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Abstract. Using diffuse reflectance spectroscopy and intrinsic fluores-
cence spectroscopy, we have developed an algorithm that success-
fully classifies normal breast tissue, fibrocystic change, fibroadenoma,
and infiltrating ductal carcinoma in terms of physically meaningful
parameters. We acquire 202 spectra from 104 sites in freshly excised
breast biopsies from 17 patients within 30 min of surgical excision.
The broadband diffuse reflectance and fluorescence spectra are col-
lected via a portable clinical spectrometer and specially designed op-
tical fiber probe. The diffuse reflectance spectra are fit using modified
diffusion theory to extract absorption and scattering tissue parameters.
Intrinsic fluorescence spectra are extracted from the combined fluo-
rescence and diffuse reflectance spectra and analyzed using multivari-
ate curve resolution. Spectroscopy results are compared to pathology
diagnoses, and diagnostic algorithms are developed based on param-
eters obtained via logistic regression with cross-validation. The sensi-
tivity, specificity, positive predictive value, negative predictive value,
and overall diagnostic accuracy �total efficiency� of the algorithm are
100, 96, 69, 100, and 91%, respectively. All invasive breast cancer
specimens are correctly diagnosed. The combination of diffuse reflec-
tance spectroscopy and intrinsic fluorescence spectroscopy yields
promising results for discrimination of breast cancer from benign
breast lesions and warrants a prospective clinical study. © 2008 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2909672�
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Introduction
creening procedures such as x-ray mammography, ultra-
ound, and/or palpation are the first step in diagnosing breast
ancer. Screening procedures do not accurately identify ma-
ignant tissue. Therefore, to establish a diagnosis, the patient

ust undergo breast biopsy followed by histopathological di-
gnosis. Due to the lack of specificity of mammography, a
igh percentage of suspected abnormal lesions �70 to 90%�
re found to be benign or normal upon biopsy,1 resulting in
nnecessary cost, patient trauma, and time delay to obtain
istopathological diagnosis. Imaging and spectroscopic opti-
al diagnostic techniques are currently being explored to re-
uce the number of unnecessary breast biopsies in a mini-
ally invasive manner.
Diffuse optical tomography �DOT�, an optical imaging

echnique to identify suspect lesions, is currently under study.2

imilar to current screening techniques, it is noninvasive and
an detect lesions deep within the breast. It employs light of a
umber of near-IR wavelengths. Contrast, provided by scat-
ering and absorption, measures relative concentrations of
xy- and deoxyhemoglobin, as well as the presence of lipids

ddress all correspondence to Zoya Volynskaya, MS, Laser Biomedical Re-
earch Center, G.R. Harrison Spectroscopy Laboratory, Massachusetts Institute
f Technology, 77 Massachusetts Ave, 6-218M, Cambridge, MA 02139; Tel:
617� 253-5077; Fax: �617� 253-4513; E-mail: zivolyns@mit.edu
ournal of Biomedical Optics 024012-
and water content.3 However, this technique has a low
resolution,4,5 due to which lesions of small size go undetected;
a resolution of 4 to 13 mm has been reported, and the sources
of contrast are limited.3,2,6 Despite these challenges, DOT has
been utilized in several reported breast cancer studies.7,8

A number of promising optical spectroscopy techniques for
diagnosing breast cancer are also under study. These tech-
niques currently employ point contact probes, but have the
potential to be extended to imaging modes.9 The most fre-
quently utilized methods are diffuse reflectance
spectroscopy10–12 �DRS� and fluorescence spectroscopy.13–15

As of now, intrinsic fluorescence spectroscopy16 �IFS�, a tech-
nique that uses diffuse reflectance to suppress the effects of
scattering and absorption in fluorescence, has not been imple-
mented. The objective of this study is to explore the use of
DRS and IFS, in combination, to identify and diagnose sus-
pect lesions.

Briefly, DRS measures tissue scattering and absorption
properties, which provide information about the morphology
and biochemistry of the breast tissue epithelium and stroma.
DRS typically utilizes broadband UV-visible excitation in the
wavelength range 300 to 800 nm, spanning the prominent he-
moglobin absorption features. Fluorescence spectroscopy pro-

1083-3668/2008/13�2�/024012/9/$25.00 © 2008 SPIE
March/April 2008 � Vol. 13�2�1



v
e
3
m
r
i
t
t
i
i

h
t
b
n
e
n
i
fl
l
o
o

n
p
q
r
r
s
o
t

h
i
b
w
c
p
r
p
a

Volynskaya et al.: Diagnosing breast cancer using diffuse reflectance spectroscopy…

J

ides information about the endogenous tissue fluorophores
xcited with UV-visible light in the same wavelength range
00 to 800 nm. Fluorophores excited in this range have the
ost diagnostic significance. However, fluorescence spectra

ecorded from tissue are distorted by absorption and scatter-
ng, thereby limiting the accuracy of the extracted informa-
ion. To overcome this problem, DRS can be used in conjunc-
ion with the measured fluorescence spectrum to extract the
ntrinsic �undistorted� fluorescence.17,16 This process is called
ntrinsic fluorescence spectroscopy �IFS�.

The DRS and fluorescence studies published up to now
ave focused on differentiating malignant from nonmalignant
issues. However, it is also clinically important to discriminate
enign lesions that may carry a risk of breast cancer or that
eed to be surgically excised from normal breast tissue. For
xample, fibrocystic change is a benign condition that does
ot require excision, whereas fibroadenoma proliferates rap-
dly and must be excised. As our data will show, DRS and
uorescence spectroscopy have the potential to identify these

esions in real time at the bedside when performed percutane-
usly using a fiber optic probe inserted through a breast bi-
psy needle.

Furthermore, previously used diagnostic algorithms have
ot been based on parameters that can be identified as patho-
hysiological features of disease. While doing so is not a re-
uirement for success, the use of parameters that may be di-
ectly compared to histopathology is likely to lead to more
obust algorithms and to aid clinicians in interpreting spectro-
copic results. It also represents a step toward quantifiable,
bjective tissue diagnosis, as compared to subjective histopa-
hology analysis.

We report an ex vivo spectroscopic study of freshly excised
uman breast tissue. We use DRS and fluorescence, combined
n a particular manner, to discriminate breast cancer from both
enign breast lesions and normal breast tissue. Our technique,
hich we refer to subsequently as DRS-IFS, provides a more

omplete biochemical, morphological, and metabolical tissue
rofile than either modality alone. Our analysis extracts pa-
ameters that optimize classification and, at the same time,
rovide physical insight. This added information should en-
ble the development of a more robust diagnostic algorithm.

Fig. 1 �a� FastEEM clinical spectrophotometer and �b�
ournal of Biomedical Optics 024012-
2 Instrumentation
A clinical instrument for DRS-IFS studies, the FastEEM �Fig.
1�a��, was developed at the G.R. Harrison Spectroscopy Labo-
ratory at the Massachusetts Institute of Technology18 �MIT�.
This instrument collects white light reflectance and fluores-
cence excitation-emission matrices �EEMs� in a fraction of a
second. It delivers a sequence of 10 excitation laser pulses
�308 to 480 nm� and two white light pulses �300 to 800 nm�
to the tissue via an optical fiber probe, which is in the form of
a flexible catheter with an overall length of 3 m and a diam-
eter of approximately 1.2 mm �Fig. 1�b��. The distal tip con-
sists of a single delivery fiber surrounded by six collection
fibers, all with core diameters of 200 �m, and terminated
with a transparent, protective optical shield.18 The tip is
brought into gentle contact with the tissue when data are
taken. The diameter of tissue sampled is approximately
600 �m, with depth sensing of approximately 100 �m. The
same probe delivers the excitation light and collects the dif-
fusely reflected white light and fluorescence. At the proximal
end of the probe, the collection fibers are confined in a single
line and imaged onto the slit of an intensified CCD detector.
Ten laser-induced fluorescence emission spectra and the two
white light reflectance spectra are collected in approximately
0.3 s. Sufficient SNR is obtained by averaging five measure-
ments, resulting in a typical acquisition time of 1.5 s. The
SNR, determined as the ratio of the peak of the signal to the
standard deviation of the noise, was found to be 100.

The instrument was calibrated daily prior to data collec-
tion. Calibration consisted of four steps: �1� a background
spectrum of water was collected and subtracted from all sub-
sequent measurements to correct for dark current and stray
light; �2� the excitation intensities at each of 10 wavelengths
were then normalized by measuring a rhodamine B dye mix-
ture; �3� a Spectralon standard with 20% reflectance was then
measured to account for the wavelength-dependent system re-
sponse; �4� and finally, a mercury spectrum was acquired to
calibrate wavelength.

3 Patients and Breast Tissue Handling
This ex vivo study was conducted at the University Hospitals-
Case Medical Center �UHC� under approval from the UHC

tic diagram of the distal tip of the optical fiber probe.
schema
March/April 2008 � Vol. 13�2�2
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nstitutional Review Board and the MIT Committee on the
se of Humans as Experimental Subjects. Spectra were col-

ected from fresh breast surgical specimens within 30 min
fter excisional biopsy �n=16� and partial mastectomy
lumpectomy; n=1� procedures. Overall, we have obtained
02 spectra from 104 sites, providing approximately 2 spectra
er site. Most of the 30-min delay was due to gross examina-
ion, inking, and sectioning of the specimen performed as part
f the routine pathology intraoperative consultation. For each
urgical specimen examined, data were collected from mul-
iple tissue sites of interest identified by the pathologist. Spec-
ra were also acquired from the colloidal inks used to mark
he surgical margins of each specimen, and it was confirmed
hat no artifacts were introduced in the data as a result of this
rocessing step.

Some of the data collected were subsequently excluded
rom the analysis. Specifically, DRS data with overall reflec-
ance of less than 1% were excluded because of the inability
o use reflectance information of that data to process the fluo-
escence data to obtain the intrinsic fluorescence. Sites whose
pectra failed this criterion �11 sites� were found to be con-
aminated by the presence of surface blood that absorbed too

uch of the reflected light. Additionally, specimens from pa-
ients with preoperative chemotherapy or who underwent re-
eat excisional biopsy were excluded from analysis �7 speci-
ens�. Sites exhibiting other lesions �ductal epithelial

yperplasia, n=2; fat necrosis, n=1; and ductal carcinoma
n situ �DCIS�, n=6� were also excluded, as their limited
umbers precluded development of a robust diagnostic algo-
ithm. Following these exclusions, 202 IFS and DRS spectra
cquired from a total of 104 breast tissue sites �1 and often 2
pectra per site� in specimens from 17 consecutive patients
emained and were used for further analysis.

After acquisition of the spectra, the exact site of probe
lacement was marked with colloidal ink for registration with
istopathology. The breast specimens were then fixed in for-
alin and submitted for routine pathology evaluation, per-

ormed by an experienced breast pathologist blinded to the
pectroscopy results. The histopathology diagnoses were19 31
ormal, 55 fibrocystic change, 9 fibroadenoma, and 9 invasive
arcinoma �all infiltrating ductal carcinoma�. The relative
umber of each diagnosis in this data set closely resembles
he typical prevalence for diseases of breast tissue.1

Data Analysis
e analyzed the DRS spectrum from each breast tissue site

sing a mathematical model based on the diffusion approxi-
ation of light propagation in tissue to determine the values

f the absorption coefficient �a��� and the reduced scattering
oefficient �s����, previously described in detail.17 The model
equires index of refraction n, which for soft biological tissue
as a typical value20 of 1.35 to 1.45. Two absorbers, oxyhe-
oglobin and �-carotene,21 were used to model the extracted

bsorption coefficient �a. During our study, the tissue was
xposed to room air and hemoglobin was oxygenated; there-
ore, deoxyhemoglobin was not included. For the reduced
cattering coefficient �s����, wavelength dependence of the
orm A�−B was employed.22

IFS spectra were extracted from the combined fluorescence
nd DRS spectra, as previously described.23 An IFS spectrum
ournal of Biomedical Optics 024012-
is composed of a linear combination of the spectra of the
individual fluorophores present in the tissue. However, differ-
ences in local chemical environments, such as in tissue, may
alter the shape of a fluorophore spectrum from that of its pure
component.24 Therefore, pure component spectra were not di-
rectly fit to a given IFS spectrum. Instead, the IFS spectra
were analyzed using multivariate curve resolution �MCR�
with nonnegativity constraints, a standard chemometric
method.25 MCR generates spectral components by adjusting
the spectral shape of initial input parameters to minimize the
fitting error to a given tissue spectrum. The initial input spec-
tra in our case were the pure component spectra of fluoro-
phores known to be present in breast tissue24 �Table 1�. The
maximum number of the initial input spectra was not con-
strained; however, on analysis, it was found that only two
spectra were required to produce good fits to the data. The
resulting MCR-generated spectral components at 340 nm are
shown in Figs. 2�a� and 2�b�. The combined basis spectra and
fit to a representative IFS spectrum are shown in Fig. 2�c�.
The MCR-generated spectral components are similar to the
spectra of NADH and collagen-like, respectively, but are
broader and red-shifted, as expected of fluorophores in a tis-
sue environment.26

As stated previously, the FastEEM instrument provides
emission spectra at 10 different excitation wavelengths. Col-
lagen, NADH, elastin, tryptophan, FAD, and porphyrins, the
native fluorophores of breast tissue, have their maximum
emission at 308, 340, 360, and 425 nm excitation
wavelengths26 �Table 1�. Thus, those four fluorescence exci-
tation wavelengths were employed in the initial analysis.
However, it was found that not all of these fluorophores could
be detected, presumably because they were not present in our
specimens at high enough levels. These include elastin excited
at 340 nm and FAD and porphyrins excited at 360 nm. The
absence of these fluorophores was confirmed by attempting to
extract their basis spectra using MCR and finding that the
contributions were negligible.

Of the measured fluorophores, only NADH and collagen-
like excited at 340 and 360 nm were required to obtain good
fits to the IFS spectra. However, no substantial differences in
the fluorophore contributions at those two wavelengths were
observed. Due to the proximity in wavelength of 340 and
360 nm, the difference in the penetration depth of the light
��5 �m� evidently was not sufficient to reveal these differ-
ences. Averaging the information at these two wavelengths

Table 1 Expected fluorophores for various excitation wavelengths.

Excitation Wavelength �nm�

308 340 360 425

Fluorophores NADH NADHa NADH collagen

collagen collagena collagen elastina

Tryptophana elastin FAD FADa

porphyrinsa

aOptimal excitation wavelength for each fluorophore.
March/April 2008 � Vol. 13�2�3
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id not improve the fits. To reduce complexity, we opted to
tilize only one excitation wavelength, with the added benefit
hat as a result only one UV source will be required in future
linical instruments. Therefore, contributions of NADH and
ollagen-like excited at 340 nm were chosen for algorithm

ig. 3 Representative spectra of DRS and IFS excited at 340 nm for
noma lesion, and �d� infiltrating ductal carcinoma lesion �data �blue
nline only�

ig. 2 �a� and �b� Comparison of pure component spectra �blue, dash
ADH and �b� collagen; �c� representative spectrum fit with a linear c

green, dash-dotted line� �data �blue, solid line�; fit �red, dotted line�;
ournal of Biomedical Optics 024012-
development, as this is the wavelength for maximum emission
of NADH. Representative DRS and IFS spectra collected with
340-nm excitation are shown in Fig. 3.

Thus, the data analysis of each tissue site was performed
using two spectra �one DRS and one IFS�. Spectra were fur-

ologies: �a� normal tissue, �b� fibrocystic change lesion, �c� fibroad-
line�; fit �red, dashed line�; residual �black, dash-dotted line��. �Color

es� and MCR basis spectra �red solid lines� excited at 340 nm for �a�
ation of NADH �magenta, dotted line� and collagen-like basis spectra
al �black��. �Color online only�
all path
, solid
ed lin
ombin
residu
March/April 2008 � Vol. 13�2�4
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her characterized by six parameters: A and B—scattering pa-
ameters, fit coefficients of oxyhemoglobin and �-carotene, as
ell as the fit coefficients of collagen-like and NADH.

Algorithm Development
ollowing data analysis, all of the fit parameters, except B,
ere found to be diagnostically relevant. Boxplots for these
arameters are shown in Fig. 4. �A boxplot is a graphical
epresentation of data spread, with the first, second, and third
uartiles “contained” in the box; the median for the data set is
ndicated by the black center line. The interquartile range is
efined as the distance between the first and third quartiles.
he extreme values are defined as 1.5 times the interquartile

ange, measured from the median. Data points outside of this
ange, indicated by crosses, are defined as outliers.� This form
f data depiction is useful for visually examining the diagnos-
ic capability of each parameter. For example, the boxplot for
ollagen-like indicates that normal breast sites may be par-
ially separated from other sites using this parameter. Note
hat diagnostic parameters in a particular tissue type may be
orrelated. Hence, one parameter may provide only partial
eparation, but the use of a second parameter in combination
ith it may provide full separation. Visualizing this behavior

equires a 2-D scatter plot and is not revealed by the boxplots.
The desired algorithm must be able to classify invasive

reast cancer �in this case, infiltrating ductal carcinoma�, be-
ign breast lesions such as fibroadenoma and fibrocystic
hange, and normal breast tissue. Because each of these tissue
ypes can likely be characterized using different diagnostic
arameters, we performed the analysis in a stepwise fashion,
s shown in Fig. 5. Initially, normal specimens are separated
rom the rest of the specimens �step 1�, followed by the sepa-
ation of fibroadenoma from fibrocystic change and infiltrat-
ng ductal carcinoma �step 2�, and finally, the separation of
nfiltrating ductal carcinoma from fibrocystic change lesions
step 3�. The diagnostic algorithm was developed using logis-

ig. 4 Boxplots of normal tissue �Normal�, fibrocystic change �FCC�, fi
elevant parameters: A, scattering parameter extracted from DRS; Hb
RS; and NADH and collagen-like, fit coefficients from IFS spectra e
ournal of Biomedical Optics 024012-
tic regression and leave-one-out cross-validation. Histopathol-
ogy diagnoses were used as the standard against which the
spectroscopic diagnoses were compared. By maximizing the
sensitivity of each stage of the algorithm we were able to
identify the diagnostic parameters that can best discriminate
pathologies of breast tissue.

The scatter plots and decision lines for each step of the
diagnostic algorithm are depicted in Fig. 6. In step 1, normal
sites are classified using the collagen-like and �-carotene fit
coefficients extracted from IFS at 340-nm excitation and
DRS, respectively �Fig. 6�a��. In step 2, fibroadenoma sites
are discriminated from fibrocystic change and infiltrating duc-
tal carcinoma using the DRS scattering parameter A and the
IFS NADH fit coefficient �Fig. 6�b��. Finally, in step 3, infil-
trating ductal carcinoma sites are distinguished from fibrocys-
tic change using the DRS oxyhemoglobin and a weaker de-
pendence of IFS collagen-like �excited at 340 nm� fit
coefficients �Fig. 6�c��.

noma �FA�, and infiltrating ductal carcinoma �IDC� for diagnostically
moglobin� and �-carotene, absorption fit coefficients extracted from
at 340 nm.

Fig. 5 Stepwise diagnostic algorithm.
broade
�oxyhe
xcited
March/April 2008 � Vol. 13�2�5
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Results and Discussion
able 2 compares the DRS-IFS spectral diagnoses and the
istopathology diagnoses. The diagnostic algorithm achieves
he goal of distinguishing normal breast, fibrocystic change,
broadenoma, and infiltrating ductal carcinoma using physi-
ally meaningful parameters extracted from DRS and IFS. All
f the invasive carcinomas are correctly classified and only
hree normal specimens and one fibrocystic change lesion are

isclassified as infiltrating ductal carcinoma. The total effi-
iency �overall accuracy� is 91% �95/104�. The sensitivity and
pecificity are 100 and 96%, respectively, with sensitivity de-
ned as the fraction of cancers correctly identified by the
lgorithm, and specificity defined as the fraction of correctly
dentified noncancerous lesions. The positive and negative
redictive values are 69 and 100%, respectively. The positive
redictive value �PPV� is the probability that a positive result
s accurate, i.e., that the patient actually has the specified dis-
ase. The negative predictive value �NPV� is the probability
hat a negative result is accurate.27 NPV is the most important
alue for the clinical test we envision because it is less ad-
erse to the health of a patient to excise normal or benign
esions �owing to a low PPV for a given technique� than to
eave a cancerous lesion in place �owing to a low NPV�.

Fig. 6 Discrimination of pathologies using th

able 2 Comparison of DRS-IFS and histopathologic classifications, w

RS–IFS
Normal

�31 Samples�
Fibrocy

�55

ormal 26

ibrocystic change 2

ibroadenoma 0

nfiltrating ductal carcinoma 3
ournal of Biomedical Optics 024012-
Therefore, it is important that a technique have a high NPV to
be effective in clinical practice. Note that, unlike sensitivity
and specificity, predictive values depend on the characteristics
of the population and, in particular, the prevalence of disease.
In our study, the disease prevalence of the data set is similar
to the usual prevalence encountered in breast cancer; predic-
tive values achieved by our technique are thus meaningful.

Our use of multiple parameters from multiple spectro-
scopic modalities enables discrimination of benign lesions
from normal and malignant tissues. Furthermore, it allows for
discrimination among different types of benign lesions in the
majority of cases. This is difficult to accomplish using only
one or two parameters. Gupta et al. utilized differences in the
integrated fluorescence intensities to separately discriminate
cancerous from fibroadenoma and cancerous from normal tis-
sue types in an ex vivo study. They were unsuccessful in their
attempt to discriminate fibroadenoma from normal tissue ow-
ing to similar fluorescence intensities.14 Palmer et al. exam-
ined both fluorescence and diffuse reflectance spectroscopy
during an ex vivo study.28 Their study utilized principal com-
ponent analysis followed by a support vector machine to dis-
cern differences in spectral components of the pathology
groupings. It was found that multiexcitation fluorescence

ise algorithm. The three steps are indicated.

RS-IFS diagnostic algorithm has an overall accuracy of 91% �95/104�.

Pathology

ange
s�

Fibroadenoma
�9 Samples�

Infiltrating Ductal Carcinoma
�9 Samples�

0 0

0 0

9 0

0 9
e stepw
here D

stic Ch
Sample

3

51

0

1
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pectroscopy was successful at discriminating malignant and
onmalignant tissues with a sensitivity and specificity of 70
nd 92%, respectively. However, the sensitivity �30%� and
pecificity �78%� of diffuse reflectance spectroscopy alone
ere significantly lower. They found that the combination of
uorescence and diffuse reflectance spectroscopy did not im-
rove the classification accuracy of an algorithm based on
uorescence spectra alone. Breslin et al.11 also explored the
ombination of fluorescence and diffuse reflectance spectros-
opy in an ex vivo study. Using principle component analysis
o discriminate malignant from nonmalignant tissue, they
ere unable to improve sensitivity and specificity with the

ombination of techniques from that achieved using only fluo-
escence spectroscopy. Table 3 provides a synopsis of pub-
ished results for the application of DRS and fluorescence

odalities to the study of breast cancer.
In contrast to these studies, we find that the majority of our

iagnostic accuracy in discriminating benign from malignant
esions arises from parameters extracted from DRS. For ex-
mple, generating a classification scheme from DRS param-
ters alone �scattering coefficient A and relative contributions
f �-carotene and oxyhemoglobin�, provides a sensitivity,
pecificity, PPV, NPV, and total efficiencies of 100, 100, 100,
00, and 81% �85/104�, respectively. That is, all sites are cor-
ectly diagnosed as either benign or malignant. However, be-
ign sites may be misclassified. A total of six normal and one
broadenomas are misclassified as fibrocystic change, eight
brocystic change lesions are misclassified as normal,
nd four fibrocystic change lesions are misclassified as
broadenoma.

Somewhat surprisingly, an accurate classification scheme
ould not be generated from IFS parameters alone �relative
ontributions of NADH and collagen-like�. Results for the
ensitivity, specificity, PPV, NPV and total efficiency are 89,
6, 20, 98, and 80%, respectively. Note that although the in-
lusion of IFS parameters into the combined algorithm does

able 3 Synopsis of previous works that utilizes DRS and/or fluoresc
pecificity �Sp� values.

echnique Study Se �%� Sp �%�
Pati

�num

RS In vivo 69 85 3

Ex vivo 83 76 4

Ex vivo 30 78 3

Ex vivo 100 100 1

luorescence Ex vivo 99.6 98.4 6

98.8 98.7

Ex vivo 70 92 3

ntrinsic fluorescence Ex vivo 89 66 1

RS and fluorescence Ex vivo 70 91.7 3

RS and instrinsic fluorescence Ex vivo 100 96 1
PPV, NPV, and total efficiency were not reported.
ournal of Biomedical Optics 024012-
not improve the classification of benign versus malignant le-
sions, IFS significantly improves the total efficiency �increase
of 12% from the DRS algorithm alone�. The total efficiency is
the only metric that considers the accuracy of the technique in
subclassifying the benign lesions; specifically: normal, fibro-
cystic change, and fibroadenoma.

Although it is difficult to compare and contrast past studies
with this current study given the wide range of experimental
variables, differences in analysis methods, and differences in
classification schemes and scope, we hypothesize that our
model-based approach is the key advantage. We correct the
observed fluorescence spectra using DRS and extract param-
eters that represent NADH and collagen-like fluorescence sig-
natures. We also fit the DRS spectra to extract multiple physi-
ological parameters. Further, our analysis better accounts for
physical changes in tissue composition that contribute to
changes in histopathology. Normal breast tissue consists
mostly of adipocytes �fat�, whereas most breast lesions are
characterized by an increase in fibrous stroma and, as a result,
an increase in the amount of collagen.1 Therefore, in the first
stage of our diagnostic algorithm, we expect that normal tis-
sue can be separated from the three types of breast lesions by
the relative contributions of collagen-like and �-carotene, a
lipid-soluble marker of adipocytes. In the second stage of the
algorithm, fibroadenoma is separated from fibrocystic change
and infiltrating ductal carcinoma with the aid of NADH and
the scattering parameter A. By histopathology, fibrocystic
change and infiltrating ductal carcinoma are both cellular pro-
liferative lesions, accounting for their relatively large contri-
butions of NADH, a product of cellular metabolism. The pa-
rameter A is representative of the density of scatterers in the
tissue.17 We expect infiltrating ductal carcinoma to have a
relatively high value of the parameter A, as a result of frag-
mentation and disorganization of the collagen fibers in the
stroma of invasive cancers due to the action of matrix

ectroscopy to diagnose breast cancer and reports sensitivity �Se� and

Site
�number� Discrimination Reference

126 Malignant versus nonmalignant Bigio et al.10a

97 Malignant versus nonmalignant Zhu et al.12a

56 Malignant versus nonmalignant Palmer et al.28a

104 Normal, FCC, fibroadenoma, IDC Volynskaya, 2008

911 IDC versus fibroadenoma Gupta et al.14a

IDC versus normal

56 Malignant versus nonmalignant Palmer et al.28a

104 Normal, FCC, fibroadenoma, IDC Volynskaya, 2008

56 Malignant versus nonmalignant Breslin et al.11a

104 Normal, FCC, fibroadenoma, IDC Volynskaya, 2008
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etalloproteinases.29 Finally, in the third stage of the algo-
ithm, infiltrating ductal carcinoma is separated from fibrocys-
ic change on the basis of collagen-like and oxyhemoglobin fit
oefficients. As most malignant tumors, including infiltrating
uctal carcinoma, are characterized by angiogenesis1 �in-
reased vasculature�, it is not surprising that oxyhemoglobin
s useful in separating infiltrating carcinoma from its benign
ounterpart, fibrocystic change. Interestingly, oxyhemoglobin
s also a diagnostic parameter in diffuse optical tomography
maging of breast cancer. It is not as clear why collagen-like is
seful in distinguishing infiltrating ductal carcinoma from fi-
rocystic disease, as both demonstrate stromal fibrosis. How-
ver, since there are differences in the types of collagen
resent in the stroma of these two lesions,30 it is possible that
he MCR collagen-like basis spectrum better reflects the ty-
eof collagen present in fibrocystic change.

The number of DCIS specimens is too small to develop a
iagnostic algorithm. A larger clinical study is required to
dentify DCIS using our technique.

Conclusion
e demonstrated the potential of DRS-IFS as a clinical tool

or breast cancer diagnosis. Our study is the first to show a
arked benefit from the combined use of diffuse reflectance

nd fluorescence modalities. Our diagnostic algorithm is
ased on physically meaningful parameters, which include the
cattering parameter A, the absorption of �-carotene and oxy-
emoglobin, and the fluorescence of NADH and collagen-like
xcited at 340 nm, extracted from their spectra using a math-
matical model based on the diffusion approximation of light
ropagation in tissue and multivariate curve resolution. Logis-
ic regression and a leave-one-out cross-validation scheme
ere employed to determine the optimal diagnostic algorithm.
he algorithm resulted in 100% sensitivity, 96% specificity,
9% positive predictive value, 100% negative predictive
alue and 91% total efficiency. These results are promising,
nd further study is warranted. As an important next step, our
iagnostic algorithm should be prospectively tested in an ex
ivo or in vivo independent clinical study with a larger num-
er of patients. As our diagnostic algorithm was constructed
sing an ex vivo data set that closely reflects disease preva-
ence, we expect the performance of the algorithm to remain
igh in a larger study.

Recent work from our group in the application of Raman
pectroscopy, a type of vibrational spectroscopy with chemi-
al specificity, to breast cancer diagnosis demonstrates com-
arable results to the present DRS-IFS study.31 By combining
aman spectroscopy with DRS-IFS, a multidimensional algo-

ithm capable of discriminating an even broader range of
reast lesions may be possible. In addition, other routinely
ncountered diagnoses, particularly ductal carcinoma in situ,
hould be included in future diagnostic algorithms. This may
e accomplished by incorporating parameters from additional
echniques, such as Raman spectroscopy.
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