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Abstract. We present an approach for the computation of single-
object velocity statistics in a noisy fluorescence image series. The
algorithm is applied to molecular imaging data from an in vitro actin-
myosin motility assay. We compare the relative efficiency of wavelet
and curvelet transform denoising in terms of noise reduction and ob-
ject restoration. It is shown that while both algorithms reduce back-
ground noise efficiently, curvelet denoising restores the curved edges
of actin filaments more reliably. Noncrossing spatiotemporal actin tra-
jectories are unambiguously identified using a novel segmentation
scheme that locally combines the information of 2-D and 3-D seg-
mentation. Finally, the optical flow vector field for the image se-
quence is computed via the 3-D structure tensor and mapped to the
segmented trajectories. Using single-trajectory statistics, the global ve-
locity distribution extracted from an image sequence is decomposed
into the contributions of individual trajectories. The technique is fur-
ther used to analyze the distribution of the x and y components of the
velocity vectors separately, and it is shown that directed actin motion
is found in myosin extracts from single skeletal muscle fibers. The
presented approach may prove helpful to identify actin filament sub-
populations and to analyze actin-myosin interaction kinetics under
biochemical regulation. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

dvances in molecular labeling, microscopy, and image ac-
uisition techniques offer new approaches for the analysis of
olecular interactions on micrometer and submicrometer

cales. These techniques have been shown to be particularly
seful for real-time optical measurements and allow the visu-
lization and quantitative analysis of biomedically relevant
olecular processes. For instance, the interaction of the motor

roteins actin and myosin ultimately determines the contrac-
ile properties of skeletal and cardiac muscle; therefore, a de-
ailed understanding of this process is a crucial component in
he study of contractile tissues. The highly complex in-situ
ituation in the presence of a large number of interacting regu-
ator proteins and small diffusible regulator molecules, e.g.,
a2+ and ATP, possibly at nonconstant concentrations, can be

bstracted experimentally. A well-studied example is repre-
ented by the actin-myosin in vitro motility assay where actin-

ddress all correspondence to Frederic von Wegner, University of Heidelberg,
nstitute of Physiology and Pathophysiology, Medical Biophysics Group, Im
euenheimer Feld 326, Heidelberg, 69120, Germany; Tel: 49 6221 54 4146;
ax: 49 6221 54 4123; E-mail: fwegner@physiologie.uni-heidelberg.de.
ournal of Biomedical Optics 054018-
myosin interactions are studied in a setting under controlled
conditions.1 In the basic assay setup, tetramethylrhodamin-
labeled actin filaments slid over a myosin-coated glass surface
and the process was visualized with fluorescence microscopy.
In further steps, the assay could be extended to include regu-
lator proteins, e.g., troponin and tropomyosin, and physiologi-
cal conditions could be varied.2 Typically, the quantity of in-
terest is the distribution of filament velocities since these
represent the kinetics of the underlying interaction of the actin
binding head domain of the myosin molecule with its corre-
sponding binding site on the F-actin filament.

During the image-acquisition process, some well-known
artifacts and limitations are introduced in the data sets: �1�
blurring by convolution of the object shape with the micro-
scope point spread function �PSF�, �2� intensity fluctuations
due to the statistical nature of the fluorescence process; and
�3� detector noise. Photon counting noise can be partially
compensated for by longer pixel dwell times, but in practice,
this is limited by the restrictions imposed by the time scale of
the observed process. Moreover, computation of the sliding

1083-3668/2008/13�5�/054018/10/$25.00 © 2008 SPIE
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elocities requires the sampling rate to be sufficiently high to
inimize the distance traveled by a filament between two

rames. Therefore, recorded image sequences tend to be large,
nd differences between experimental results can be subtle.
o process sufficiently large data sets for a reliable statistical
nalysis, data analysis procedures that are largely automated
nd reproducible are desirable. Basically, two conceptually
ifferent strategies have been presented: tracking involves the
etection of actin filaments against the background fluores-
ence signal and identification of the filament trajectory by
ne of several methods.3 With this strategy, sliding velocities
re calculated from the filament centroid dynamics.4 How-
ver, centroid tracking leads to biased velocity estimates, es-
ecially in the case of actin filaments moving along curved
rajectories. The method can be refined by fitting a model
hape, e.g., a Gaussian.5 The velocity estimate is then ob-
ained from the temporal dynamics of the model parameters.

With the second strategy, the structure tensor method, fila-
ent velocities are computed from the optical flow vector
eld. Here, the solution of the eigenproblem for the structure

ensor must be solved locally.6 The structure tensor approach
voids the segmentation and tracking problem, and returns the
elocity distribution for the entire image sequence. Theoreti-
ally, the analytical methods, i.e., model-based fitting and the
tructure tensor method, can achieve subpixel �nm� accuracy.5

Here, we aim to combine the advantageous properties of
oth methods. In particular, we first demonstrate an efficient
ethod for data preprocessing to partially invert the image

ormation process. The method is based on the discrete cur-
elet transform and emphasizes the role of filament shape
estoration and computational efficiency. We then present a
imple way to detect actin filaments in denoised image se-
uences and an approach to uniquely label noncrossing fila-
ent trajectories in space and time by combining the infor-
ation of 2-D �XY� and 3-D �XYT� segmentation. Finally, it

s shown that the velocity estimates of the noise-robust struc-
ure tensor approach can be mapped to individual trajectories,
o, the limitations of the centroid tracking method are
voided. Preliminary results of this work were presented at
he European Conference on Biomedical Optics.7

Methods
.1 Experimental Data

abbit skeletal muscle actin, myosin, and heavy meromyosin
HMM� were obtained as previously described.1 Briefly, actin
as labeled with rhodamine phalloidin �R-415, Molecular
robes, Eugene, Oregon� and motility assay flow cells with an
pproximate volume of 12 �l were constructed on top of
lass cover slips coated with nitrocellulose. Some of the ex-
eriments were carried out in the presence of the sNC-2 frag-
ent of the regulating protein myosin binding protein-C

MyBP-C�. In these assays, the MyBP-C peptide was added to
he myosin surface at a concentration of 110 �g /ml. In one
f the presented experiments, the motility assay was prepared
rom a single skeletal muscle fiber using the method of Höök
nd Larsson.8 Myosin was extracted from a glycerinated gas-
rocnemius muscle of an adult C57/SV129 mouse. Experi-

ents were carried out according to the guidelines of the local
nimal care committee of the University of Heidelberg.
ournal of Biomedical Optics 054018-
Fluorescence excitation was achieved with a 200-W mer-
cury arc lamp, and flow cells were observed using a 1.4 nA
100� oil immersion objective �Leica PL APO� on an inverted
microscope �DM IRBE, Leica Microsystems, Mannheim,
Germany�. Fluorescence signals were collected at
10 frames /second with a CCD camera �PCO sensicam, PCO,
Kelheim, Germany�, digitized with 12-bit resolution, and
stored as image sequences in TIFF format.

The described algorithms were carried out on image se-
quences with 100 frames, each 256�256 pixels �pixel size
dx=0.12 �m, dy=0.12 �m; frame interval dt=0.1 s�.

2.2 Image Processing

2.2.1 Multiresolution transforms
The multiresolution �MR� transform of an image distributes
the complete image information on several resolution levels
or scales. A sequence of low-resolution scales is obtained by
applying a set of low-pass filters to the original image and
storing the complementary information �“details”� separately.
If the transform fulfills the perfect reconstruction conditions,
the original data can be reconstructed from the lowest reso-
lution level and the detail levels. Moreover, noise estimation
and reduction on the detail levels can be carried out before
reconstruction, so, an approximation of the original image can
be obtained. Here we evaluate two different implementations
and their respective abilities to denoise fluorescence images
and restore the contained objects in a noniterative manner.

2.2.2 2-D wavelet transform
The 2-D discrete wavelet transform was implemented with the
“à trous” algorithm based on the cubic B-spline scaling
function.9,10 In this transform, the low-resolution representa-
tion Sk,l

j of an image at scale 0� j�J and pixel indices k , l is
defined recursively: Sk,l

j =�m,nhm,nSk�,l�
j−1 , where �k� , l��= �k

+2 j−1m , l+2 j−1n� and hm,n represent a 2-D binomial filter.
The filter hm,n is obtained from the B-spline-based filter
B= 1

16�1,4 ,6 ,4 ,1� as hm,n=B � B. The detail or wavelet
scales at scale j�0 are computed as Wk,l

j =Sk,l
j−1−Sk,l

j . For
completeness, Sk,l

0 is identified with the original image, and
the transform is given by Sk,l

0 → �Wk,l
1 , . . . ,Wk,l

J , . . . ,Sk,l
J �.

Perfect reconstruction is achieved by Sk,l
0 =Sk,l

J +� j=1
J Wk,l

j .
This wavelet transform is highly efficient for the localiza-

tion and representation of pointlike singularities. It has been
observed, however, that 1-D singularities, e.g., curved edges,
are not sufficiently well approximated by 2-D wavelet basis
functions.11 As detailed in Sec. 2.2.3 recent advances in the
design of wavelet related transforms have succeeded in
achieving efficient approximations of these shapes.

2.2.3 Curvelet transform
To get a good approximation of curved edges or filament-like
structures, the basis functions of the corresponding transform
should be able to represent arbitrarily oriented ridges. This is
achieved by the curvelet transform. First, let ��·� represent a
1-D wavelet. Then the 2-D function given by ��xn−r� with
x ,n�R2, n= �cos��� , sin����, r�R, �� �0,2�� is called a
ridgelet. The ridgelet function is constant along lines with
normal vector n= �cos��� , sin���� and �perpendicular� dis-
tance r to the origin. The ridgelet profile along the direction of
September/October 2008 � Vol. 13�5�2
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he normal vector n reproduces the shape of the 1-D wavelet
unction ��·�. Varying n and r allows the construction of a set
f functions for the reconstruction of extended straight lines
nd edges. To include curves and shapes of limited spatial
xtensions, the ridgelet transform is applied to a block decom-
osition of the image, as described elsewhere.11 In practice,
he ridgelet transform is computed by applying a 1-D wavelet
ransform to the discrete radon transform of a single-image
lock.11 Here, we use the 1-D analogue of the wavelet trans-
orm described in Sec. 2.2.2.

.2.4 Denoising
or MR transform denoising, the standard soft- and hard-

hresholding schemes were applied for the detail
oefficients.12,13 Let Wk,l

j denote the detail coefficients at scale
j obtained from the 2-D MR transform, and let �̃ j

0.6745−1�median��Wk,l
1 ���nj be the robust estimator of

he noise standard deviation �SD� at wavelet scale j, where nj
s the SD of standard, normally distributed white noise at
cale j. The scale-adapted threshold � j =	��̃ j is used for �1�
ard-thresholding: Wk,l

J ←Wk,l
j � ��Wk,l

j ��� j�; or �2� soft-
hresholding: Wk,l

J ← �Wk,l
j −sgn�Wk,l

j ��� j�� ��Wk,l
j ��� j�,

here 	 is a denoising parameter provided by the user �usu-
lly 2 to 5�. Boolean expressions indicated by parentheses � �
re evaluated at each pixel �k , l�, with a value of 1 if the
ontained relation is true, and zero otherwise. Finally,
he denoised image Dk,l is computed as the sum of the
oarsest scale Sk,l

J and the thresholded detail coefficients Wk,l
j :

k,l=Sk,l
J +�JWk,l

j .

.3 Filament Detection
ctin filaments are detected by thresholding the denoised im-

ges. The threshold value is computed from the background
ntensity statistics of the denoised image as �+3�SD with
ean value � and standard deviation SD. Detected filament

tructures are stored as a binary-valued image sequence It
t=0. . .Nframes−1� for subsequent spatiotemporal segmenta-
ion. The signal-to-noise ratio �SNR� of denoised images is
efined using these binary images. “Signal pixels” �pixel
alue=1 in the binary image� in the denoised image yield the
verage signal pixel value �S, and the background �noise�
ixels �value=0 in the binary image� yield the noise param-
ters �N and �N �mean, SD�. Finally, the image SNR is de-
ned as ��S−�N���N

−1.

.4 Segmentation
igure 1 shows representative images of the in vitro actin-
yosin motility assay. The segmentation of individual trajec-

ories is complicated by several trajectory crossings, as indi-
ated by the arrows. In three dimensions �space+time�, these
rajectories form widely connected structures.

The 3-D segmentation procedure we developed here is ap-
lied to the binary-valued image sequences obtained by
hresholding, as described above, and consists of three steps:
1� initial labeling of 3-D connected structures, �2� detection
f trajectory crossings, entries, and exits, and �3� final relabel-
ng of individual filament trajectories.
ournal of Biomedical Optics 054018-
2.4.1 Initial labeling
For segmentation, we consider the “six neighborhood” in
space and time, i.e., the neighborhood of each pixel �i , j ,k� in
the image sequence is defined as the set of pixels
��i
1, j ,k� , �i , j
1,k� , �i , j ,k
1��, while border pixels are
ignored. In two dimensions, the corresponding “four neigh-
borhood” is used. The initial labeling identifies 3-D connected
structures in the binary-valued sequence as sets of positively
valued pixels for which each member is connected to at least
one other member. Due to multiple crossings, these 3-D struc-
tures often contain the trajectories of numerous individual ac-
tin filaments.

2.4.2 Detection of trajectory crossings
We developed the following algorithm to detect trajectory
crossings, entries, and exits: Consider two subsequent image
frames where a putative crossing takes place. It is observed
that, within these frames, noncrossing trajectories will yield
multiple 2-D segments in each frame and multiple segments
when 3-D segmentation is applied. A trajectory crossing, how-
ever, connects 2-D isolated structures in time and therefore
yields a single 3-D �XYT� connected structure. This situation
is illustrated in Fig. 2, where a typical filament crossing in a
reduced two-image stack is shown. Figure 2�a� shows two
consecutive frames of an image sequence. In the lower half of
the images, the beginning of a trajectory crossing can be ob-
served. After 2-D segmentation, binary-valued images are ob-
tained, and filaments appear as gray structures in Figs. 2�b�
and 2�c�. The 2-D isolated regions R1 and R2 in It �each be-
longs to a different actin filament� merge to form the 2-D
isolated region R3 in frame It+1, while the complete set of
regions R1,2,3 forms a single 3-D connected structure. Non-
crossing trajectories yield isolated 3-D structures, as in the
case of the remaining trajectories in Fig. 2. We will call a 3-D
connected structure that extends over more than one frame an
“extended segment.” Whether a 3-D segment is extended or
not is easily checked by looking at the set of time coordinates

Fig. 1 In vitro actin-myosin motility assay. The image sequence shows
snapshots of fluorescently labeled actin filaments moving over a
heavy meromyosin �HMM� coated surface. Segmentation of single-
filament trajectories is complicated by multiple crossings of actin fila-
ments �indicated by arrows�, leading to widely connected spatiotem-
poral structures. Furthermore, actin filaments often change their shape
and direction of motion.
September/October 2008 � Vol. 13�5�3
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f the pixels forming the segment. In the presence of multiple
laments, and given the possibility of crossings of more than

wo filaments, crossings must be identified by comparison
ith all possible 2-D segment pairs. Furthermore, new trajec-

ories entering the imaging field and trajectories that exit must
e identified. Therefore, for each 2-D region Ri in frame It, we
heck whether it has a connected region, a “successor,” in the
ubsequent frame It+1 as follows: we perform a 3-D region
abeling of a reduced two-frame stack that consists of only
egion Ri in one frame and It+1 in a second frame. If the result
hows no extended objects, Ri has no successor and the region
s classified as a trajectory entry/exit. A formal description of
he algorithm is given by:

1. For each of the frames It �t=0. . .Nframes−2� of the
inary-valued image sequence, perform 2-D region labeling to
ield a set of 2-D connected regions �R1 ,R2 , . . . ,Rn�t.

2. Check if Ri or Rj represents a trajectory entry or exit. If
o, skip the pair and proceed with the next pair of regions.

3. For each pair of regions �Ri ,Rj�t, get a new frame F0
hat contains only regions Ri and Rj, and compose a reduced
wo-frame stack �F0 ,F1�, F1= It+1.

4. Perform a 3-D region labeling of the reduced stack.
5. Determine the number Ne of extended 3-D segments. If

e=2, regions Ri and Rj do not merge, and thus, no trajectory
rossing occurs. If Ne=1, a crossing is detected and the cor-
esponding segment in frame I will be set to zero.

ig. 2 �a, b� In these two consecutive frames of an image sequence,
he crossing of two actin filaments is shown �lower half� while all
ther filaments are moving freely. �c� 2-D segmentation: filament de-

ection in all frames yields a binary-valued sequence. Region labeling
f 3-D connected structures provides an initial trajectory segmenta-

ion, including all trajectory crossing events. The crossing of filament
egions R1 and R2 �in frame It� produces a single connected region R3
n frame It+1. All noncrossing trajectories, in contrast, show a one-to-
ne mapping between the frames. This feature is detected by testing
-D connectivity in a reduced stack for all pairs of regions �for details,
ee the text�.
t+1

ournal of Biomedical Optics 054018-
6. Run the algorithm backwards in time to detect “split-
ting” trajectories.
Given the experimental details described in Sec. 2, this part of
the algorithm has an average execution time of less than
30 seconds.

2.4.3 Individual filament trajectories
Application of the aforementioned procedure detects single-
frame regions where filament trajectories cross and split. Due
to the length of the actin filaments used here, and given all
possible crossing angles, crossing events often include more
than one but usually not more than five frames. Since the kind
of molecular interaction in these regions is not well defined,
i.e., an isolated actin-myosin interaction cannot be assumed,
these regions are excluded from the velocity statistics. Thus,
the obtained velocity measures give a more valid representa-
tion of the process under observation. So far, all trajectory
merging and splitting points have been deleted. To also ex-
clude the remaining short segments to which more than one
actin filament contribute, and where no well-defined actin-
myosin interaction takes place, we delete all trajectories
shorter than five frames. The resulting binary image sequence
is relabeled to obtain unique integer labels for individual fila-
ment trajectories that can be mapped to the optical flow vector
field.

2.4.4 Optical flow and velocity computation
The optical flow vector field and the corresponding velocity
measures were computed via the 3-D structure tensor ap-
proach as previously described.6 Briefly, at each pixel loca-
tion, the fluorescence intensity gradient vector is obtained by
convolution of the image sequence with a 3-D directional de-
rivative filter. For efficient computation, each of these 3D fil-
ters is linearly separated in a set of three 1-D filters. Here, the
rotation-invariance-optimized 5-tab Sobel and binomial filters
are used.14 Let D and B denote 1-D Sobel and binomial filters,
respectively, and let �i , j ,k� denote any permutation of the
three data coordinates �x ,y , t�. The directional derivative �tI
of the image sequence I in direction i is then given by con-
volution �denoted by *� of I with three 1-D filters
�iI=Di*Bj*Bk* I, i.e., derivation in the desired direction i
and smoothing in the remaining directions j and k.14 At each
pixel, the three directional derivatives are combined to yield
the gradient vector �I= ��xI ,�yI ,�tI�T. As the gradient is com-
puted at each pixel, each of the three gradient components
�xI ,�yI ,�tI represents a data set of the same size as the origi-
nal image sequence. To obtain a local measure of 3-D oriented
structures in the image sequence, the structure tensor J is
computed by averaging the dyadic product of the gradient
vector with itself in a neighborhood of each pixel:
J=G* ��I � �I�.14 Here, G represents a Gaussian averaging
kernel implemented by a discrete 7-tab binomial filter mask.
The 3�3 structure tensor contains six independent compo-
nents Jxx ,Jyy ,Jtt ,Jxy ,Jxt ,Jyt, where each component Jkl is the
locally averaged, pointwise product of two directional deriva-
tives Jkl=G* ��kI�lI�. Thus, a structure tensor can be con-
structed for each pixel in the image sequence. To implement
Gaussian averaging �the filter G� for each of these six inde-
pendent tensor components, a linearly separable convolution
with three 1-D binomial filters must be carried out.
September/October 2008 � Vol. 13�5�4
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Finally, the 3�3 structure tensor J is obtained and diago-
alized at each pixel. From the standard eigen-decomposition
=M�M−1, three real eigenvalues �l=�ll and the corre-
ponding eigenvectors vl= �M1l ,M2l ,M3l�T are extracted. Af-
er reordering the eigenvalues �1
�2
�3 and their corre-
ponding eigenvectors, the optical flow vector f = �fx , fy� is
omputed from the eigenvector v3= �M13,M23,M33� to the
mallest eigenvalue �3 as follows: f = �M13 /M33,M23 /M33�.
ctually, the optical flow vector is only calculated if the rank
f the structure tensor equals 2 to avoid the well-known ap-
rture problem.15 In practice, this is evaluated using the quan-
ities “coherency” �coh� and “corner” �cor�, derived
lsewhere,14 and defined using the ordered eigenvalues, as
oh= ��1−�3 /�1+�3�2, cor=coh− ��1−�2 /�1+�2�2. The
ptical flow is computed and stored for further analysis only if
coh�0.9�∧ �cor�0.8�. The use of these measures provides
noise-robust velocity estimation and allows the application

f the algorithm to the raw fluorescence sequences. The x and
components of the filament velocity vectors are stored as

mage sequences to map their locations to the segmented tra-
ectories. Because a structure tensor is defined at each pixel,
he number of optical flow vectors obtained could, theoreti-
ally, equal the number of pixels in the image sequence.

Due to the aperture problem, which is always present in
ptical flow estimation, valid estimates are computed only for
he subset of pixels that fulfills the conditions defined above.
owever, the number of velocity estimates for our image se-
uences �256�256�100� is in the range of 103 to 105. It is
mportant to note that the number of velocity estimates does
ot equal the number of filaments, but instead, the number of
ixels where the optical flow vector can be estimated reliably.
sually this algorithm is applied to fluorescence image se-
uences without any knowledge about filament localizations
nd provides a velocity distribution related to the entire image
equence. Using this conventional algorithm, individual ve-
ocities cannot be mapped to filaments—a mapping is
chieved only if filaments and their individual trajectories are
ound by an additional segmentation procedure, as presented
bove.

Implementation of the discrete curvelet transform is based
n previously published algorithms.16 Image processing code
as written in Java and IDL6.0 �RSI, Boulder, Colorado�.

mage sequence analysis was carried out on a PC, Intel Dual
ore, 2�2.13 GHz, 2 GB RAM.

Results and Discussion
.1 Image Sequence Denoising
e evaluated the denoising properties of the 2-D discrete
avelet transform and the 2-D discrete curvelet transform.
oth algorithms were applied to each individual frame of 10
ifferent input sequences �256 px�256 px�100 frames�.
he amount of noise reduction was quantified with the SNR
s defined above. The average SNR of the raw image se-
uences was 	3. While curvelet denoising increased the SNR
o almost 4 �3.98
0.14, mean
SEM, n=10�, the wavelet-
ased algorithm led to an SNR increase to more than 6
6.33
0.26, mean
SEM, n=10�. This result may suggest
he conclusion that wavelet denoising is more efficient for
oise reduction, but we observed that, although both trans-
ournal of Biomedical Optics 054018-
forms significantly reduced noise, their respective results in
terms of denoised filament shapes also differed in an impor-
tant way. This difference is illustrated in Fig. 3. In Fig. 3�a�, a
detail of a representative raw image with several fluorescent
actin filaments is shown. The white line indicates a profile
along the axis of a single filament, and the measured fluores-
cence intensity on this line is shown below �Fig. 3�d��. The
1-D intensity profile �Fig. 3�d�� illustrates why the application
of a simple threshold operation cannot be carried out and
often leads to fragmentation of the filament contour. Figures
3�b�, 3�e�, and 3�h� show the results obtained with wavelet
denoising �soft-thresholding, J=4, 	=2.5�. The background
noise level was significantly reduced, and thus, filament de-
tection was facilitated. As observed in Fig. 3�e�, however, the
ragged intensity profile along the filament “ridge” was repro-
duced by the transform, though with less noise. Yet, due to the
marked decrease in background intensity SD, a detection
threshold can be chosen with less risk of filament fragmenta-
tion compared to the case of raw images. In the right column
�Figs. 3�c�, 3�e�, and 3�i��, a representative result obtained
with the curvelet-based denoising algorithm is shown �hard-
thresholding, J=4, 	=5�. Although background fluctuations
are not so effectively suppressed compared with the wavelet
transform, clearly the filament shape is reconstructed more
reliably by curvelet basis functions. The 1-D plot �Fig. 3�f��
shows that the intensity profile on the filament ridge is less
ragged and has a larger amplitude than the profile of the
wavelet denoised image in Fig. 3�e�. For the wavelet-based
procedure, a further increase in the denoising parameter 	, a
change in the number of decomposition levels J, or the use of
hard-thresholding did not change the qualitative characteris-
tics of these results �not shown�. In total, both transforms
facilitated filament detection, but the curvelet-based approach
showed a better performance in the case of curved, extended
filament shapes. The relative effect of both algorithms on
background noise and filament restoration is visualized in
Figs. 3�g�–3�i�. All 3-D surface representations use the same
color table as shown in Fig. 3�c� and represent a region
around the white line drawn in Fig. 3�a�. Based on these re-
sults, we subsequently employed the curvelet-based denoising
algorithm for image sequence preprocessing prior to the
following analysis steps.

3.2 Segmentation
Curvelet denoised image sequences were binarized by apply-
ing a threshold, and an initial integer labeling of connected
regions was carried out. The volume of these trajectories rela-
tive to the total pixel volume was 	1.4%
�92261
13443 px, mean
SD�. The initial number of tra-
jectories showed a wide range of values �19 to 390� due to the
fact that small regions in single frames were also recognized
as potential trajectories. These regions often comprised fewer
than five pixels and could have been removed easily by mor-
phological operators �e.g., erosion�. Our strategy here, how-
ever, was to negatively select these regions by a temporal
criterium, i.e., trajectories had to span at least five frames.
Since this step is already part of the crossing trajectory detec-
tion �as detailed in Sec. 2�, no further computational load was
imposed, and the detected filament shapes were not further
influenced by any operators. After detection and deletion of
September/October 2008 � Vol. 13�5�5
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rajectory crossing points, the average trajectory volume was
educed to 	1.1% of the total pixel volume
72474
10917 px, mean
SD�. The amount of reduction
epended on the density of the traveling filaments, because
his determines the frequency of trajectory crossings. This
nalysis also shows that, given the conditions used here, a
ignificant amount of the total trajectory volume �	20% �
onsisted of actin-actin crossings, a situation of rather unclear
olecular interactions. After complete segmentation and rela-

eling, the final number of trajectories �range of 26 to 78� was
ore uniform than the initial counting because noise-related

etections were reliably deleted. The maximum value of this
ange was produced by a single experiment with a high den-
ity of actin filaments. Ignoring this experiment, the range
as 26 to 42 trajectories per image sequence. It should be
oted that the final number of trajectories generally tends to
e lower than the initial counting; however, in the case of a
ew long trajectories with several crossings, the final trajec-
ory count can exceed the initial number. Likewise, the trajec-
ory count cannot be interpreted as the actual number of dif-
erent actin filaments present in the experiment—an important

ig. 3 Denoising and object restoration: �a� Detail of an unprocessed
easured along the white line indicated in panel �a�. �b� Wavelet deno

c� Curvelet denoising: background noise is not as efficiently reduced
ntensity profiles measured along the line shown in �a�. Wavelet denoi
lament shape, while curvelet denoising �f� stabilizes the intensity
intensity�. �g�–�i� Combined effects of background noise reduction and
s in �a�–�c��. �Color online only�.
ournal of Biomedical Optics 054018-
fact to remember for statistical analyses. Since filaments also
leave and re-enter the imaging field, the trajectory count only
provides a coarse estimate of the actual filament count.

3.3 Optical Flow Mapping
For each image sequence, the optical flow vector field was
computed, and using the appropriate scaling factors, the local
velocity vectors were determined. Velocity vectors were ob-
tained only at locations where the optical flow computation
was reliable, as detailed in Sec. 2. Taking the intersection of
the pixel sets where �1� a uniquely labeled actin filament tra-
jectory existed, and �2� a velocity vector was obtained, we
finally obtained a mapping of velocity vectors to trajectories
and compared their respective distributions. Figure 4�a� shows
a 3-D representation of the segmented filament trajectories of
a single experiment. The velocity of a trajectory segment cor-
responds to the local slope of the trajectory with respect to the
X-Y plane. Different slopes �absolute velocities� and direc-
tions of motion can be observed. In particular, straight mo-
tion, sharp turns, and even spiralling movements can be seen.

with several actin filaments. Profile plots shown in �d�, �e�, and �f� are
age showing a strong reduction of background intensity fluctuations.

b�, but the elongated filament shape is restored more reliably. �d�–�f�
reduces background noise but also enhances the local extrema of the
along the filament ridge. Note the different scalings of the y axes
nt shape restoration as a 3-D surface representation �same color table
image
ised im
as in �

sing �e�
profile
filame
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igure 4�b� shows several single-trajectory velocity distribu-
ions. For better visibility, only half of the trajectory distribu-
ions �even integer labels� are shown, and all histograms are
hown as cubic B-spline interpolated continuous curves. By
nalyzing the respective contributions of different trajectories,
t can be observed that some trajectories display a broad ve-
ocity distribution while others have a sharp peak and contrib-
te solely to a narrow velocity band. For a specific distribu-
ion of interest, the velocity values can be mapped back to
heir respective spatial and temporal positions. Previously
sed methods pooled all velocity values in a global velocity
istogram, as shown in Fig. 4�c�. By comparing Figs. 4�b� and
�c�, it can be seen that the contributions of single trajectories
o the global histogram cannot be anticipated.

.4 Uniform Motion and Histogram Reconstruction
t is a well-known phenomenon that actin filaments display
onuniform patterns of motion, and eventually they can get
tuck due to imperfections in the HMM surface and to the
ormation of strong binding states. This can lead to either
omplete or partial immobility of these filaments. Partial im-
obility can occur in at least two ways: first, a part of the
lament may remain tightly bound to the underlying myosin
hile the remaining part moves erratically around this fixed

ig. 4 �a� 3-D isosurface reconstruction of detected spatiotemporal
ctin filament trajectories. Filament motions are complex and include
traight lines, sharp turns, and spiraling movements. �b� After the map-
ing of the optical flow vector field derived from the local structure

ensor, each trajectory contributes a single velocity distribution. For
etter visualization, only half of these distributions are shown. Some

rajectories contribute only to a single peak in the global velocity
istribution �c�, while others have a broad distribution of velocities.
istributions are shown as cubic B-spline interpolated histograms. �c�
ooled distribution of absolute velocities and the underlying histo-
ram �bars�.
ournal of Biomedical Optics 054018-
point, second, an evenly moving filament may suddenly get
stuck and either remain immobile or resume its trajectory �a
“stop and go” pattern�. In any case, these filaments contribute
erroneous and mostly low velocities to the histogram. Figure
5 shows velocity time courses of two filament trajectories.
Each data point is obtained by averaging the absolute veloci-
ties corresponding to a filament in a given image frame. Since
there are numerous optical flow vectors for each structure, we
present the velocity in a given frame as mean
SD values.
The trajectory denoted as “moving filament” �grey curve� rep-
resents an evenly moving actin molecule with a quasi-
constant sliding velocity. However, the other filament �stop
and go, black curve� does not show significant motion for
almost 30 frames, except for a small displacement near frame
15, before it eventually starts to move with the typical average
sliding velocity of 6 �m /s, interrupted by another short de-
celeration around frame 43. For evenly moving filaments, per-
turbations due to stop-and-go phenomena, including several
acceleration and deceleration phases, that are caused by geo-
metrical and biochemical inhomogeneities of the preparation
can be considered minimal. Thus, to distinguish different ex-
perimental conditions, it is especially interesting to identify
evenly moving objects.

Different ways of identifying evenly moving filaments can
be considered. We propose a straightforward way that uses the
SD of the time series formed by the mean velocities �filled
circles in Fig. 5�. Evenly moving objects are identified by
velocity values with a low SD, here SD�1.5 �m /s. Figure 6
illustrates the difference between the velocity distribution, in-
cluding all found trajectories �Fig. 6�a��, and the distribution
computed from the same data set, but includes only evenly
moving filaments with a narrow velocity profile as defined by
the SD �Fig. 6�b��. While both distributions show the same
main peak at 	6 �m /s, the full distribution in Fig. 6�a� has a
broad tail extending to the left with two smaller peaks at
lower velocities. An examination of both distributions shows
that these peaks correspond to trajectories with broad velocity

Fig. 5 By tracking the mean velocity of individual filaments across the
image sequence, velocity time courses are obtained. Here, some fila-
ments show a relatively constant sliding velocity �moving filament,
grey trace�, while others get stuck due to imperfections in the myosin
surface and the formation of strong binding states. In that case, fila-
ments can display a “stop and go” motion pattern �black trace�. Inclu-
sion of these trajectories can lead to broad velocity distributions, as
shown in Fig. 4�b� and can eventually distort the pooled velocity
statistics.
September/October 2008 � Vol. 13�5�7
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rofiles and not to evenly moving filaments traveling at a
onstant but lower velocity. Because the selection criterion is
ased on the shape of the velocity distribution, there is no bias
gainst high or low velocities.

Motility assays are often used to investigate the influence
f regulator proteins on motor protein interactions by recon-
tituting actin and/or myosin with these regulator molecules.
ere, we present experimental data obtained from a motility

ssay reconstituted with the sNC-2 fragment of the myosin
inding protein-C �MyBP-C�. Figure 7 shows velocity distri-
utions obtained under both experimental conditions, i.e.,
rom assays in the presence of 110 �g /ml sNC-2 �grey bars
nd curves�, and control assays without the regulator �black
ars and curves�. Five data sets were analyzed for each con-
ition, each corresponding to a different flow cell. Figure 7�a�
hows the distributions obtained by pooling the velocity val-
es of all detected filament trajectories, and Fig. 7�b� repre-
ents the distributions obtained by selecting only evenly mov-
ng filaments. Due to the different number of values obtained
nder both conditions, area-normalized distributions are
hown. The analysis of filaments with a quasi-constant sliding
elocity leads to a more pronounced separation of both distri-

ig. 6 Pooled velocity distributions with and without the selection of
uasi-constant sliding velocities. The global velocity distribution of

he same motility assay experiment computed using two selection cri-
eria. �a� All individual filament trajectories are included in the analy-
is. The resulting velocity distribution shows a peak around 6 �m/s,
ut also a broad tail toward slower velocities with additional peaks.
b� Selecting trajectories with quasi-constant sliding velocity �SD

1.5 �m/s�, we derive a narrow velocity distribution with a clear
eak at 6 �m/s. The smaller peaks in panel �a� were derived largely
rom contributions of trajectories with a broad velocity distribution
ather than from constantly moving slow filaments.
ournal of Biomedical Optics 054018-
butions. The main velocity peak of the control experiment
�6 �m /s, black curve� remains unaltered by the procedure,
while the tendency toward slower sliding velocities under the
influence of sNC-2 is enhanced. The 6 �m /s peak disappears
under the action of sNC-2 without the appearance of another
clear peak velocity, thus, the resulting distribution in Fig. 7�b�
resembles a monotonically decaying curve. Although it is
known from other studies that MyBP-C reduces the mean
sliding velocity of actin by inhibiting the actomyosin ATPase
activity,17 the resulting velocity distributions have not been
analyzed yet. Here, we show that while isolated actin-HMM
interaction produces a preferred sliding velocity of 	6 �m /s,
an additional interaction with the sNC-2 fragment of MyBP-C
leads to a decaying, broad velocity distribution—which, how-
ever, is composed of relatively narrow sliding velocity distri-
butions for individual filaments �SD�1.5 �m /s�. Method-
ologically, this result can be obtained only by mapping sliding
velocities to individual filaments and their trajectories.

3.5 Directed Motion
To reliably mimic the intracellular geometry, the orientational
coherency of the myosin surface and the oriented motion of

Fig. 7 Influence of the sNC-2 fragment of the regulating protein
MyBP-C on actin sliding velocity in vitro. Global velocity distributions
are derived from 5 flow cells for each condition, i.e., in the presence
�grey� or absence �control, grey� of MyBP-C. �a� Including all filament
trajectories, two broad and partially overlapping velocity distributions
are derived. �b� By selecting quasi-constantly moving filaments �SD
�1.5 �m/s�, both distributions separate more clearly. In the control
case, the main velocity peak at 6 �m/s is pronounced, while evenly
moving filaments in the regulated assay are grouped around lower
sliding velocities due to the inhibiting effect of MyBP-C on
actomyosin-ATPase kinetics.
September/October 2008 � Vol. 13�5�8
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ctin filaments have become important aspects in advanced
otility assay designs. Using the method presented here, we

btained a measure of directionality of motion for a given
xperimental setup and also for each filament. Actin filament
rajectories from our experiments obtained with a modified

otility assay are analyzed in terms of their directional com-
onents. In this setup, the in vitro actin-myosin motility assay
as not carried out using randomly oriented HMM arrays on
surface, but using instead myosin extracted directly from

ingle skeletal muscle fibers. This latter preparation allegedly
ields a pattern of oriented myosin heads, and as a conse-
uence, induces directed motion of actin molecules. We used
ur method to test the directed movement of actin filaments in
his assay. The results are presented in Fig. 8, where the 2-D
elocity distributions of two representative experiments are
hown as surface plots. Figure 8�a� shows the cubic B-spline
nterpolated velocity histogram of actin filaments moving
ver an HMM-coated surface. Other than the central peak at
ero velocity, an almost circular distribution of x and y ve-
ocities is observed. Results obtained with the fiber extraction

ethod, as shown in Fig. 8�b�, yields a highly elongated dis-
ribution of velocity vectors that have an almost vanishing x
omponent, and y velocities that peak at approximately
12 �m /s. These results quantify directed filament motions

n this kind of assay.

Conclusions
olecular assays investigating molecular motion and interac-

ion of motor proteins are important tools in biomedical re-
earch. For several reasons, quantitative and semiautomated
ethods for data analysis are of increasing importance: large

ata sets can be obtained in shorter periods of time thanks to
dvances in modern imaging technology; even subtle differ-
nces in results obtained under different experimental condi-
ions must be reliably estimated; and new experimental de-
igns must be evaluated.

Image preprocessing for noise reduction and object resto-
ation can significantly increase the performance of these
ethods. The approach presented here is based on the discrete

urvelet transform and offers several advantages over the pre-
iously presented algorithm based on anisotropic diffusion
ltering.18 The curvelet-based algorithm is a one-step proce-
ure with a faster execution time and has fewer parameters

ig. 8 2-D velocity distributions showing x and y components of the
elocity vector. �a� In the HMM-based motility assay, filaments move
n all directions as shown in the almost circular distribution of the
elocity vector distribution. �b� When myosin is extracted from single
keletal muscle fibers, filaments move almost exclusively in the y
irection.
ournal of Biomedical Optics 054018-
that need adjustment �e.g., number of iterations, integration
time interval, parameters for the edge-stopping function�. On
the other hand, an optimized anisotropic diffusion filtering
also provides excellent results for this application. Instead of
tracking single particles, we performed object detection in all
frames independently, followed by a novel segmentation
scheme working on the spatiotemporal 3-D trajectories. Using
structure tensor-based optical flow estimation, we avoided
problems such as bias against curved and circular motions
�centroid tracking� or difficulties with rapidly changing object
shapes �cross-correlation tracking�. The combination of these
methods yielded a highly user-independent algorithm and al-
lowed a more detailed analysis of experimental results,
because all contributions of single trajectories to the global
velocity distribution were readily obtained.

To analyze functional relationships in the complex molecu-
lar assemblies that motor proteins form with numerous regu-
lating proteins, the in vitro motility assay represents a flexible
experimental platform where situations of variable complexity
can be studied. Thus, in the case of muscle contraction, the
basic constituents actin and myosin can successively be re-
constituted with their molecular interaction partners, e.g.,
myosin binding proteins, tropomyosin and troponin, to ap-
proximate the in situ situation. We presented data obtained in
the presence of the sNC-2 fragment of MyBP-C. MyBP-C
binds to myosin and to titin and is an important regulator of
sarcomeric structure and contractility in skeletal and cardiac
muscle. In human heart muscle, mutations are associated with
hypertrophic cardiomyopathy.19 MyBP-C’s inhibiting function
on actomyosin-ATPase activity has been described as a mo-
lecular brake on the actin-myosin motor.19 With our approach,
we analysed the influence of the sNC-2 peptide on cross-
bridge kinetics in the case of individual actin filaments. We
were able to show that the sNC-2 peptide itself exerts a
“brake” function on the skeletal muscle-derived actin-myosin
system, and the effect was produced in the presence of only
these three proteins. Thus, neither titin nor other regulating
proteins are necessary to mediate the observed effect. In par-
ticular, the peaked velocity distribution of sliding actin fila-
ments in the absence of sNC-2 was replaced by a monoto-
nously decaying distribution, and we know that in both cases
the data were derived from evenly moving filaments with only
a quasi-constant sliding velocity. Using this approach, it will
be interesting to study other MyBP-C peptides or mutation
products to assess their ability to influence actomyosin-
ATPase activity in skeletal and cardiac muscle, and to relate
these molecular-scale in vitro results to observed phenotypes,
e.g., the occurrence of cardiomyopathies. Likewise, the action
of the actin-binding proteins tropomyosin and troponin on
acto-myosin kinetics offers an exciting perspective to better
understand muscle contractility. Finally, it should be noted
that in vitro protein reconstitution can lead to a mixed popu-
lation of reconstituted and nonreconstituted molecules. Only
by analyzing individual filament trajectories can the subpopu-
lations be separated for statistical analysis.

The presented algorithm was designed especially for the
application to motility assay data, as described. This experi-
mental setup presented some special features not present in all
situations where tracking and motion determination are car-
ried out. First, we worked with a 2-D geometry due to the
surface-bound myosin molecules. Thus, our image sequences
September/October 2008 � Vol. 13�5�9
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id not represent 3-D to 2-D intensity projections, as is the
ase with microscopy images taken from whole cells where
esicles or fluorescently labeled proteins are routinely
racked. In the latter case, the deletion of crossing points can-
ot be carried out using the reasoning presented here, because
ny trajectory crossing in a given image plane could result
rom projection. For these cases, interesting new methods that
ake into account the geometry of the studied cell have been
eveloped.20 Second, actin filaments are extended, flexible
tructures with a length of up to 8 �m. The resulting shape
ariations provoke computational challenges for the tracking
nd identification of an individual filament across images. In
he future, a model-based analysis of actin motility that is
ased on structural and biochemical data and takes into ac-
ount the physical properties of the measurement setup may
park new approaches for image sequence analysis. Similar
pproaches applied for microtubule dynamics have already
hown promising results.21 However, to obtain more informa-
ion on actin-myosin interactions in vitro, the presented
ethod may prove to be a useful contribution.
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