 0 means that the angular super-resolution algorithm can fully separate two
closely spaced targets.

In order to show the angular super-resolution performance of the proposed method, we sim-
ulate the case of different signal-to-noise ratios (SNRs). Figure 5 shows the angular super-res-
olution results by using the proposed method and Wiener filter approach under different noise
levels. Figure 6 shows the evolution of the ReErr and the SSIM with different SNRs. Some
observations can be made based on the results in Figs. 5 and 6. For the isolated target, the
echo is proportional to the antenna pattern. The echo of two adjacent targets is added and
form a single peak as illustrated in Fig. 5. Hence, the individual response cannot be distin-
guished. The second row of Fig. 5 is the angular super-resolution results obtained by the
Wiener filter method, and the third row of Fig. 5 represents the angular super-resolution results
given by the proposed deconvolution method. In Fig. 6, the ReErr, whose ideal value is 0, is
shown. When the value of the ReErr gets smaller, the precision of the angular super-resolution
method increases. The metric SSIM is a quality measurement between the angular super-res-
olution result and the original scene. The value of SSIM is between −1 and 1, where 1
means the angular super-resolution result that fully identifies with the original scene. This
leads to the larger value of the SSIM and a better performance of the proposed angular
super-resolution method in terms of quality. It is clear that the proposed deconvolution method
gives better results than the Wiener filter method. For example, in the case of SNR ¼ 10 dB, the
angular super-resolution result of our method not only seems more appealing, but also has a
better performance in terms of ReErr and SSIMs.
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Fig. 3 Simulation scene.

Fig. 4 The definition of the peak-to-valley point difference in decibels.
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Fig. 5 The results of the angular super-resolution. From top to bottom, you can see the received
echo under different Gaussian noise levels and the angular super-resolution results obtained
using the Wiener filter and the proposed method, respectively: (a) the noise level is 20 dB;
and (b) the noise level is 10 dB.

(a) (b)

Fig. 6 Evolution of the ReErr and SSIM along the noise SNRs for the simulations.

Fig. 7 The tested scene.
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4.2 Experimental Results

In order to show the effectiveness of the proposed deconvolution algorithm for angular super-
resolution in scanning radar, the real data results are presented. Figure 7 shows the three build-
ings and their distributions. The range between the scene center and the radar is about 594 m and
the distance of each building is 45 m. The transmitted antenna pattern is obtained through the
measurement result in the microwave anechoic chamber in the University of Electronic Science
and Technology of China. However, due to the noise and energy degradation in actual situations,
the antenna pattern used in deconvolution is not consistent with the transmitted pattern. To
achieve nice results, we use a pretreatment for the antenna pattern which changes the length
of the sidelobe while retaining the width of the main beam of the original pattern. The
width of the sidelobe is changed step by step and is chosen by the best experiment result
for random data in one scan. In our experiment for scene data processing, this method for choos-
ing the appropriate antenna pattern is effective. The echo from the three buildings is much
stronger than that from other areas so that the scene can be considered as the combination
of three point targets. Employing the scanning radar system in Fig. 8, the data are acquired.
The scanning radar system parameters for the experiment are listed in Table 2.

Compared with the Wiener filter result, the proposed method yields a greater radar image
quality with increased resolution, as shown in Fig. 9. Different rows in Fig. 9 correspond to the
imaging result with the azimuth profile of the target scene. The first row of Fig. 9 shows the
scanning radar image. The image cannot distinguish the positions of the buildings. Compared
with the second row of Fig. 9, the third row shows the improved angular resolution and higher
visual quality. The reason is that the prior information of the target is used in the proposed
method, while the Wiener filter method uses no prior information of targets. Therefore, the pro-
posed method is more effective compared with the Wiener filter method.

Fig. 8 The scanning radar system [(a) front side and (b) back side] utilized to collected scattering
data.

Table 2 Experimental parameters for real data.

Parameters Value Units

Carrier frequency 10 GHz

Bandwidth 30 MHz

Pulse duration 2 μs

Pulse repetition frequency 200 Hz

Antenna scanning velocity 70 deg ∕s

Antenna scanning area −45 to þ45 deg

Main-lobe beam width 5 deg
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5 Conclusion

This paper presents a deconvolution algorithm for angular super-resolution in scanning radar.
After presenting and analyzing the signal model of the scanning radar, we first convert the angu-
lar super-resolution problem into an equivalent deconvolution problem. In order to overcome the
ill-posed nature of the deconvolution problem, the deconvolution problem is converted into a
constrained optimization problem by incorporating the prior information about the targets.
Finally, the constrained optimization problem is solved in the framework of the augmented
Lagrangian method. Compared with the conventional Wiener filter method, the presented decon-
volution algorithm improves the angular super-resolution performance of the scanning radar in
terms of precision. Simulations and experimental results show a better performance of the pre-
sented method compared with the traditional Wiener filter method. However, there are still some
issues that need to be studied in angular super-resolution based on the deconvolution method.
Future work will study the robustness of the deconvolution algorithm for angular super-reso-
lution under low SNR levels.
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