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Abstract. A robust global motion model estimation method
is proposed by fitting the optical flow field for aerial imagery.
Considering the outlier-sensitive defect of traditional least-
squares regression technique, we put forward a simple opti-
cal flow valuation mechanism to choose a small set of reli-
able flows for fitting. Since flow outliers that are unfit for
fitting are almost completely removed, the final global motion
estimation result is highly improved. Experimental results
show the robustness and applicability of our method. © 2005
Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2042479�
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1 Introduction

In aerial imagery, the estimation problem of global motion
referred to that as caused by the airborne moving observer
is usually a key part in many aerial surveillance
applications,1 such as image stabilization, motion detection,
mosaic, coding, etc. Generally, the global motion of aerial
imagery can be represented by a 2-D parametric model
such as an affine or planar model and can be estimated
directly by a parametric optimization process.2 Further-
more, block-based methods, feature-based algorithms, and
frequency domain methods have also been widely used for
global motion estimation.3,4 However, many of these meth-
ods are either time-consuming or not robust enough to
record uncertainties or outliers. RANSAC has been an ideal
solution for elimination of outliers, but the random nature
of the algorithm makes direct use of RANSAC inefficient.5

Since global motion is usually dominant in aerial imag-
ery as compared to small independent or local motions and
other distracting ones, it is natural to obtain the global mo-
tion model in an indirect way by fitting the optical flow
field of the aerial imagery. However, due to the outlier-
sensitive defect of the standard linear regression technique
used in fitting, either uncertainties6 or independent
motions7 of the optical flow field would ruin the final fitting
result. Therefore, instead of fitting the whole optical flow
field, we prefer to choose a small set of reliable flow com-
ponents for fitting so that the negative effect of flow outli-
ers can be greatly reduced.
m0091-3286/2005/$22.00 © 2005 SPIE
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Optical Flow Estimation and Motion Model
Fitting

ur optical flow computation is based on two well-known
ssumptions: brightness constancy and flow smoothness
onstraint. For computational saving, we conduct our algo-
ithm under a coarse-to-fine hierarchical framework as pro-
osed in Ref. 2. The multiscale implementation allows for
oth computation efficiency and estimation of large mo-
ions. In addition, if the algorithm proceeds to a middle
ayer of the image pyramid, e.g., layer n /2+1 of an
-layered pyramid, distracting motions and noise can also
e filtered somehow and would benefit to global motion
odel fitting.
Now we discuss how to use the estimated optical flow

eld to fit a global motion model. Assume that the motion
odel has the form:

�x,y� = �au, v�x,y� = �av �1�

here �u ,v� is the motion vector. As to an affine motion
odel, we have �= �x ,y ,1�, au

T= �a1 ,a2 ,a3�, av
T

�a4 ,a5 ,a6�. Using the least-squares regression technique,
he motion model parameters can be derived as follows:

au,av� = �� �T��−1 � �T�u,v�, �x,y� � DI �2�

here DI denotes the whole image plane.
While this approach provides a simple mechanism for

lobal motion estimation, it is unfortunately of limited use
ecause it is sensitive to outliers, which correspond to ei-
her uncertainties or independent motions of the optical
ow field. Therefore, to get a more accurate motion model,
utliers have to be removed, which leads to the following
efined method.

Optical Flow Valuation and Outlier Removal

o evaluate optical flows and remove flow outliers unfit for
otion model fitting, first we divide the optical flow field

nto an array of non-overlapping regions and derive a set of
otion hypotheses by fitting each region separately. Sup-

ose aui
T , avi

T are the i’th hypothesis, then for each region we
ave:

aui,avi� = �� �T��−1 � �T�ui,vi�, �x,y� � Ri �3�

here each region is indexed with the variable i and the
ummation is applied within each region Ri. Obviously,
any of the hypotheses will be incorrect because of the

xistence of optical flow estimation inaccuracies, indepen-
ent motions, and other non-interesting motions. The reli-
bility of a hypothesis is indicated by its residual error �i

2,
hich can be calculated as follows:

i
2 = �� �Vi − Vai�2�/Ni, �x,y� � Ri �4�

here Vi= �ui ,vi� is the estimated flow vector, Vai is the
ow vector derived from the motion hypothesis, and Ni is

he number of pixels in the analysis region. Then, �i
2 can be

sed as a criterion to valuate whether a flow region is fit for

otion model fitting. Note to reflect the distracting effect of
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independent motions, at least one dimension size of the
dividing region should be set a little larger than that of the
possible independent motion area. Given a prescribed
threshold, flow regions with greater residual errors can then
be rejected as outliers.

4 Selection of Optical Flows for Fitting

A troublesome problem during optical flow valuation and
outlier removal is how to choose an appropriate threshold,
which varies with different region size. In fact, if the region
size is set larger, we tend to choose a higher threshold since
the residual error defined in Eq. �4� will increase, and vice
versa. Empirically, as to the aerial imagery with a dominant
global motion, the selection of a small proportion �e.g., 5%�
of reliable optical flows would be sufficient to arrive at an
accurate motion model. Therefore, instead of trying efforts
to find a proper threshold for outlier removal, we prefer to
select a small set of reliable flows with relatively small
residual errors so that the flow outliers can be excluded.
Since the choice of proportion criterion is usually constant

Fig. 1 Example of aerial image registration. �a� The first image
256�256. �b� The second image 256�256. �c� Optical flows selec-
tion result 1. �d� Optical flows selection result 2. �e� Registration
result 1. �f� Registration result 2.
with respect to different aerial imagery, the bothersome 0
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hreshold selection work can be avoided. The flows valua-
ion and selection algorithm is outlined below:

�i� Set an initial threshold �=�0 �usually assigned a
very small value�, and a searching step ��. The
proportion criterion is set to �.

�ii� Divide the optical flow field into non-overlapping
regions and compute the residual errors, i.e., �i

2,
i=1,2 . . .M, according to Eq. �4�, where M is the
number of regions.

�iii� Find flow regions that satisfy �i
2��, and the

number of selected regions is denoted by N.
�iv� If N /M ��, stop searching and � is the ultimate

threshold, otherwise �=�+�� and go to step
�iii�.

Once the threshold � is determined, reliable flow re-
ions are extracted while flow outliers are rejected in the
eanwhile. Finally, by fitting the selected optical flows

gain, a more accurate global motion model can be ob-
ained. As only a small amount of flows participates in
tting, the algorithm efficiency is further improved.

Experimental Results

e first test the performance of our algorithm by register-
ng the two aerial images shown in Fig. 1. Obviously, there
re both large scale and rotation changes between Fig. 1�a�
nd Fig. 1�b�. Figure 1�c� and Fig. 1�d� demonstrate two
ases of optical flow selection results �denoted by areas
utlined in black� using the proposed algorithm according
o two different proportion criteria. The optical flow field is
alculated under a five-layered Gauss pyramid and the
omputation is proceeded until the fourth layer, which
eans the size of the optical flow field is actually 128
128. The same region size 16�16 is set in both cases

nd the proportion criteria are set to 5% and 30%, respec-
ively. Accordingly, the final threshold is determined as

ig. 2 Example of independent motion detection. �a� The first frame
20�240. �b� The second frame 320�240. �c� Optical flows selec-
ion result. �d� Residual motion image after global motion
ompensation.
.0965 in Fig. 1�c� and three flow regions are selected,
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while 19 regions are selected in Fig. 1�d� with threshold
determined as 1.5084. By fitting the selected optical flows
to an affine model, we get au

T= �1.2791,−0.2644,−8.2940�,
av

T= �0.2769,1.2855,−78.5839� in the first case and au
T

= �1.1744,−0.1175,−9.6717�, av
T= �0.1739,1.1751,

−52.0925� in the latter. It is evident from the registration
results shown in Fig. 1�e� and Fig. 1�f� that the global mo-
tion estimation result in Fig. 1�e� is much more accurate
because fewer but more precise optical flows have been
chosen in Fig. 1�c� for motion model fitting, while in Fig.
1�d� the involvement of more probably imprecise flows
leads to an inaccurate fitting result in Fig. 1�f�.

Figure 2 shows another example of our algorithm in
independent motion detection. To detect the moving truck
based on the two consecutive frames shown in Fig. 2�a� and
Fig. 2�b�, the apparent background or global motion has to
be compensated. For optical flows selection and outlier re-
moval, each region size is set as 16�12, the proportion
criterion is 5%, and the final determined threshold is 0.0409
with five regions selected. It is clear from Fig. 2�c� that the
regions containing independent motions with respect to the
moving truck have been successfully excluded. In fact, the
multiscale optical flow computation proceeds only to the
third layer of a four-layered Gauss pyramid, indicating that
the real size of the optical flow field in Fig. 2�c� is 160
�120. By fitting the selected optical flows to an affine
motion model, we get au

T= �1.0019,0.0026,−7.6282�, av
T

= �−0.0044,1.0002,5.5330�. Figure 2�d� shows the residual
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otion image8 after the global motion has been compen-
ated, from which we see the moving truck can be easily
etected.

Conclusions
ccording to the characteristic of aerial imagery, a robust
lobal motion estimation algorithm by fitting optical flow
eld is proposed in this letter. Since optical flow outliers
re almost completely removed by choosing a small pro-
ortion of reliable flows for motion model fitting, global
otion estimation accuracy and robustness have been

ighly increased. Experimental results on both aerial image
egistration and independent motion detection show the ef-
ectiveness of our algorithm.
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