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Abstract. High-spatial-frequency optical fields or sources are often encountered when simulating directed
energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a chal-
lenge in wave optics simulations because the sampling required to represent and then propagate these fields
without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first,
called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the
exact observation plane field as the broadband source over a user-specified region of interest. The second,
called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, after propa-
gation and over a specified region of interest, yields an observation plane field that is statistically representative
of that produced by the original broadband source. The pros and cons of both approaches are discussed in
detail. A wave optics simulation of light transiting a ground glass diffuser and then propagating to an observation
plane in the near-zone is performed to validate the two filtering approaches. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.56.8.083107]
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1 Introduction
Wave optics simulations are a critical part of optical system
design and are used in practically every discipline, including
light propagation in random or nonlinear media, rough sur-
face scattering, guided-wave propagation, etc.1–3 The simu-
lation of high-spatial-frequency or spatially broadband
optical fields is generally a challenge because the sampling
needed to represent and then propagate these fields (typically
using fast Fourier transforms) on a discrete grid without ali-
asing can be prohibitive. The literature is replete with books
and papers on this topic.1–7

The most intuitive and popular approach for dealing with
spatially broadband fields or sources is to spatially filter the
source (or the propagation kernel) prior to propagation.1,3,7–10

While the details may differ, the goal of all spatial filtering
approaches is the same: to find a spatially band-limited (or
near-band-limited) source that produces the exact same
observation field as the original, spatially broadband source
over a specified region of interest (RoI).

Although spatial filtering is a common optical simulation
technique, to the authors’ knowledge, it has never been theo-
retically investigated starting from the Fresnel propagation
integral. This analysis is presented in Sec. 2. The result,
called Fresnel spatial filtering, is an integral expression
that yields the spatially filtered source given the original
field. This integral is discussed at length.

In only a few cases, the Fresnel filtering integral can be
evaluated in closed form. Thus, a new statistical filtering
method is also presented, which is broadly applicable in sim-
ulations involving random optical fields, e.g., scattering from

rough surfaces, transmission through diffusers, transmission
through turbid (highly scattering) media, etc. These situa-
tions are commonly encountered in optical phased array sys-
tems, high-energy laser weapons, active imaging, remote
sensing, and medicine.

Both the field and statistical filtering approaches are vali-
dated in Sec. 3. For this purpose, the near-zone propagation
of light transmitted by a ground glass diffuser is simulated.
The results obtained using both approaches are compared to
those of the original, spatially broadband field. Last, this
paper is summarized, and a brief discussion of possible
applications is provided.

2 Methodology

2.1 Fresnel Spatial Filtering

The field in the observation plane given the field in the
source plane is
EQ-TARGET;temp:intralink-;e001;326;223
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where k ¼ 2π∕λ, λ is the wavelength, ρ ¼ x̂xþ ŷy is the
observation vector, and ρ 0 ¼ x̂x 0 þ ŷy 0 is the source
vector.11 Applying the transform
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to both sides of Eq. (1) and simplifying yields
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The integral over ρ in Eq. (3) is equal to λ2z2δðρ 0 − ρ 0 0Þ.
Thus, the second line of Eq. (3) evaluates to
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Solving the resulting expression for the source plane field
produces
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(5)

This equation is the inverse Fresnel transform of Eq. (1) and
yields the field in the source plane given the field in the
observation plane.

The goal here is to find the source plane field that produ-
ces the exact observation plane field over a defined RoI.
Therefore, let the windowed observation plane field be

EQ-TARGET;temp:intralink-;e006;63;383Uobs;wðρ; zÞ ¼ WðρÞUobsðρ; zÞ; (6)

where W is a window function, e.g., rectangle, circle, etc,
which represents the RoI. Substituting Eq. (6) into Eq. (5)
produces
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where Usrc;f is the desired, spatially filtered source.
Substituting Eq. (1) into Eq. (7) and simplifying yields
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The integral on the last line of Eq. (8) is the Fourier transform
of the window function W represented hereafter as W̃.

The final result is
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The Fresnel filtered source is the true source multiplied by a
quadratic phase factor correlated with W̃. Evaluating Eq. (9)
yields the source plane field that produces the exact obser-
vation plane field over the RoI W. Note that the filtered
observation plane field will be nonphysical outside the RoI.

2.2 Fresnel Filtering Discussion

If the observation plane is in the far-zone, Eq. (9) simplifies
to
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which can be considered the Fraunhofer filtered source. IfW
is rectangular, as it often is, then Eq. (9) becomes
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where Wy and Wx are the height and width of the RoI
and sincðxÞ ¼ sinðxÞ∕x.

A spatially broadband source often encountered in prac-
tice is a point source. Letting Usrcðρ 0; 0Þ ¼ δðρ 0 − ρcÞ and
evaluating the integrals in Eq. (11) yields

EQ-TARGET;temp:intralink-;e012;326;303
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where ρc ¼ x̂xc þ ŷyc is the location of the point source in
the source plane. Equation (12) is the sinc point source
model discussed in Ref. 1.

In most cases, Eq. (9) cannot be evaluated in closed form.
Thus, the integral must be computed numerically or approxi-
mated. The former is generally undesired because the sam-
pling requirements to represent Usrc on a discrete grid are
prohibitive, hence wanting to filter Usrc.

The latter, approximating Eq. (9), is a very good option
for highly divergent fields, like fields transiting negative
lenses or reflected from convex mirrors. In these scenarios,
Eq. (9) can be evaluated using the method of stationary phase
(MoSP).12 LetUsrcðρ 0; 0Þ ¼ Aðρ 0Þ exp½jk∕ð2RÞρ 02�, where A
is the amplitude of Usrc and R > 0 is the curvature.
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Substituting this into Eq. (9) and evaluating the integrals
using the MoSP produces

EQ-TARGET;temp:intralink-;e013;63;730Usrc;fðρ; 0Þ ≈
exp
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1þ z∕R

: (13)

The accuracy of Eq. (13) improves as R → 0 and is generally
good for R < z∕10.

Unfortunately, Eq. (9) cannot be easily evaluated or
approximated when simulating spatially broadband fields
with random wavefronts, like fields reflected from rough sur-
faces. By far, the most popular approach for simulating fields
scattered from rough surfaces is to model the scattered field
as Usrcðρ 0; 0Þ ¼ Aðρ 0Þ exp½jkϕðρ 0Þ�, where ϕ is a delta-cor-
related random phase screen with values uniformly distrib-
uted between −π and π. Equation (9) is then evaluated
numerically to yieldUsrc;f .3 This model for the field scattered
from a rough surface is accurate if the surface height standard
deviation σh > λ and the surface’s correlation radius lh < Δ,
where Δ is the grid spacing. Although these conditions are
often met in practice, the statistics of the rough surface, i.e.,
σh and lh, are not included in the model. Note that when
using the delta-correlated, −π-to-π phase screen model for
simulating rough surface scattering, lh ¼ Δ, where Δ is
the grid spacing.

Another lesser known approach, which includes σh and
lh, is to assume that Aðρ 0Þ ≈ Axðx 0ÞAyðy 0Þ, likewise for
W̃, and hðρ 0Þ ≈ hxðx 0Þ þ hyðy 0Þ. Equation (9) then simpli-
fies to
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(14)

where α ¼ x; y. Because of the reduction in dimensionality,
it is now practical to synthesize two independent one-dimen-
sional (1-D) instances of h and to evaluate Eq. (14) numeri-
cally. The resulting independent 1-D Usrc;f

x and Usrc;f
y can be

downsampled, expanded to two-dimensional (2-D) grids,
and then multiplied together to form Usrc;f . This approach
can also be used to filter fields with highly curved random
wavefronts, e.g., fields reflected from rough convex surfaces.
By letting hðρ 0Þ ¼ hxðx 0Þ þ hyðy 0Þ, the simulated lh is not
equal to the desired lh and, in general, the statistics of the
simulated rough surface are inhomogeneous and anisotropic.

As a consequence of Eq. (9), both rough surface filtering
approaches mentioned above filter the random source field
directly, so the filtered source, after propagation, is equal
to Uobs over the RoI. For simulations involving random
fields, the fact that this particular filtered source produces
the exact same Uobs (over the RoI) as this particular un-
filtered, spatially broadband source is generally incon-
sequential. What is important is that the filtered Uobs be
representative of the true, unfiltered Uobs, i.e., the statistics
of the filtered and unfiltered Uobs match. This new statistical
filtering approach is presented in the next section.

2.3 Filtering Quasihomogeneous Sources

Quasihomogeneous sources are a subclass of the more gen-
eral and popular Schell-model sources.12,13 The intensity I of
a quasihomogeneous source varies slowly compared to its
complex degree of spatial coherence μ, such that its mutual
intensity J takes the approximate form12,13
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where I ¼ jAj2. Equation (15) is a good statistical model for
light scattered from rough targets, where the spot on the tar-
get’ rough surface is much wider than the surface’s autocor-
relation function.

The goal here is to find the filtered mutual intensity Jsrc;f,
which when propagated will produce the exact mutual inten-
sity Jobs over the RoI. From Jsrc;f , one can then synthesize
instances of Usrc;f for use in optical simulations.

Taking the autocorrelation of Eq. (9) yields
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Assuming that Usrc is a quasihomogeneous random field,
i.e., the form of Jsrc is given by Eq. (15), and using the
integral expression for W̃ given in Eq. (8) transforms
Eq. (16) into
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(17)

To make further progress, it is necessary to assume that
the observation plane is in the far-zone of the quasihomoge-
neous source. This initially seems like a very prohibitive con-
dition; however, the far-zone criterion for quasihomogeneous
sources is typically far less restrictive than that for coherent
sources. The far-zone criterion for quasihomogeneous
sources is given by Goodman13 and Gori14

EQ-TARGET;temp:intralink-;e018;326;154z >
2Ddc
λ

; (18)

where D, in this context, is the diameter of the illuminated
area on the target and dc is the spatial coherence diameter of
the field scattered from the target. Since typically dc < 10λ,
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one obtains the far-zone J only a short distance away from
the target’s surface.

Assuming that Eq. (18) is satisfied and making the
common variable substitutions s ¼ ρ 0

1 − ρ 0
2 and t ¼

ðρ 0
1 þ ρ 0

2Þ∕2 simplifies Eq. (17) to
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Note that the product of the t and s integrals is the general-
ized Van Cittert–Zernike theorem applied to Jsrc.12,13

Substituting Ĩ and μ̃ for the Fourier transforms of I and
μ, respectively, yields
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The integrand in Eq. (20) is a new J (physically, a new par-
tially coherent source) with the product of W, W�, and μ̃
serving as the source’s shape and Ĩ as the source’s coherence
function. If Usrc is a circular complex Gaussian, as it is for
rough surface scattering (fully developed speckle), then the
width of Ĩ is the mean speckle size.15 In most simulations
involving speckle, the RoI contains many speckles. Note
that the RoI, in general, is not the same as the pupil or detec-
tor areas. Thus, Ĩ is much narrower than the product of W,
W�, and μ̃, and the integrand in Eq. (20) is another quasiho-
mogeneous source.

Making the variable substitutions s ¼ ρ 0 0
1 − ρ 0 0

2 and
t ¼ ðρ 0 0

1 þ ρ 0 0
2 Þ∕2 and evaluating the integrals produces
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The final simplified result is
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From Eq. (23), an instance of Usrc;f is given by
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exp
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where T is a complex amplitude screen whose autocorrela-
tion function is W̃. The most straightforward and numeri-
cally efficient method for synthesizing T is the Monte
Carlo spectral method (MCSM).16–20 The method uses the
power spectral density (PSD) to filter or color an array of
delta-correlated complex Gaussian random numbers in the
frequency domain.

The applicable PSD can be derived from W̃ by applying
the Wiener–Khinchin theorem.12,13 Fourier transforming
Eq. (22) and simplifying produces
EQ-TARGET;temp:intralink-;e025;326;491
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W̃ðΔρÞ expð−j2πf · ΔρÞd2Δρ
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where Δρ ¼ ρ1 − ρ2 and f ¼ x̂fx þ ŷfy is the spatial fre-
quency vector. In general, S given in Eq. (25) is not normal-
ized, i.e., the volume under S is not one.13 This is only a
minor mathematical inconvenience; it has no effect on syn-
thesizing T.

Notice that in contrast to Fresnel spatial filtering [see
Eq. (9)], quasihomogeneous spatial filtering does not use
Usrc directly. Most importantly, the spatially broadband
Usrc is never discretized, meaning that quasihomogeneous
filtering typically requires far fewer grid points than Eq. (9).

3 Validation

3.1 Simulation Details and Methodology

It is best to present the utility of the above analysis through
example. Here, the transmission and subsequent propagation
of a collimated Gaussian beam through a ground glass
diffuser was simulated. The simulation was performed in
1-D, so the results using Eq. (24) could be directly compared
to those using the unfiltered, spatially broadband Usrc and
Eq. (9)—the sampling requirements to propagate Usrc

were impractical using 2-D grids.
The source field for this simulation was

EQ-TARGET;temp:intralink-;e026;326;178UsrcðxÞ ¼ exp
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−
x2

σ2

�
rect

�
x
D

�
exp½jkhðxÞ�; (26)

where λ ¼ 1 μm, σ ¼ 5 mm, D ¼ 25.4 mm, rect is the rec-
tangle function defined by Goodman,11 and h is the diffuser’s
optical path length function. The path lengths h were
assumed to be Gaussian distributed and Gaussian correlated
with a standard deviation σh ¼ 3 μm and a correlation length
lh ¼ 60 μm. Instances of h were produced using the MCSM.
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Equation (26) and the two filtered sources discussed
below were propagated z ¼ 15 m (corresponding to a 1-D
Fresnel number NF ≈ 3.3) in eight steps to the observation
plane using the angular spectrum method.1,2 The source and
observation planes were discretized using 239,884 points
with 3 and 11 μm sample spacings, respectively. The RoI
in the observation plane was Wx ¼ 10 cm wide.

The Fresnel-filtered source was computed directly from
Eq. (26) using a 1-D form of Eq. (9), namely,
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An instance of the quasihomogeneous filtered source was
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where T was synthesized from the following 1-D PSD

EQ-TARGET;temp:intralink-;e029;326;752SðfÞ ¼ λzrect

�
λzf
Wx

� ffiffiffi
π

p lh
kσh

exp

�
−
�
lhλf
2σh

�
2
�

(29)

using the MCSM. The PSD of T requires computing the
moment hexp½jkhðx1Þ� exp½−jkhðx2Þ�i. For Gaussian distrib-
uted and Gaussian correlated h, this moment is approxi-
mately

EQ-TARGET;temp:intralink-;sec3.1;326;673hexp½jkhðx1Þ� exp½−jkhðx2Þ�i ≈ exp

�
−k2σ2h

ðx1 − x2Þ2
l2h

�

(30)

assuming that σh > λ, which is generally the case. Note that
lh∕ðkσhÞ is the approximate spatial coherence radius of the
scattered field.

It is important to note that the large number of points and
small spacings mentioned above were required to perform
the propagation simulations with the source plane fields
given in Eqs. (26) and (27). Synthesizing and propagating
Eq. (28) requires significantly less resources and, if desired,
can easily be done in 2-D. For example, the same simulation
described above using Eq. (28) requires only 2048 points and
80 μm spacings in both the source and observation planes. In
addition, the 15-m propagation can be performed in three
steps instead of eight.

3.2 Simulation Results

Figures 1–3 show the results. Figure 1 shows instances
of Usrc [Eq. (26), Figs. 1(a) and 1(b)], Usrc;f [Eq. (27),

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Magnitude and phase of source plane field instances Usrc

given by (a, b) Eq. (26), (c, d) Eq. (27), and (e, f) Eq. (28).

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Magnitude and phase of observation plane fields Uobs corre-
sponding to the instances given by (a, b) Eq. (26), (c, d) Eq. (27), and
(e, f) Eq. (28).
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Figs. 1(c) and 1(d)], and Usrc;f [Eq. (28), Figs. 1(e) and 1(f)].
The effects of filtering are quite clear in Figs. 1(d) and 1(f),
where the filtered phases (or wavefronts) are much smoother
than the [Eq. (26)] result [Fig. 1(b)].

Figure 2 shows the corresponding Uobs instances. As
expected, the Uobs corresponding to Eq. (26) [(a) and (b)]
and Eq. (27) [(c) and (d)] are identical over the RoI;
Eq. (27) is nonphysical outside the RoI. The Uobs corre-
sponding to Eq. (28) [(e) and (f)] is different than the
other two. Recall that the goal here is to ensure that the
Uobs obtained from propagating Eq. (28) is representative
of Eqs. (26) and (27), not necessary equal.

To show this, Fig. 3 reports the observation plane mutual
intensities Jobs computed over the RoI from 2500 instances
of Uobs corresponding to source fields Eq. (26) [(a) and (b)],
Eq. (27) [(c) and (d)], and Eq. (28) [(e) and (f)]. Except for
very minor disagreements in the locations of phase wrapping
cuts [Fig. 3(f)], caused by small numerical differences in the
positions of Jobs zero crossings [notice that the wrapping cut
discrepancies occur at the “nulls” in the log10 jJobsj plot
[Fig. 3(e)], the curves are in excellent agreement. Figure 3
validates the quasihomogeneous filtering approach discussed
in Sec. 2.

4 Conclusion
In this a paper, two-source plane spatial filtering techniques
for use in wave optics simulations were presented and dis-
cussed. The first, called Fresnel spatial filtering, provided the
spatially band-limited source Usrc;f that produced the exact

same Uobs over a specified RoI as the original, spatially
broadband Usrc. In general, the Fresnel spatial filtering inte-
gral could not be evaluated analytically. Evaluating the inte-
gral numerically was undesirable because the number of
points and sample spacing required to accurately represent
Usrc were onerous.

This motivated development of the second filtering tech-
nique—statistical or quasihomogeneous spatial filtering.
Instead of requiring that Usrc;f produces the exact same
Uobs over the RoI as Usrc, this approach only required
that the filtered source produces a Uobs that was representa-
tive of that produced by Usrc (i.e., the statistics of the filtered
and unfiltered Uobs matched), making this approach very
applicable in simulations involving scattering from rough
surfaces or transmission through diffusers. Because Usrc

never needed to be discretized, this statistical approach
required far fewer points than Fresnel spatial filtering. In
addition, the quasihomogeneous spatial filtering approach
included the underlying statistical properties of the random
scatterer, i.e., σh and lh. This stood in contrast to the more
common method of using a delta-correlated, −π-to-π phase
screen for modeling rough surface scattering or transmission
through diffusers.

Both Fresnel and quasihomogeneous spatial filtering were
validated in Sec. 3. For this purpose, the near-zone propaga-
tion of light transmitted by a ground glass diffuser was simu-
lated. The results obtained using both filtering approaches
were compared to those of the original Usrc. All were in
excellent agreement.

The spatial filtering techniques discussed in this paper
will be useful for mitigating aliasing in wave optics simula-
tions involving spatially broadband fields, e.g., simulating
rough surface scattering, speckle, etc. These scenarios or
optical phenomena are often encountered in the deployment
of optical phased arrays, high-energy lasers, active imaging
and remote sensing systems, and medicine. Thus, the spatial
filtering techniques presented herein will be applicable in the
design and subsequent simulation of those systems. In addi-
tion, these techniques can also be used in laboratory experi-
ments where spatial light modulators serve as filtered rough
targets. This approach has many advantages over using
actual rough, diffuse objects—the main one being light
conservation.
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