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Abstract. Fluorescence intensity fluctuations in the visible wave-
length regime in normal, benign, and cancerous human breast tissue
samples are studied through wavelet transform. The analyses have
been carried out in unpolarized, parallel and perpendicularly polar-
ized channels, for optimal tissue characterization. It has been ob-
served that polarized fluorescence data, particularly the perpendicular
components, differentiate various tissue types quite well. Wavelet
transform, because of its ability for multiresolution analysis, provides
the ideal tool to separate and characterize fluctuations in the fluores-
cence spectra at different scales. We quantify these differences and
find that the fluctuations in the perpendicular channel of the cancer-
ous tissues are more randomized as compared to their normal coun-
terparts. Furthermore, for cancerous tissues, the same is very well de-
scribed by the normal distribution, which is not the case for normal
and benign samples. It has also been observed that, up to a certain
point, fluctuations at larger scales are more sensitive to tissue types.
The differences in the average, low-pass wavelet coefficients of nor-
mal, cancerous, pericanalicular, and intracanalicular benign tissues
are also pointed out. © 2005 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction
Although the beneficial properties of light have been known
for a long time and it has been used for therapeutic as well as
diagnostics purposes, the advent of lasers in 1960s has made
possible the efficient use of light for surgery and diagnosis.1–3

Laser-based endoscopic techniques and imaging methods can
be used for real-time diagnosis of diseases without biopsy.4 In
the field of biomedical applications, fluorescence spectros-
copy has been used fruitfully, both for diagnosis and thera-
peutic purposes. In the early 1980s, Alfano and coworkers5

first introduced laser spectroscopy for tooth decay detection
and cancer diagnosis.6 This technique was then used by Kit-
trel et al. for diagnosis of atherosclerotic plaque,7 which was
extended further by Deckelbaum et al.8 Morphological and
biochemical changes, due to disease, cause the fluorophores
inside the tissue to fluoresce differently, as compared to their
normal counterparts. Due to its sensitivity to minute varia-
tions, fluorescence spectroscopy can provide quantitative bio-
chemical information about the state of the tissue, which may
not be obtained using standard pathology. Over other light-
based investigation methods, fluorescence spectroscopy is of-
ten preferred because of its high sensitivity, high speed, and
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safety. Over the past 15 years its diagnostic potential has been
tested in different organs of the body, including the mouth,
breast, esophagus, and bladder, etc.9–17

Diagnosis of human breast cancer through fluorescence
studies has been an active area of research for quite some
time. Although more than 80% of breast lumps are not can-
cerous, biopsy is the only way to diagnose. If diagnosed early,
breast cancer is also one of the most treatable forms of cancer.
In fluorescence spectroscopy, different fluorophores having
excitation frequencies in the UV and visible regimes have
been used as markers. To be more specific, several fluorescing
compounds, such as flavins, nucleotides �NADH�, tryptophan,
tyrosine, elastin, collagen, etc.18 are present in tissues. Flavins
are intrinsic fluorophores emitting in the visible region. Flavin
adenine dinucleotide �FAD�, flavin mononucleotide �FMN�,
and free riboflavin are the three forms of riboflavin encoun-
tered in biological materials. These flavins may be attached to
proteins or may be free. These are coenzymes that play a role
in the oxidation-reduction process of the tissues.5 Hence,
these may play a major role in triggering tumor growth.19 Our
investigation is primarily concerned with the flavins and other
fluorophores such as porphyrin having emission peaks in the
visible region. In choosing these fluorophores one has the
advantage of working in the visible wavelength region and so
1083-3668/2005/10�5�/054012/9/$22.00 © 2005 SPIE
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can avoid the potentially harmful effect of ultraviolet radia-
tion.

Tissue being a turbid medium, having different morpho-
logical and biochemical compositions for normal and tumors,
makes the modeling of the same quite difficult. A number of
physical16,20–22 and statistical23,24 methods have been em-
ployed for the purpose of identifying reliable distinguishing
features between normal, benign, and cancerous tissues. The
prominent statistical methods include principal component
analysis �PCA�,24 singular value decomposition,25 neural
networks,26 and other methods based on pattern recognition.27

It is often difficult to transparently relate the distinguishing
features emerging from the models with the spectral data. Fur-
thermore, in most of the fluorescence-based studies performed
so far, the characteristic tissue features are extracted from the
smoothened data. For example, in PCA, one keeps a few
dominant principal components for comparison, neglecting
the fluctuations. The fact that the fluorescence spectrum is
noisy, being affected by experimental and statistical uncer-
tainties, also makes extraction of characteristic spectral fluc-
tuations a difficult job.

Recently the method of wavelet transform has been em-
ployed to study intensity fluctuations in the polarized fluores-
cence spectra of human breast tissues.28 A preliminary analy-
sis indicated that fluctuations at the finest scale are much more
randomized for the cancerous tissues. The widths of the
Gaussian distributions characterizing fluctuations in cancer-
ous, normal, and benign tissues also showed significant dif-
ferences, indicating the possibility of using intensity fluctua-
tions for characterization of different tissue types. From the
fact that cancerous tissues possess nuclei that have irregular
shapes and are much more densely packed as compared to the
normal tissues, it is quite plausible to expect more random-
ization in the same. As has been mentioned earlier, a number
of well-defined features, originating from the smoothened
spectral data, have been proposed for diagnostic purposes. It
is physically conceivable that, in the initial phase of the tumor
growth, these features are not expected to be quite prominent.
However, the differences in spectral fluctuations can manifest
much earlier as compared to the above-mentioned gross fea-
tures. Hence, it is imperative to study much more carefully the
spectral fluctuations at different scales in cancerous, normal,
and benign tissues and compare them exhaustively for differ-
ences and similarities.

The goal of the present article is to study the characteristic
properties of intensity fluctuations at different scales, in the
unpolarized, parallel, and perpendicularly polarized compo-
nents of the fluorescence data. For this purpose, we make use
of wavelet transform to isolate the variations at different
scales in different tissue types. Because of its multiresolution
and localization properties, this linear transform is ideally
suited for disentangling variations at different scales. The im-
pact of statistical and experimental uncertainties on the pa-
rameters derived in the wavelet domain can be easily esti-
mated. The fact that wavelet transform relies on progressive
averaging in extracting the wavelet coefficients reduces the
above errors. The cancerous, benign, and normal breast tissue
samples studied here have been irradiated with linearly polar-
ized light �488 nm� as well as with unpolarized light of an
argon ion laser. The unpolarized and polarized fluorescence

�
spectra � and �� were recorded and subjected to wavelet
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analysis. As is known by now, cancerous tissues are charac-
terized by morphological changes such as irregular shape and
size of the nuclei, random arrangement, and overcrowding, as
compared to normal tissues; these can lead to altered fluores-
cence intensities and randomization.29 Such features may be
exploited through wavelet transform to detect differences be-
tween normal and tumor tissues. The concentration of fluoro-
phores can also be different in the tumors giving rise to dif-
ferences in fluorescence spectra of cancerous, benign, and
normal breast tissues.

In the following section, we briefly describe the experi-
mental apparatus used in the present study. Section 3 contains
an abridged description of the essential properties of wavelet
transform, which is the mathematical tool employed in this
paper. We present the results and their analysis in Sec. 4
through a number of figures. The key features distinguishing
normal, benign, and cancerous tissues in the wavelet domain
are clearly pointed out. It was observed that the normal dis-
tributions describe better the intensity fluctuations in the per-
pendicular component of the polarized spectroscopic data in
tumors. The plausible physical origin of these differences is
also presented. Finally, we conclude in Sec. 5 by summarizing
the essential features brought out in this study and the future
directions of work.

2 Materials and Methods
2.1 Histopathology
In total, 45 tumor tissue samples with their normal counter-
parts were supplied by Ganesh Shankar Vidyarthi Memorial
Medical College, Kanpur, India, after surgery. These were
analyzed in close collaboration with the pathologist of the
hospital. The age of patients spanned a broad range, from
16 to 85 years, coming from varied economic backgrounds.

The collected samples were analyzed on the same day,
without any chemical treatment. During experiments, the
sample was kept moist with isotonic saline and was placed in
a quartz cuvette of size 1�1�5 cm.

It should be pointed out that the human breast has 15 to 20
sections called lobes, with many smaller sections called lob-
ules. Each section is connected by thin tubes called ducts. The
most common type of breast cancer, called ductal carcinoma,
is the one that affects these tubes; it is found in the cells of the
ducts. Cancer that begins in the lobes or lobules is called
lobular carcinoma.30 Most of the breast cancers studied are
infiltrating ductal carcinoma. The benign tumors used in this
study are mostly fibroadenomas, with both intracanalicular
and pericanalicular types.

2.2 Experimental Setup
The samples were excited by 488-nm wavelength plane po-
larized light from an Ar-ion laser �Spectra Physics 165, 5 W�.
The unpolarized and polarized fluorescence spectra were col-
lected in right angle geometry using triplemate monochro-
mator �SPEX-1877E� and PMT �RCA C-31034�. For polar-
ized fluorescence, a depolarizer was used after the analyzer, in
order to ensure that there was no preference of the selected
directions of polarized fluorescence by the detection system.
The components of fluorescence light that are parallel and
perpendicular to the incident polarized light were measured in

31
the 500- to 700-nm wavelength region. In this wavelength
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region, FAD is the dominant fluorophore in the fluorescence
spectra from tissues, which has a fluorescence peak at
530 nm. The main absorber in this region is porphyrin, which
absorbs at 540-nm �� band� and 580-nm �� band� wave-
lengths. Porphyrin also acts as a weak fluorophore, with an
emission peak at 630 nm.

The experimental setup used in these measurements is
shown in Fig. 1.

3 Discrete Wavelet Transform
In this section, we briefly outline the essential ideas of the
wavelet transform, emphasizing those points that will be use-
ful for the purpose of our analysis. In the last decade and a
half, the wavelet transform has emerged as a powerful tool to
analyze transient and time-varying phenomena. The variations
at different scales are systematically separated in the wavelet
basis, from the average or the trend of a given signal. The
mathematical microscope nature of the wavelet basis, which
enables it to perform multiresolution analysis �MRA�, arises
from the manner in which the basis set is constructed.32 We
will concentrate here on discrete wavelet transform �DWT�,
where the basis elements have a strictly finite size.

In the construction of the basis set, one starts with the
scaling function ��x� �father wavelet� and the mother wavelet
��x�, whose height and width are arbitrary:

� �dx = A, � �dx = 0, � ��dx = 0,

� ���2dx = 1 =� ���2dx , �1�

where A is an arbitrary constant.
Both of these functions belong to the square integrable

class. Two operations crucial to the construction of a complete
orthonormal basis are translation and scaling. It can be
checked that the following scaled and translated wavelets and

Fig. 1 Schematic of the experimental setup.
scaling functions are square integrable:
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� j,k = 2 j/2��2 jt − k� ,

� j,k = 2 j/2��2 jt − k� . �2�

Here, k is the translation parameter, j is the scaling parameter
in the dyadic basis, and 2 j/2 is the normalization factor at
scale j, which takes integral values starting from zero. The
original mother wavelet corresponds to �0,0, whereas the fa-
ther wavelet is given by �0,0. Higher values of j lead to the
so-called daughter wavelets, which are of the similar form as
the mother wavelet, except that they are thinner and taller by
a factor of 2 j/2. The translation unit k /2 j is also commensurate
with the thinner size of the daughter wavelet at scale j. In a
given wavelet basis, only one scaling function and its trans-
lations are taken, since others are not orthogonal to the wave-
lets. In the above construction, the translated scaling functions
are given by �0,k��k=��x−k�. In the limit j→� and for
integral values of k, in the range −��k��, the above basis
becomes a complete set.

Hence, any finite energy signal f�t��L2�R� �Ref. 33� can
be expanded as

f�t� = �
k=−�

�

ck�k�t� + �
k=−�

�

�
j=0

�

dj,k� j,k�t� , �3�

where ck and dj,k are the wavelet transforms of the signal f�t�.
Although we have started with the scale value j=0, in prin-
ciple one could have started from any finite value of j, in
which case,

f�t� = �
k=−�

�

cj,k� j,k�t� + �
k=−�

�

�
j��j

�

dj�,k� j�,k�t� .

Explicitly the wavelet coefficients are given by

cj,k = �f�t�,� j,k�t�	 =� f�t�� j,k�t�dt ,

and

dj,k = �f�t�,� j,k�t�	 =� f�t�� j,k�t�dt . �4�

Since � j,k is a scaling function located at k and having a finite
window size commensurate to scale j, cj,k represents the av-
erage value of the signal over the same window at location k.
As will become clear from later discussions, dj,k represent
variations of the signal in the same window size. Father wave-
lets or scaling functions are used for extracting the low-
frequency, smooth component of the signal. On the other
hand, the wavelets extract the higher frequency detail compo-
nent at various scales. Broadly speaking, father wavelets are
used for finding the trend components and mother wavelets
pick out the deviations. All wavelet basis functions satisfy the
dilation equation, also known as the multiresolution analysis

�MRA� equation:

September/October 2005 � Vol. 10�5�3



Gupta et al.: Wavelet-based characterization of spectral fluctuations…
��t� = �
n

h�n�
2��2t − n� ,

and

��t� = �
n

h̃�n�
2��2t − n� . �5�

Physically, this means that scaling function and wavelet at a
given scale can be constructed from the linear superposition
of scaling function alone, at a higher scale. The initial scale in
a given basis set is arbitrary, to be chosen keeping the appli-
cation in mind. Using MRA, one can show that

cj,k = �
n

h�n − 2k�cj+1,n

and

dj,k = �
n

h̃�n − 2k�cj+1,n. �6�

The coefficients ci,k and di,k are, respectively, the low-pass
and high-pass coefficients at scale j. In a given wavelet de-
composition, one first fixes a high scale J and finds the coef-
ficients, which are denoted as level-I low-pass and high-pass
coefficients. Level-II coefficients correspond to the scale
value J-1, level-III to J-2, and so on. It is worth noting that
both scaling function coefficients �low-pass coefficients� and
wavelet coefficients �high-pass coefficients� at a given scale j
can be obtained from only low-pass coefficients at a higher
scale. As the scale value j increases for fixed k, the scaling

Fig. 2 �a� Fluorescence spectrum of a normal tissue, having 200 inten
sitions without discarding any point. The high-pass wavelet coefficient
50, and 25 coefficients. �e� Level-III low-pass coefficients numbering
function becomes thinner and taller representing approxi-
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mately a Dirac delta function. The corresponding low-pass
coefficient is then nothing but the sample of the signal at the
location k. Hence, starting from the samples of the signal at
the finest resolution, one can obtain all the other scaling func-
tion and wavelet coefficients through the MRA equation. One

only needs to know the filter coefficients h�n� and h̃�n�, with-
out explicitly knowing the forms of the wavelet functions. In
this sense, wavelet transform is significantly different from
Fourier transform.

There are infinite varieties of discrete wavelets; the choice
of a basis set depends on the application at hand. In recent
times DWT has found applications in diverse areas such as
astronomy, acoustics, nuclear engineering, sub-band coding,
signal and image processing, neurophysiology, magnetic reso-
nance imaging, turbulence, earthquake-prediction, etc.32–35

For our application, we make use of the simplest Haar wave-
let, since the interpretation of the wavelet coefficients is quite
transparent here; it is also free from artifacts arising due to the
finite size of the data.

For the Haar wavelet

h�0� = h�1� =
1

2

and h̃�0� = − h̃�1� =
1

2

, �7�

these coefficients are different for different wavelet basis sets.
Haar basis is special, since it is the only wavelet that is sym-
metric and compactly supported. In a level-I Haar wavelet
decomposition, the nearest neighbor averages and differences
are calculated with the normalization factor of 1 /
2. The al-
ternate coefficients are thrown out in a process called down-

lues, starting from 500 nm. One can carry out three-level decompo-
ayed in �b� level I, �c� level II, and �d� level III have, respectively, 100,
sity va
s displ
25.
sampling or decimation, which leaves half of the data in the
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form of low-pass coefficients and the other half in terms of
level-I high-pass coefficients. Subsequently, the same proce-
dure can be applied once more to the low-pass coefficients to
decompose them into level-II high-pass coefficients and
level-II low-pass coefficients. One can now clearly see that
the level-I high-pass coefficients are the nearest neighbor dif-
ferences in the Haar wavelet. The level-II high-pass coeffi-
cients are the differences of the nearest neighbor averages. In
this manner, one can find out the differences of progressively
larger chunks of data, which are the other higher level high-
pass coefficients. The fluctuations considered here are these
Haar wavelet coefficients, which are the simple differences of
intensities at neighboring wavelengths. This illustrates how
the high-pass coefficients at higher levels separate out the
fluctuations over progressively bigger neighborhoods.

If the data set contains 2N elements, with N being an inte-
ger, then one can have an N-level decomposition, after which
one is left with only one low-pass coefficient, which is the
average of all points, modulo a normalization factor. It is evi-
dent that the high-pass coefficients progressively capture dif-
ferences at a broader scale starting from the nearest neighbor
ones. In more sophisticated wavelets, the above averaging and
differentiation is replaced by a suitable weighted averaging
and differentiation. If the data is not 2N, one needs to append
the same with the required number of points by padding or
other procedures. It is worth mentioning that, apart from Haar
wavelets, the process of computing wavelet coefficients needs
a suitable extension of data, e.g., circular or periodic, which
also brings in artifacts to be clearly differentiated from the
true variations. In order to avoid these complications, we have
taken the Haar wavelets for our analysis. We have taken 192
points of the data starting from 	=501 nm, since the same
can be decomposed up to six levels, without encountering any
artificial features. These data points are treated as the cJ+1,k in
Eq. �6� to obtain the level-I low- and high-pass coefficients, at
different locations k. The level-I low-pass coefficients are
then analogously used to obtain the level-II high-pass coeffi-
cients and so on.

It should be pointed out that wavelet transform satisfies the
Parseval theorem implying that

� Ii
2 = �

k

�ck�2 + �
j

�
k

�djk�2, �8�

where Ii is the intensity at 	=	i, and ck and djk are the low-
and high-pass coefficients, respectively. It should be noted
that, in a given wavelet decomposition, one fixes a scale J and
takes only one scaling function. The corresponding low-pass
coefficients cJ,k are conveniently abbreviated by ck. In case of
reference to multilevel low-pass coefficients, e.g., level-I and
level-II low-pass coefficients, it should be understood that
these refer respectively to cJ,k and cJ-1,k.

4 Results and Discussion
4.1 Standard Deviation �
�
Figure 2 depicts the four-level wavelet transform of a typical
normal tissue spectral data. The low-pass coefficients in Fig. 2
represent the average part and resemble the data itself. The
level-I high-pass coefficients have 100 points, level-II high-

pass coefficients have 50 points, and level-III high-pass coef-
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ficients have 25 data points. We refer the interested readers to
Ref. 28 for details about the wavelet transform of cancerous
and benign tissues. For quantifying the differences, we now
proceed to compute a number of global and local parameters
from both high- and low-pass coefficients. It is not difficult to
convince oneself that instead of the spectral fluctuations, as
captured by the wavelet coefficients, the percentage fluctua-
tions, i.e., the high-pass coefficients divided by their corre-
sponding low-pass coefficients, are much more reliable for a
statistical analysis. Hence, we compute the same for various
high-pass coefficients and find their mean and standard devia-
tion values. The corresponding histograms are then fitted with
normal distributions to bring out the nature of randomization
in various tissue types. Preliminary studies have shown earlier
that the standard deviation of the perpendicularly polarized
data discriminated the various tissue types.28 For the purpose
of comparison, we have plotted �Fig. 3� the ratios of the stan-
dard deviation of cancerous and benign tissues with their cor-
responding normal counterparts, for unpolarized, parallel po-
larized, and perpendicularly polarized spectral data. It is
clearly seen that, for this parameter, perpendicularly polarized
light indeed brings out the best differentiation, the unpolarized
spectra being the worst performer. This highlights the useful-
ness of polarization spectroscopy in biomedical diagnostics.
We have checked that the contribution due to counting error
and dark noise are extremely small as compared to the above
differences. The ratio of standard deviation of intracanalicular
type of benign tumor tissues to normal tissues show values
greater than one. Pericanalicular type benign tumor tissues
also display values less than one, similar to the malignant
ones. This is expected since pericanalicular types have scat-
tering coefficients similar to malignant tumors and hence ran-
domization may be higher in them. Thus it appears that the
standard deviation values can distinguish intracanalicular be-
nign tumors, malignant tumors, and normal from one another
in the wavelet domain.

One sees characteristic large fluctuations in the fluores-
cence spectra of normal tissues. Physically, the presence of fat
gives rise to the Raman lines, which lead to the large fluctua-
tions in the wavelet domain. However, some normal tissues,
which are more fibrous �low fat content like the cancerous
ones�, do not display these characteristic Raman peaks but
still have significantly large fluctuations. Hence, the differen-
tiation between tissue types would be more robust if one can
differentiate the normal and cancerous tissues after removing
the large fluctuations originating from the Raman peaks. Non-
removal of the same only improves the result. We find that
even after removal of these large fluctuations, normal tissue
standard deviations remain larger than their cancerous coun-
terparts.

It is worth pointing out that cancerous tissues have more
scatterers of various sizes and hence one expects that the char-
acteristic emission peaks of the fluorescence spectrum will be
broadened more in the same because of multiple scattering.
Therefore, the fluctuations in the wavelet domain will be less
in cancerous tissues. The ratio of standard deviations of ma-
lignant to normal tissue being less than one confirms this. We
notice an improved sensitivity on moving to higher levels �up
to the third level� as depicted in Fig. 4. The sensitivity in the

third level is 95% while in the first level it is 90%.
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One also expects that randomization of fluctuations is
more in malignant tumor spectra as compared to the normal
ones.29,36,37 We hence proceed to confirm the same through
correlation studies. Now, having seen that the perpendicular
component is the best discriminator, we focus only on the
parameters of this component.

4.2 Correlation Value �R2�
The normalized level-I fluctuations fit a normal distribution

Fig. 3 Standard deviation ratios of the spectral fluctuations �the high-
pass coefficients divided by their corresponding low-pass coefficients�
of level I of benign �circles� and malignant �stars� tissues, with respect
to the corresponding normal ones �a� for parallel, �b� for perpendicu-
lar component, and �c� for unpolarized spectra.
quite accurately for the cancerous tissues, for the perpendicu-
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larly polarized light, as seen in Fig. 5. The same is also
brought out clearly by the correlation factor �R2� during fit-
ting and is seen in Fig. 6, where the various R2 values have
been computed. At a physical level, the rapid randomization
in the cancerous tissues results from the much faster genera-
tion of the perpendicular component in tumors. The intensity
variations also reflect this randomization process in the sense
that they fit the Gaussian distribution much better.

From Fig. 5 it is clear that a Gaussian curve better fits the
histogram of first-level high-pass coefficients of cancerous tis-
sues in comparison to normal ones. These fits are found to be
independent of the fluorescence intensity. In general, the mea-
sured fluorescence intensity in cancerous tissues was found to
be higher than the normal ones; however, in some normal
tissues, bulk fluorescence intensity was found to be more than
their malignant counterparts. Surprisingly in all cases the
Gaussian fit was better for the malignant ones. The scatter
plots of the correlation values R2 that depict this result are
shown in Figs. 6�a� and 6�b� for the parallel and perpendicular
components. The fits for the histograms of the first-level high-
pass coefficients of perpendicular components of the polar-
ized fluorescence data follow a Gaussian more precisely than

Fig. 4 Standard deviation ratios of the spectral fluctuations of �a� level
II and �b� level III of benign �circles� and malignant �stars� tissues, with
respect to the corresponding normal ones for perpendicular
component.
parallel components. All this leads to the conclusion that ran-
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domization is highlighted more in perpendicular components
than in the parallel ones. From the scatter plot it is clear that
values of R2 for most benign and malignant tissues are greater
than those of corresponding normal ones. Here, perpendicu-
larly polarized spectral data provide better discrimination with
a sensitivity of 82.2% and specificity of 75.6% �parallel po-
larized spectra gives sensitivity of 77.8% and specificity of
64.4%�. It should be mentioned that unpolarized data showed
poor discrimination and hence have not been discussed here.

4.3 Power Plot
It may be noted that a study of the distribution of power at
various levels was performed. The power spectra at different
levels are defined as the sum of the squares of high-pass co-
efficients at different levels. Keeping in mind that �Ii

2

2 2

Fig. 5 �a� Histogram of normalized first-level wavelet coefficients for
a typical cancer tissue �when spectral counts for cancerous tissue are
greater than the corresponding normal one�. Similar behavior was
found when spectral counts from normal tissue were greater than its
cancer counterpart. �b� Histogram of normalized first-level wavelet
coefficients for a typical normal tissue �when spectral counts for can-
cerous tissue are greater than the corresponding normal one�.
=��ck� +� j,k�djk� , due to Parseval’s theorem, normalization
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of the power spectra is done by dividing it by the sum of the
square of intensities at all the wavelengths. However, it does
not extract very clear signatures that can differentiate between
malignant and benign tumors, as done by the standard devia-
tion.

4.4 Low-pass Coefficients
The low-pass coefficients represent the average part of the
data. The window over which averaging has been done de-
pends on the level. For example, at the fifth level, each low-
pass coefficient represents the average of 32 data points of the
original data set. The fourth- and sixth-level low-pass coeffi-
cients represent, respectively, the average of 16 and 64 data
points. Characteristic fifth-level low-pass wavelet coefficients
of cancerous, benign, and normal tissues averaged over all
patients are shown in Fig. 7. The values of low-pass coeffi-
cients of normal tissues show an exponential behavior, not
seen in cancer tissues. The error bars represent deviations in
the coefficients from different samples studied. It is seen that
the low-pass wavelet coefficients clearly bring out the differ-

Fig. 6 R2 value plot for �a� parallel components �level I� and �b� per-
pendicular components �level I�.
entiation between various tissue types.
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5 Conclusion
Wavelet analysis has enabled us to separate fluctuations at
various scales in the polarized fluorescence spectra of human
breast tissues. Standard deviation, power spectra, and low-
pass coefficients at various levels have been computed for
both parallel and perpendicular components. The above-
mentioned diagnostic parameters differentiate the normal, be-
nign, and malignant tissues better with perpendicularly polar-
ized light. The two different types of benign tissues,
intracanalicular and pericanalicular tissues, are also distin-
guished from one another by wavelet analysis. A significant
finding of this study is the randomization in the perpendicular
component of polarized fluorescence spectra of tissues. This is
expected to be more in tumors than in normal tissues due to
high scattering effects, and interestingly our studies have cor-
roborated the same. We find that the fluctuations in cancerous
tissues can be very accurately fitted with Gaussian distribu-
tions, which is not true for their normal counterparts. This is
quantified through the correlation factor �R2�, which is higher
for malignant tissues. The specificity and sensitivity of per-
pendicular component of fluorescence data are 75.6% and
82.2%, respectively. The wavelet-based approach also brought
out features in averaged spectral profile, which differ in tissue
types. This is seen in the fifth-level low-pass coefficients,
which highlight distinction among tissue types. In the early
stage of the tumors, when well-defined structures in the spec-
tral profile may not have manifested, the spectral fluctuations
can possibly distinguish the cancerous tissues from the normal
ones.
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