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Abstract. A stereoscopic visual fatigue measurement model based on
Bayesian networks (BNs) is presented. Our approach focuses on the inter-
dependencies between factors, such as contextual and environmental,
and the phenomena of visual fatigue in stereoscopy. Specifically, the
implementation of BN with the use of multiple features provides a system-
atic way to project and evaluate visual fatigue. Compared with another
measurement model, our present BN-based scheme is more comprehen-
sive. The test validation also indicates that our proposed model can be
used as a reliable method for the visual fatigue inferring in stereoscopy.
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1 Introduction
Recently, with various stereoscopy technologies commer-
cialized, more three-dimensional (3-D) applications have
been accepted as an element of modern life. Three-dimen-
sional televisions (3-DTVs) and 3-D movie theaters are
also becoming popular. However, the development of 3-D
technology is facing some critical barriers, specifically ster-
eoscopic visual fatigue. Visual fatigue caused by conflict
between accommodation and convergence is unavoidable
in most stereoscopic applications. As described in Refs. 1
and 2, although viewers are able to perceive a smooth 3-D
watching experience after resolving the visual conflicts,
a series of fatigue can be incurred (such as eyestrain and
headaches), which is usually experienced after about
20 min of observation on 3-D displays. In order to ensure
the safety of 3-D applications, it is essential to measure vis-
ual fatigue for stereoscopic images. Thus, many studies have
investigated the visual fatigue of stereoscopy.3–6

Figure 1(a) describes the main measurement schemes
existing in 3-D visual fatigue research: the mean opinion
score (MOS)-based scheme, the contact and contactless
physiological feature (CLPF)-based scheme [such as electro-
encephalogram (EEG), electrocardiograph (ECG), and eye
movement (EM) detection]. As noted by Kim and Cho,7

the MOS is to measure subjective 3-D visual fatigue
using questionnaires that have high correlation with the sub-
jective 3-D visual fatigue. Such as question “How much
do you feel visual fatigue?” and answers “comfortable, a
little uncomfortable, uncomfortable.” The CLPF, as shown
in Kim et al.,8 and Chae et al.9 designs a visual fatigue
measurement model using eyes’ response curve and blink
frequency. According to the result of eye tracking, they
determine the level of visual fatigue in stereoscopy. The con-
tact physiological feature (CPF) as described by Gomarus
et al.10 and Fang et al.11 is a measurement model based
on records of electrical activities to visual fatigue. The
level of stereoscopic visual fatigue is determined by the
reflection of bio-signals on human body.

However, both subjective and objective measurements
have their own advantages and defects. Unfortunately, in
most studies, they ignore the influence of extraneous state
variable (e.g., the human body and testing environment).
For this reason, with the same test method on different sub-
jects, the results of measurement may have a significant
deviation. Therefore, we develop a measurement model
based on a strong correlation structure (the BN structure)
as depicted in Fig. 1(b) that can reliably recognize stereo-
scopic visual fatigue.

Figure 1(b) shows our proposed measurement model on a
BN structure. The feature vector (node) is comprised on the
BN tree. The results of each node are fused with BN infer-
ence algorithm, and then the final fusion result could be
inferred according to the probability values of different var-
iable states. To the best of our knowledge, this is the first
adaptation of a probabilistic framework on the BN structure
for inferring the 3-D viewer’s state of visual fatigue. As
opposed to the previous works described in Refs. 4, 5, 8,
10, and 12, our proposed model does not employ a single
physiological feature as a decision factor, but deals with
probability values of different variables’ states from interde-
pendencies between aspects of both observation and contex-
tual features.

The organization of this article is as follows. After a brief
introduction in Sec. 1, Sec. 2 introduces the background and
related work for this study. Section 3 describes the BN-based
3-D visual fatigue measurement framework. Section 4
presents the experimental results. Finally, Sec. 5 summarizes
the article.

2 Background and Related Work

2.1 Visual Fatigue Description in Stereoscopic

A binocular vision is produced when we use two separate
images corresponding to the left and right eyes, although
slightly different, merged in viewer’s brain to build a
common impression.13 Hodges and McAllister14 describe
the method of right and left perspective view in the 3-D
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display. Based on binocular parallax, the 3-D screen that can
be implemented, relies on the format of the image presented
and the viewing format. Figure 2 illustrates the watcher
experiencing a stereoscopic sensation on images depending
on presenting the appropriate view to each eye on a 3-D
screen. Also, by improving depth perception, we can feel
an added realism for stereoscopy. Although stereoscopic

imagery can be presented on 3-D displays, it violates the
relationship of natural viewing in the real world. In Fig. 2,
the viewer observes a real object or an image on a two-
dimensional (2-D) device, the eyes accommodate (focus
on) and converge to a specific point. Accommodate distance
matches with the convergence distance. Conversely, a viewer
obtains a stereoscopic image on 3-D display, the remaining
focus point is also on the plane of screen, while the eyes con-
vergances of the image are located at a different distance.
Because of the breakdown of the relationship between the
accommodation and convergence, a visual discomfort is
caused.

For 3-D comfort evaluation, Choi et al.15 identify some
factors to capture the spatiotemporal characteristics of dis-
parity. The prediction of visual comfort is determined by
factors fusing. Figure 3 illustrates types of disparity during
stereoscopic viewing. Two disparities are indicated on the
coordinate plane, positive (uncrossed) and negative (crossed)
disparities by blue and red zone.13 In Fig. 3, the horizontal
gray line position of display represents zero disparity planes.
A zero disparity plane is a converged domain of stereoscopic
imaging, and also the zero disparity area is commonly
referred to as a comfortable zone of stereoscopic imag-
ing.16,17 Depending on the stereoscopic disparity, different
3-D imaging positions can be implemented, such as in
front of or behind the screen. Stereoscopic disparity refers
to the difference in image location of one object viewed
by the left and right eyes. When a 3-D camera captures
a stereoscopic image, each lens separately converges on
the main object, and generates stereoscopic disparity. The
main object can be seen as a single image, but the back-
ground would be seen as double images with disparity.
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In Fig. 3(a), the positive disparity in the stereoscopic
image corresponds to the uncrossed line. In Fig. 3(b), the
negative disparity corresponds to the crossed line. The neg-
ative disparity exhibits crosstalk that occurs between accom-
modations of each eye. In addition, the negative disparity
shows a larger disparity and object size than positive dispar-
ity, since the imaging in negative disparity is closer than in
positive disparity. This phenomenon is related to the geom-
etry of a binocular viewing. Therefore, negative disparity can
incur more visual fatigue than positive disparity.17,7 Yilmaz
and Gudukbay18 point that the crosstalk (or ghosting effect)
is the faded image viewed by the untargeted eye. This effect
is undesirable because it may cause visual fatigue and other
problems. Gudukbay and Yilmaz19 indicate that a more com-
fort stereo view can be achieved in terms of reduced crosstalk
(or ghosting effect).

2.2 Visual Fatigue Measurement Model Description

Body fatigue can be easily tracked from observable physio-
logical features.20,21 This scheme is considered the relatively
objective method for visual measurement. Physiological fea-
tures may be classified into: The contactless and the contact
features. Contactless features contain the EMs, head move-
ment, etc., and these movements can be easily detected from
a real-time monitor. Contact features contain the brain activ-
ity, heart rate variability, etc., and these movements can be
detected by EEG, ECG, and other bio-sensor systems.

The CLPF-based scheme focuses on inferring the fatigue
from the contactless features. Ji et al.22 demonstrate that
the human in fatigue should exhibit some visual cues in
long-time visual experiments. Horng et al.23 present a
fatigue measurement algorithm depend on the eye tracking
and dynamic matching. Kim et al.24 construct a neural

network-based scheme for fatigue recognition by detecting
the movement of the mouth and eyes, respectively.

The CPF-based scheme focuses on inferring the fatigue
from the contact features. For example, the EEG can re-
present abundant information on the human cognitive states,
according to the detection in the major EEG bands (δ, θ, α,
and β). Lal et al.25 present a fatigue recognition algorithm on
different levels of EEG bands. Also, Jung et al.,26 and Wilson
and Bracewell27 propose a method to estimate and predict the
fatigue level based on the EEG power spectrum estimation
and fuzzy neural network model. According to the main
electroencephalography (EEG) activities (δ, θ, α, and β)
for 52 subjects (36 males and 16 females) during fatigue
measurement, Budi et al.21 found that δ and θ activities is
stable over time, but there is a slight decrease for activity of
α, and a significant decrease for activity of β. For the other
important CPF ECG signal, in Refs. 28 and 29 fatigue rec-
ognition refer to heart exhibition on low frequency (LF), very
low frequency (VFH), high frequency (HF), and the LF/HF
ratio.

Previous physiological feature-based schemes focus only
on a single specific aspect. That may lead to inaccurate
results because the fatigue is not directly observable, which
can only be inferred from the information available. There
are a number of reasons for the inaccuracies using the
scheme mentioned above: (1) Contextual factor. Fatigue rec-
ognition contains much subjectivity that cannot always
reflect the real objectivity. (2) Environment factor. For exam-
ple, when human is present in a not well acquainted environ-
ment,30 an inaccurate interpretation of the facial expression
(such as eye and mouth movement) would be caused, espe-
cially for the introverted persons. Therefore, to fuse as many
as possible features from uncertain events is a better way to
make an accurate inference.31 Further, Picard et al.32 figured

Fig. 3 Relationship between (a) positive disparity and (b) negative disparity; (c) is natural scene.
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out that it was necessary to fuse the contextual and physio-
logical features and the human performance in order to make
the fatigue measurement more reliable.

By considering the evidence and beliefs of the contextual
information and physiological features from measurement, Ji
et al.22 construct a BN-based algorithm to infer and predict
the fatigue of human beings, enhancing the reliability of
fatigue detection. Yang et al.20 develop a BN-based fatigue
recognition model to be used in systems that evolve over
time. However, such visual fatigue network in Refs. 20,
22, 33–36 mostly apply to driving, visual display terminals
monitoring, and marine industry. To the best of our knowl-
edge, there is no relating issue on stereoscopic visual fatigue
based on probabilistic framework or BN. Eventually, consid-
ering the states and beliefs of contextual information and
physiological features, a novel probabilistic framework-
based (the BN-based) measurement model for stereoscopic
visual fatigue is proposed in this article.

2.3 Bayesian Networks Method Description

Hubbard37 describes uncertainty as the lack of certainty, a
state of having limited knowledge where it is difficult to
infer precisely the existing state or future outcome. Decision
making is generally recognized by engineers as an indispen-
sable part of the whole engineering design process. Just as
most fatigue recognition, the stereoscopic visual fatigue
measurement is also comprised of a number of uncertainty
factors. Because of the fact that uncertainty has a significant
impact on judgment, the engineer tries to manage uncertainty
via compound methods and intelligent systems. The most
reliable tool for modeling uncertainty is the use of probabil-
ities theory.35

One of the most prevalent and effective graphical models
to manage uncertainty is the BNs.38 A BN, belief network or
directed acyclic graphical model, is a probabilistic graphical
model that correlates the conditional dependencies of a num-
ber of random variables with the use of a Directed Acyclic
Graph (DAG). A DAG is a directed graph with no directed
cycles. The formation of a DAG includes vertices and
directed edges, each edge connecting one vertex to another
so that a cyclic route is impossible to appear. Figure 4 shows
an implementation of DAG in our application.

The basic concept in the Bayesian treatment of certainties
in causal networks is conditional probability. Whenever a
statement of the probability PðAÞ of an event A is given, then
it is given conditioned by other known factors. Therefore,
according to the feature vector mentioned above and condi-
tional probability, the probability of estimated fatigue is
obtained through Bayesian theorem in Refs. 20 and 39:

PðZ ¼ zjEÞ ¼ PðZ ¼ zjecÞPðeojZ ¼ zÞP
2
j¼1 PðZ ¼ zjjecÞPðeojZ ¼ zjÞ

(1)

• Z represents the fatigue node, and z represents the
fatigue state value.

• E represents the evidences fec; eog, ec represents
the contextual evidences and eo represents the
observations.

• PðZ ¼ zjEÞ represents the posterior probability of Z
given E, and hence it is the new estimation for the

probability that the hypothesis Z is true, taking evi-
dence E into account.

• PðeojZ ¼ zÞ represents the conditional probability of
observable evidence eo, if the hypothesis Z turns
out to be true.

• PðZ ¼ zjecÞ represents the prior probability of hypoth-
esis before providing contextual evidences.

•

P
2
i¼1 PðZ ¼ zjjecÞPðeojZ ¼ zjÞ represents the mar-

ginal probability, which is the prior probability
under all possible fatigue hypotheses.

3 BN-Based Visual Fatigue Measurement
Implementation

To set up a fatigue recognition model based on the discrete
BN, the first step is to specify the nodes of the discrete BN.
In other words, we need to specify the contextual, contactless
and contact physiological variables that are used to construct
the discrete BN. The second step is to determine the values
that are used to represent the discrete variables. The third step
is to configure the states of the variables, to calculate the con-
ditional probability, and to evaluate the visual fatigue in ster-
eoscopy. In the following, these steps are described.

3.1 Specifying the Nodes of the Discrete Bayesian
Networks

As remarked in Fig. 4, there are many contextual and physio-
logical features related to fatigue. Among these features,
some of them lead to more contributions to fatigue while
others have lesser contributions to the fatigue. For the
sake of simplicity but without any loss of generality, we only
select those contextual and physiological features that have
immediate relations with the fatigue measurement. In par-
ticular, the following features are described in step 1. For
the contextual, hidden and observable selected in Fig. 4, the
fuzzy method is used to determine the discrete values for
each variable based on a set of heuristic knowledge rules.40

3.1.1 Stereoscopic contextual features node

Binocular disparity (BD) node. Lambooij et al.41 noted that
the human eye experiences conflict between the accommo-
dation and vergence that mostly affect visual fatigue in ster-
eoscopy. Ohzawa et al.13 classified the disparity as positive
disparity and negative disparity. Kim and Cho7 suggested a
simplified relative visual fatigue metric that considers the
“accommodation and vergence” factors that can be calcu-
lated by the disparities in stereoscopy. We are motivated
by Ohzawa et al.13 and Kim and Cho.7 As exhibited in
Fig. 5, several sets of different stereoscopic instances
were provided to evaluate visual fatigue. The different sam-
ple image in the negative disparity zone and in the positive
disparity zone has been shown in experiment for 3-D fatigue
measuring.

Display quality (DQ) node. As Michel et al.12 described,
with 3-DTV and 3-D cinema at the extremes of the screen
size spectrum, comfort zone issues for stereoscopy are differ-
ent when trying to use them to present the same content.
Apparently, resolution and luminance are also key elements
of display. For example, an unsuitable resolution and lumi-
nance also causes a visual discomfort. However, among these
features, the screen size has immediate relations with the DQ
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on issues that are our concern as mentioned in Refs. 12 and
42. Therefore, the display size is taken as a main contextual
features corresponding to the DQ nodes.

3.1.2 Nonstereoscopic contextual features (NSCF)
node

Sleeping quality (SQ) node. SQ is immediately associated
with the fatigue.29 Therefore, we take the SQ as a nonster-
eoscopic node on the BN DAG (Fig. 4). Gomarus et al.10

noted that the SQ is related to such quantities as the duration
of sleep, difficulty in falling asleep at night, the sleeping
environment, and so on. Among them, the sleeping time
and the sleeping satisfaction were taken as the key contrib-
utors to the SQ, since a certain minimum sleep time is nec-
essary for everyone, and also whether the SQ is satisfied
depends on the human’s subjective judgments.

Circadian rhythm (CR) node. CR is also a cardinal factor
in the fatigue measurement. Lal and Craig43 identified that
the CR plays an important role in the study of the fatigue
recognition. There are two sleep peaks each day, one of
which appears after midnight, and other appears approxi-
mately after lunch time. Humans are easily fatigued during
these peak periods.

Experiment environment (EE) node. EE is the last
selected factor by the proposed method. Apparently, light,
noise, temperatures, and other EE factors have a strong rela-
tion with fatigue measurement, especially the light influence
to the viewer on the screen. Therefore, we take the EE as a
nonstereoscopic node on BN graph.

3.1.3 Observation state node

EEG node. In the frequency domain, the EEG mainly
includes the δ band (0.5 to 4 Hz) corresponding to the
sleep activity, the θ band (4 to 7 Hz) that is related to
drowsiness, the α band (8 to 13 Hz) corresponding to
relaxation and creativity, and the β band (13 to 25 Hz)
that corresponds to activity and alertness. Budi et al.21

note that the β band has strong relations with visual fatigue.
Through the variations in the EEG tracing, the power
of β frequencies increase as watching duration increases,
and it is much stronger in 3-D rather than in 2-D conditions,
as shown in Fig. 6(a). Li et al.44 identified that the 3-D con-
tent affected the power of brain wave in the β frequency.
The β power was stronger at viewing the 3-D contents.
Also, subjective results also showed more strong visual
fatigue in the 3-D condition than in the 2-D condition.
Therefore, we take the waveband magnitude of the EEG
spectrum in the β band as an observable variables node
in BN diagram.

EM node. The EM-based visual fatigue measurement
is related to such quantities such as eye gaze, eye blink,
and eyelid closure. These manifestations are described in
Ref. 45 for the fatigue detection. Zhu and Lan22 pointed out
that EM is a reliable and valid determination of fatigue. In
Ref. 46 the percentage of eyelid closure over the pupil in a
given time (PERCLOS) is indicated. It illustrates that the
viewer is possibly in a state of fatigue if the eyes are at
least 80% closed during a period of 1 min. Thus, the propor-
tion of the eye-closed time was taken in this article as one of

Fig. 4 The detailed BN structure used to measure visual fatigue in stereoscopy.
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the observable variables corresponding to the nodes of the
BN diagram.

3.2 Determining Discrete Variables in Each Node

The construction of BN has two tasks: one is the determina-
tion of nodes; and the other is the determination of its parent
discrete variables and their states for each note. In the pre-
vious step, the related nodes are determined. While in the
following section in step 2, we describe the discrete variables
and their states that indicate the likelihood of a particular
feature that contributes to the fatigue.

Visual fatigue node: Z ¼ ½Z1; Z2� in which Z1 and Z2

represent the fatigue and no-fatigue states, respectively.
Contextual features node: X ¼ ½X1; X2; X3� represents the

nonstereoscopic factor node state, in which X1, X2, and X3

represent the sleep quality, CR and EE, respectively. Here,
X1 ¼ ½X11; X12� in which X11 and X12 represent the sleep
parameters, including the sleep time and sleep satisfaction.
Y ¼ ½Y1; Y2� represents the stereoscopic factor node, in
which Y1 and Y2 represent the binocular disparity and DQ,
respectively.

Observation features node: O ¼ ½O1; O2� represents the
observation features node, in which O1 represents the CLPF
(e.g., EM), and O2 represents the CPF (e.g., EEG).

As remarked in Fig. 4, zk, x
j
i , y

j
i , and oji denote the spe-

cific values taken by Z ¼ ½Z1; Z2�, X ¼ ½X1; X2; X3�,
Y ¼ ½Y1; Y2�, and O ¼ ½O1; O2�, respectively. In Fig. 4 the
variables, together with the directed edges, form the DAG.
Pðxji Þ represents the probability of the sleep quality node
states fx11 ¼ good; x21 ¼ badg, CR node states fx12 ¼
active; x22 ¼ drowsyg and EE node states fx13 ¼
comfortable; x23 ¼ uncomfortableg; Pðyji Þ represents the
probability of the binocular disparity node states fyj1 ¼
disparity zoneg and DQ node states fy12 ¼ small;
y22 ¼ large; y32 ¼ ex-largeg; Pðoji Þ represents the probability
of the contact physiological node states (EEG node) fo12 ¼
decrease; o22 ¼ no-change; o32 ¼ increaseg and contactless
physiological node states (EM node) fo11 ¼ large;
o21 ¼ medium; o31 ¼ smallg.

3.3 Calculating Bayesian Networks

Assume that the evidences from the contextual nodes are rep-
resented as eX;Y ¼ feijXYg, and the evidences from the
observable nodes are represented as eO ¼ feijOg, where
eijXY represents the evidence of the i’th contextual node
with the j’th state value (xji and yji ), and eijO represents the
evidence of the i’th observable node with the j’th state
value (oji ). e ¼ feXY; eOg as evidences from the contextual
factor and observable feature nodes, respectively. In Eqs. (2)
and (3), PðZ ¼ zkjeXYÞ is the prior probability of visual
fatigue Z that was inferred before the parents’ contextual
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evidence was available. PðeOjZ ¼ zkÞ is the conditional
probability of observable evidence eO, if the parent visual
fatigue Z turns out to be true.

Then the conditional probability of Z given the occur-
rence of the eXY node can be written as in Ref. 39

PðZ ¼ zkjeX;YÞ ∝ PðZ ¼ zkjei;jX ÞPðZ ¼ zkjei;jY Þ

¼
�X2
i¼1

X2
j¼1

X2
l¼1

PðZ ¼ zkjxi1; xj2; xl3ÞPðxi1ÞPðxj2ÞPðxl3Þ
�

×
�X17
i¼1

X3
j¼1

PðZ ¼ zkjyi1; yj2ÞPðyi1ÞPðyj2Þ
�

k¼ 1;2

(2)

The conditional probability of eO given the occurrence of
node Z can be written as in Ref. 39

PðeojZ ¼ zkÞ ∝ Pðe1;jo jZ ¼ zkÞPðe2;jo jZ ¼ zkÞ

¼
�X3
m¼1

Pðe1;jo jom1 ÞPðom1 jZ ¼ zkÞ
�

×
�X3
n¼1

Pðe2;jo jon1ÞPðon1jZ ¼ zkÞ
�

k ¼ 1; 2 and j ¼ 1; 2; 3. (3)

According to the BN theorem,4 the conditional probabil-
ity of node Z given the occurrence evidence can be obtained
by combining Eqs. (2) and (3); and it can be written as in
Ref. 39.

PðZ¼zkjeÞ¼
PðZ¼zkjeX;YÞPðeojZ¼zkÞP
2
i¼1PðZ¼zijeX;YÞPðeojZ¼ziÞ

k¼1;2;

(4)

where
P

2
i¼1 PðZ ¼ zijeXYÞPðeOjZ ¼ ziÞ is the marginal

probability, which is the prior probability under all possible
hypotheses of visual fatigue Z.

4 Simulation Results and Discussion
In this work, in order to acquire the conditional probabilities
information for each node, we employ some previous
research methods from several literatures. For example,
the conditional probabilities information for the BD and DQ
nodes are obtained from Refs. 12 and 7. The conditional
probabilities information for the CR, SQ, and EE nodes is
obtained from Refs. 20, 22, 29, 32, 47–50. The conditional
probabilities information for the EEG and EM nodes is
obtained from Refs. 5, 20, and 8. However, some probabil-
ities cannot be directly obtained from these studies; we
adopted similar acquisition methods based on our experi-
ments. For instance, binocular disparity comfort judgment
is mainly based on personal satisfaction, due to the difference
of visual sensing for each person. Here, subjective feeling
(like MOS) is considered to be relatively high. In order to
obtain this data set, we adopt a statistical analysis scheme
to acquire them based on Ref. 7. Finally, depending on
these efforts, all probabilities in BN model have been
acquired which are shown as following. Table 1 describes

the conditional probability that BD node states is the main
factor of visual fatigue in stereoscopy. Table 2 describes the
conditional probability for visual fatigue as the states of CR,
SQ and EE. Table 3 describes the conditional probability for
EEG and EM, respectively, as the event of visual fatigue
takes place simultaneously.

With the help of the System Neuroscience Laboratory at
Sungkyunkwan University, we obtained the EEG and EM
data sets. Here, we used EM tracking system called
Eyelink II to measure at the 500 Hz temporal resolution.
Twenty students from Sungkyunkwan University volun-
teered to participate in the experiments. Each participant
was asked to watch the test 3-D image at different disparities
on 3-DTV, and no break or rest was permitted during the
25 min experiment. Due to display limitations (our research
only focus on the 3-D-HDTVapplication), we cannot include

Table 1 Conditional probability for fatigue node with BD.

BD
negative

Fatigue node
BD

positive

Fatigue node

Normal Fatigue Normal Fatigue

−80 0.05 0.95 0 0.98 0.02

−70 0.11 0.89 10 0.95 0.05

−60 0.38 0.62 20 0.94 0.06

−50 0.57 0.43 30 0.91 0.09

−40 0.69 0.31 40 0.91 0.09

−30 0.81 0.19 50 0.89 0.11

−20 0.87 0.13 60 0.86 0.14

−10 0.93 0.07 70 0.82 0.18

0 0.98 0.02 80 0.75 0.25

Table 2 Conditional probability for fatigue node with CR, SQ, and EE.

CR node SQ node EE node

Fatigue node

Normal Fatigue

Active Good Comfortable 0.95 0.05

Uncomfortable 0.85 0.15

Bad Comfortable 0.73 0.27

Uncomfortable 0.49 0.51

Drowsy Good Comfortable 0.23 0.77

Uncomfortable 0.12 0.88

Bad Comfortable 0.11 0.89

Uncomfortable 0.02 0.98
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a variety of DQ requirements. The EEG and EM signals of
each participant were collected at a rate of 1 sample/min.
Then results were processed based on the statistical proper-
ties to form the evidence data sets that are needed to infer the
viewer fatigue estimation. For example, according to the stat-
istical properties of the contactless physiological data from
the participants, if the PERCLOS value of EM is equal to 85,
Pðe1;1O Þ ¼ 0.89, Pðe1;2O Þ ¼ 0.42, Pðe1;3O Þ ¼ 0.18; and for the
contact physiological data, if the EEG signal indicates that
the decreases of β rhythms are large, Pðe2;1O Þ ¼ 0.90,
Pðe2;2O Þ ¼ 0.20, Pðe2;3O Þ ¼ 0.10.

In order to obtain the probability for CR, SQ, and EE, we
adopted a statistical analysis-based questionnaire that mainly
concerned the information about the CR, SQ, and EE state.
The questionnaires were distributed among the twenty stu-
dents before the simulation experiment. There are two
groups of probability for CR and SQ. For the first group sim-
ulation, we required 20 students who did not have any kind
of sleep disorder to maintain a relatively good SQ state
before the test day, so the probability for SQ were Pðx11Þ ¼
0.87 and Pðx21Þ ¼ 0.13. We asked the volunteers to partici-
pate in the simulation test from 8:30 to 11:30 AM, so the
probabilities for CR were Pðx12Þ ¼ 0.85 and Pðx22Þ ¼ 0.15.
For the second group simulation, some of the volunteers
were deprived of a good sleep during the previous night
(e.g., sleep time was less than 6 h), and we asked them to
participate in the simulation test from 1:00 to 2:30 PM
the next day. Then the probabilities for SQ and CR were
Pðx11Þ ¼ 0.37, Pðx21Þ ¼ 0.63, Pðx12Þ ¼ 0.25, and Pðx22Þ ¼
0.75. In our experiment, EE was relatively good, and the
probabilities for EE were Pðx13Þ ¼ 0.80 and Pðx23Þ ¼ 0.20.

A partial test image was shown in Fig. 5(a). We adopted a
different parallax pairwise comparison in a stereoscopy for a
fair evaluation. Figure 5(b) drew the MOS result from the
total results with various averages of the converged objective
disparity. We obtained a relatively accurate visual fatigue
from the validated MOS evaluation in Ref. 7. MOS is a
common evaluation method for stereoscopy visual fatigue.
Therefore, we decided to fit a curve from these results as
a contrast database in our simulation. From Fig. 5(b) we
can observe that the disparity of the comfortable zone is
between −30 and disparity 70.

In Fig. 7(a), the measurement results are calculated with
various converged objective disparities, based on the SQ,
CR, and EE probabilities Pðx11Þ ¼ 0.87, Pðx21Þ ¼ 0.13,
Pðx12Þ ¼ 0.85, Pðx22Þ ¼ 0.15, Pðx13Þ ¼ 0.80, and Pðx23Þ ¼
0.20. In Fig. 7(b), the results are based on the different
SQ and CR probabilities Pðx11Þ ¼ 0.37, Pðx21Þ ¼ 0.63,
Pðx12Þ ¼ 0.25, and Pðx22Þ ¼ 0.75. From Fig. 7(b) we can
observe that when we include an SQ and CR factor under
a worse state to infer the viewer’s fatigue, the estimation

will bring a large deviation in measuring the stereoscopic
fatigue. In order to intuitively understand the results, we
can also obtain a validation from the mean absolute error
(MAE). Here, MEA7ðaÞ ¼ 0.0848 and MEA7ðbÞ ¼ 0.2782.
Thus, the measurement of the visual fatigue in stereoscopy
is influenced by other factors (nonstereoscopic factors). If we
ignore the nonstereoscopic contextual features factor, the
measurement performance for visual fatigue is unreliable
in stereoscopy, which can be explained by the fact that the
MAE in Fig. 7(b) is 0.2782, while the MAE in Fig. 7(a)
is 0.0848.

5 Conclusion
We proposed a BN-based measurement model for stereo-
scopic visual fatigue estimation. Two important conclusions
can be drawn from this study: (1) multiple features, including
the stereoscopic contextual, nonstereoscopic contextual,
contact physiological, and CLPFs were used to infer the
viewer’s fatigue, providing a wide coverage of the categories
of features. Covering more nodes in the BN that imply
fatigue recognition helps to infer the fatigue more reliably
and accurately. Especially, most previous studies have
ignored the influence from condition variables such as CR,

Table 3 Conditional probabilities for EM and EEG given fatigue.

Fatigue

EEG node EM node

Decrease No-change Increase Large Medium Small

Fatigue 0.90 0.08 0.02 0.94 0.05 0.01

Normal 0.02 0.08 0.90 0.01 0.05 0.94

(a)

(b)
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Fig. 7 (a) Visual fatigue measurement results in stereoscopy based
on BN model with good sleeping quality (SQ) and Circadian rhythm
(CR) states; and (b) with relative bad SQ and CR states.
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SQ, and EE. (2) Furthermore, the contactless physiological
and CPFs are two important observation features for fatigue
recognition. The test validation indicates that based on EM
and EEG model the visual fatigue in stereoscopic can be
accurately measured. It would be of significant interest to
extend the current measurement model to handle more prac-
tical situations from various 3-D devices. We also have an
interest in how to improve the subjective factors in determin-
ing the probability.
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