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Abstract. Near-infrared spectroscopy �NIRS� can be employed to in-
vestigate brain activities associated with regional changes of the oxy-
and deoxyhemoglobin concentration by measuring the absorption of
near-infrared light through the intact skull. NIRS is regarded as a
promising neuroimaging modality thanks to its excellent temporal res-
olution and flexibility for routine monitoring. Recently, the general
linear model �GLM�, which is a standard method for functional MRI
�fMRI� analysis, has been employed for quantitative analysis of NIRS
data. However, the GLM often fails in NIRS when there exists an
unknown global trend due to breathing, cardiac, vasomotion, or other
experimental errors. We propose a wavelet minimum description
length �Wavelet-MDL� detrending algorithm to overcome this prob-
lem. Specifically, the wavelet transform is applied to decompose NIRS
measurements into global trends, hemodynamic signals, and uncorre-
lated noise components at distinct scales. The minimum description
length �MDL� principle plays an important role in preventing over- or
underfitting and facilitates optimal model order selection for the glo-
bal trend estimate. Experimental results demonstrate that the new de-
trending algorithm outperforms the conventional approaches. © 2009
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3127204�
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detrending; minimum description length principle.
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Introduction

ear-infrared �NIR� light, with a wavelength between 650 nm
nd 950 nm, is capable of penetrating deeply through biologi-
al tissues. This is because NIR light is weakly absorbed by
iological chromophores such as hemoglobin, myoglobin, and
ytochrome c oxidase.1 The relatively deep penetration depth
f NIR light in the human brain makes it possible to measure
rain activities associated with regional changes of oxy- and
eoxy hemoglobin concentrations.2 This spectroscopic tech-
ique using NIR light for monitoring brain activities is known
s functional near-infrared spectroscopy �NIRS�.3

NIRS is regarded as a promising neuroimaging modality
wing to a number of advantages over other neuroimaging
odalities such as positron emission tomography �PET� and

unctional magnetic resonance imaging �fMRI�.3 For example,
here is no theoretical limitation on temporal resolution �while
f course there are practical limits arising from, for example,
he speed of the analog-to-digital converter�. The temporal
esolution of NIRS, therefore, is sufficient to investigate he-
odynamic responses due to brain activations as well as other

ast varying physiological conditions. Furthermore, NIRS
oes not require that the subject lie on his/her back in a con-
ned environment during experiments, thereby making it pos-
ible to investigate subjects that would normally be difficult to
xamine using fMRI or PET, including infants, children, and
ournal of Biomedical Optics 034004-
patients with psychological issues. Moreover, NIRS is highly
flexible, portable, and relatively low cost.

However, there remain several theoretical and practical
difficulties for quantitative analysis of NIRS data. For ex-
ample, the differential path length factor �DPF�4 depends on
various parameters such as the age of the subject,5 wavelength
of the imaging system,6 and position within a brain.7 Time-
resolved or frequency domain NIRS equipment may be used
to estimate the mean optical path length; however, continuous
wave �CW� systems are more commonly used due to several
practical concerns such as cost of implementation.7 Other
subject-dependent parameters such as depth of the skull and
optical properties of hair may influence measurement of opti-
cal parameters.

Recently, many researchers have been developing statisti-
cal analysis toolboxes for NIRS based on the generalized lin-
ear model �GLM�.8–11 The GLM is a statistical linear model
that explains data as a linear combination of explanatory vari-
ables plus an error term. Since the GLM analysis relies on the
temporal variational pattern of signals, it is more robust to
differential path length factor �DPF� variation, optical scatter-
ing, or poor contact. Furthermore, statistical parameter map-
ping �SPM� using the GLM is a standard method for analyz-
ing fMRI data,12 and thus integration of NIRS and fMRI

1083-3668/2009/14�3�/034004/13/$25.00 © 2009 SPIE
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ithin the same SPM framework may offer the advantage of
odeling both types of data in the same mathematical frame-
ork to make inferences. Based on these observations, we
ave developed a new public domain statistical toolbox called
IRS-SPM.11 By incorporating the GLM with the p-value

alculation using Sun’s tube formula,13,14 NIRS-SPM not only
nables calculation of activation maps of oxy-, deoxy, and
otal hemoglobin but also allows for super resolution localiza-
ion, which is not possible using conventional analysis tools.11

Note that the GLM often fails when there exist global
rifts in the NIRS measurements due to various reasons, such
s subject movement, blood pressure variation, and instru-
ental instability. This global trend causes a low-frequency

ias in NIRS measurements. Moreover, the amplitude of the
lobal drift is often comparable to that of the signal from
rain activation, which degrades the signal-to-noise ratio. In
rder to eliminate the global trend and thus improve the
ignal-to-noise ratio, high-pass filtering is often used in
ractice.15 However, the signals from brain activations are
ften degraded by a simple filtering, since the frequency re-
ponse of the hemodynamic response can also be affected
uring high-pass filtering.

In order to overcome this problem, this paper investigates
wavelet-based detrending algorithm for fMRI16 and adapts it

or NIRS applications. Specifically, the wavelet transform was
pplied to decompose NIRS measurements into global trends,
emodynamic signals, and noise components at distinct
cales. However, unlike fMRI data, the NIRS time series is
onsiderably long due to the fast sampling frequency. Hence,
e observed that direct application of the model order selec-

ion rule in Ref. 16 leads to erroneous results in NIRS. To
emedy this problem, the minimum description length �MDL�
rinciple with universal prior of integers17 is found to be suit-
ble for the NIRS time series, as it avoids over- and underfit-
ing of the global trend estimate, thanks to the asymptotic
ptimality of MDL. Experimental results confirm that the new
etrending algorithm outperforms the conventional ap-
roaches. We have therefore incorporated the proposed
avelet-MDL detrending algorithms within our NIRS-SPM

ramework, which will soon be publicly available at the web-
ite of the authors �http://bisp.kaist.ac.kr/NIRS-SPM�. We ob-
erved that the Wavelet-MDL detrending method within
IRS-SPM provides more specific localizations of the neu-

onal activation than the standard high-pass filtering approach
ased on the discrete cosine transform �DCT�.

NIRS Measurement Model

he modified Beer-Lambert law �MBLL�, which describes
ptical attenuation in a highly scattering medium such as bio-
ogical tissue,4 provides a relation between raw optical density
OD� data and changes of chromophore concentrations. Ac-
ording to the MBLL, the change in OD�� ,r , t� for the wave-
ength � at the cerebral cortex position r�R3 at time t due to
he Nc number of chromophore concentration changes
�c�i��r , t��Nc is described as
i=1

ournal of Biomedical Optics 034004-
�OD��,r,t� = − ln� IF

Io
� = �

i=1

Nc

ai����c�i��r,t�d�r�l�r� , �1�

where IF denotes the final measured optical intensity, Io de-
notes the initial measured optical intensity, ai��� is the extinc-
tion coefficient of the i’th chromophore at wavelength �, d�r�
is the DPF, and l�r� is the distance between the source and
detector at position r, respectively. Assuming that oxy- and
deoxyhemoglobin are the major two choromophores, the
noisy measured optical density is then described by the fol-
lowing matrix formulation:

��OD�r,t;�1�
�OD�r,t;�2� 	 = d�r�l�r��a1��1� a2��1�

a1��2� a2��2� 	��cHbO�r,t�
�cHbR�r,t� 	

+ �w�r,t;�1�
w�r,t;�2� 	 , �2�

where �cHbO�r , t� and �cHbR�r , t� denote the time series of
the chromophore changes for the oxy- and deoxyhemoglobin,
and w�r , t ;�i� is the additive noise for the wavelength �i,
respectively. Here, we assume that d�r� is the same at both
wavelengths and the equality assumption does not affect the
validity or applicability of what follows. Then, by multiplying
the inverse matrix of the extinction coefficients with Eq. �2�,
we can derive the expression of the noisy oxy- and deoxyhe-
moglobin signals:

�yHbO�r,t�
yHbR�r,t� 	 = d�r�l�r���cHbO�r,t�

�cHbR�r,t� 	 + ��HbO�r,t�
�HbR�r,t� 	 , �3�

where �HbO�r , t� and �HbR�r , t� is the additive zero mean
Gaussian noise for the oxy- and deoxy- channels, respectively.
Although the DPF parameter d�r� can be measured using
time-domain or frequency-domain systems by calculating the
temporal point spread function,7 this information is not ob-
tainable in commonly available CW systems. Furthermore,
NIRS data acquisition is considerably affected by a variety of
measurement conditions, such as the color of hair and the
scalp depth, which introduces position- and subject-dependent
scattering effects. For these reasons, analyzing NIRS data us-
ing the magnitude of chromophore concentration changes is
often problematic.

3 General Linear Model for NIRS
In the fMRI domain, the validity of the GLM has been exten-
sively tested, and the GLM has been established as a standard
analyzing method. Statistical parametric mapping �SPM�18

and analysis of functional neuro images �AFNI�19 are widely
used programs based on the GLM. Analysis based on the
GLM consists of three steps: model specification, parameter
estimation, and statistical inference.15 In this section, we re-
view the GLM approach for NIRS applications.11

The GLM describes a measurement yHbX�r , t� �i.e., yHbO or
yHbR� in terms of a linear combination of L explanatory vari-
ables plus an error term:

yHbX�r,t� = x1�t��1 + ¯ + xL�t��L + �HbX�r,t� . �4�

Here, �i denotes an unknown strength of response, and xi�t� is
an explanatory variable originating from a model of hemody-
May/June 2009 � Vol. 14�3�2
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amic responses. Now, let y and � denote the vector of the
ime series of the hemodynamic signal and noise at the loca-
ion r, respectively:

y = �yHbX�r,t1� yHbX�r,t2� ¯ yHbX�r,tN��T, �5�

� = ��HbX�r,t1� �HbX�r,t2� ¯ �HbX�r,tN��T. �6�

he corresponding GLM model in a matrix form is then given
y:

y = X� + � , �7�

here y is an N-dimensional column vector whose elements
re the sampled NIRS data at N time points, � denotes an
rror vector, and � is an L-dimensional column vector that
epresents unknown strengths of the response. Usually, the
�L matrix X is called a design matrix and serves as a

redictor for the measured signal.15

For fMRI signals, Boynton et al. showed that the BOLD
ignal can be approximated as a convolution model between a
timulus function and a hemodynamic response function
HRF�.20 Based on a similar argument, several statistical
nalysis toolboxes using the GLM are currently available for
IRS.8–11 The stick function or the boxcar function is typi-

ally used for the stimulus function. For the HRF, there are a
umber of possible models. In this paper, we follow fMRI
pproaches and employ the so-called canonical HRF, which is
omposed of two gamma functions.15 Additionally, the deriva-
ives of the HRF with respect to delay and dispersion can be
sed to mitigate the problem that the precise shape of the
RF varies across the brain.21 An adaptive estimation of HRF
sing multiple gamma functions can also be used in NIRS to
ccount for oxygen species–dependent hemodynamics
ariation.11

After the model specification, the least-squares parameter
stimator is derived using the ordinary least squares. If the
esign matrix X is of full rank, the least-squares estimate is:

�̂ = �XTX�−XTy , �8�

here X− denotes the pseudo-inverse of X. With the obtained
east-squares estimates, one can construct statistics for the sta-
istical inference. In most cases, we consider a linear combi-
ation of the parameter estimates:

c1�̂1 + ¯ + cL�̂L = cT�̂ , �9�

here the vector c is called a contrast vector.15 Similar to the
MRI-SPM analysis,15 the error � in Eq. �7� is assumed to be
ormally distributed with a temporal covariance matrix �;
ence, we have

cT�̂ 
 N�cT�,cT�XTX�−XT�X�XTX�−c� . �10�

hus, t-statistics for the null hypothesis that asserts no activa-
ion is given by
ournal of Biomedical Optics 034004-
t =
cT�̂

�cT�XTX�−XT�X�XTX�−c�1/2 , �11�

where t denotes a random variable with a Student’s
t-distribution with degree of freedom df given as follows:15

df =
tr�R��2

tr�R�R��
, R = IN�N − X�XTX�−XT, �12�

where IN�N denotes the N�N identity matrix.
The estimate of the temporal correlation matrix � hence

affects the overall t-value and corresponding inferences. For a
detailed discussion on the estimation of �, readers can refer
to our previous work on this issue.11 If the calculated t-value
is larger than a certain threshold value, then the inference
steps abandon the null hypothesis and we declare the area to
be activated. The threshold value is calculated by fixing a
p-value in the range of 0.001 to 0.05. A smaller p-value pro-
vides a higher threshold value. The nonlinear relationship be-
tween the p-value and threshold can be explicitly represented
using the tube formula, as described in our companion
paper.11

4 Wavelet-MDL Detrending
In this section, we develop a novel detrending algorithm that
is designed to address the global-drift issues described in the
Introduction. Our point of departure is an algorithm devel-
oped for detrending the fMRI time series.16

4.1 Notation
We first introduce the notation associated with a discrete
wavelet transform by following the standard conventions.22

Let ��t� denote a wavelet associated with the multiresolution
analysis.22 Let ��t�, h, and g be the scaling function, the
low-pass filter, and the high-pass filter associated with this
wavelet transform, respectively. With a slight abuse of nota-
tion, let �= ���n�� ,n=0, . . . ,N−1 be a discrete version of a
continuous signal ��t�. For simplicity, we assume N=2J,
where J is the maximum level of wavelet decomposition. The
wavelet coefficients composed of approximation coefficients
�a� j�k�� j,k and detail coefficients �d� j�k�� j,k are defined by the
following recursions:22

a�0�k� = ��k�, k = 0, . . . ,N − 1,

a� j+1�k� = �
n

h�n − 2k�a� j�n�, k = 0, . . . ,2−j−1N − 1,

d� j+1�k� = �
n

g�n − 2k�a� j�n�, k = 0, . . . ,2−j−1N − 1,

where j=0, . . . ,J−1. We introduce a matrix W to represent
the discrete wavelet transform:

W� = �a�J�0�,dJ,dJ−1, . . . ,d1�T, �13�

where each submatrix is given by

d = �d� �0�� � R1�1,
J J

May/June 2009 � Vol. 14�3�3
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dJ−1 = �d�J−1�0�,d�J−1�1��T � R2�1,

d j = �d� j�0�, . . . ,d� j�2−jN − 1��T � R2−jN�1,

d1 = �d�1�0�, . . . ,d�1�2−1N − 1��T � R2−1N�1.

.2 Modified GLM with Baseline Drift

n the wavelet detrending algorithm for fMRI,16 the baseline
rift is included as part of the GLM:

y = X� + � + � , �14�

here y indicates the measured BOLD signal, X and � denote
he predictor and the additive noise with the temporal covari-
nce matrix �, and � is the additional global drift, respec-
ively. A similar argument may be applied to the NIRS case.

e introduce trend terms in Eq. �2� as follows:

��OD�r,t;�1�
�OD�r,t;�2� 	 = d�r�l�r��a1��1� a2��1�

a1��2� a2��2� 	��cHbO�r,t�
�cHbR�r,t� 	

+ �w�r,t;�1�
w�r,t;�2� 	 + ��̃�r,t;�1�

�̃�r,t;�2�
	 , �15�

here �̃�r , t ;�i� denotes the global trend for wavelength �i at
he location r. If we multiply the inverse matrix of the extinc-
ion coefficients, the equation of the noisy oxy- and deoxyhe-

oglobin is given as

�yHbO�r,t�
yHbR�r,t� 	 = d�r�l�r���cHbO�r,t�

�cHbR�r,t� 	 + ��HbO�r,t�
�HbR�r,t� 	

+ ��HbO�r,t�
�HbR�r,t� 	 , �16�

here �HbO�r , t�=1 /C�a2��2��̃�r , t ;�1�−a2��1��̃�r , t ;�2��,

HbR�r , t�=1 /C�−a1��2��̃�r , t ;�1�+a1��1��̃�r , t ;�2��, and C
�a1��1�a2��2�−a2��1�a1��2��. Let yHbX, �HbX, and �HbX de-
ote vectors of the hemodynamic signal, additive noise, and
lobal trend signal, respectively. If we introduce the GLM for
ach chromophore, we can derive the modified GLM for
IRS as follows:

yHbX = XHbX�HbX + �HbX + �HbX. �17�

or simplicity, we remove the subscript HbX from Eq. �17�
nd use the general form given by Eq. �14�.

The global trend signal varies smoothly in most cases.
ased on this observation, conventional detrending algo-

ithms use filtering to remove the low-frequency trend signal.
he problem of this approach, however, is that the hemody-
amic signal often has a low-frequency varying component
hat can be erroneously removed during the filtering. In order
o deal with this artifact, in our wavelet detrending, the un-
nown trend is modeled as a signal restricted in a subspace
panned by coarse scale wavelets.16 More specifically, the
rend is modeled as:16
ournal of Biomedical Optics 034004-
��t� = a�J�0���2−Jt� + �
j=J0

J

�
k=0

2−jN−1

d� j�k���2−jt − k� ,

�18�

where �, �, a�J, d� j, J, and N are defined as earlier, and J0
denotes the finest scale that determines the smoothness of the
trend. Note that the detail coefficients d� j�k� are all zero for
fine scales, i.e., 1	 j	J0−1.

Using the discrete wavelet transform �DWT� matrix W de-
fined in Eq. �13�, we can represent the wavelet transform of a
global trend signal as follows:

W� = �a�J�0�,dJ, . . . ,dJ0
,0, . . . ,0�T. �19�

The maximum likelihood estimates for the trend � and the
unknown signal strength � in Eq. �14� are then given by:16

�̂ = �AT�−1A�−1AT�−1Wy , �20�

where �= �a�J�0� ,d�J�0� , . . . ,d�J0
�2−J0N−1� ,��T, and

A = 

1 0 axJ

�1��0� ¯ axJ
�L��0�

1 0 xJ
�1� xJ

�L�

¯ ] ] ¯ ]

1 0 ] ]

1 xJ0

�1�
¯ xJ0

�L�

0 xJ0−1
�1� xJ0−1

�L�

] ] ¯ ]

0 x1
�1�

¯ x1
�L�

�
= 
 In0�n0

WX

0�N−n0��n0

� ,

where n0=2−J0+1N denotes the number of nonzero coeffi-
cients that describe the trend, In0�n0

denotes a n0�n0 identity
matrix, 0�N−n0��n0

denotes a �N−n0��n0 matrix whose ele-
ments are zero, A is a N� �n0+L� matrix, � denotes the N
�N noise covariance matrix, W is the DWT matrix, and xi

�k�

is the i’th wavelet coefficient of the k’th column of design
matrix, respectively.

Note that � in Eq. �20� is the covariance matrix of noise in
wavelet domain. Even if the original time series is highly
correlated, the array of wavelet coefficients exhibits much less
correlation.23 This decorrelating �or whitening� feature of the
wavelet transform has been studied in Refs. 23–25. Especially
for the fractional Brownian motion �fBM� process,26 which is
a popular model for 1 / f-type noise, the decay rate of the
correlation of wavelet coefficients in j’th scale is derived as:24

E�d� j�m�,d� j�n�� = O��2−j�m − n��2�H−p�� , �21�

where E�·� is an expectation operator, H� �0.5,1� is a con-
stant that defines the degree of correlation, and p denotes the
number of vanishing moments of a wavelet transform. There-
fore, for a wavelet transform that has a large enough p, we
may assume that the noise in wavelet coefficients has the
May/June 2009 � Vol. 14�3�4
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ncorrelated Gaussian distribution whose covariance matrix is
iven as:

� = diag�
J
2,
J

2, . . . ,
1
2� , �22�

here 
 j
2 is the variance in the j’th decomposition level. To

stimate 
 j
2, we use the median absolute deviation of wavelet

oefficients:23,27


̂ j
2 = Median�d� j�0�, . . . ,d� j�2−jN − 1��/0.6745, �23�

here the number 0.6745 is the calibration factor for Gauss-
an distribution.23,27

In the wavelet detrending method for a fMRI time series,16

he complexity of the unknown global bias is solely deter-
ined by J0. In other words, there is an implicit assumption

hat all coefficients at the same scale are all zero or all non-
ero simultaneously. However, in the case of NIRS, the num-
er of data points N is much larger than that of the fMRI time
eries, and thus this simple scheme may cause over- or under-
tting. Therefore, for a fine-tuned estimate of model order, the
avelet coefficients at the same scale are sorted in order of
escending magnitude and are included one by one until a
uitable complexity is found by the model order selection cri-
erion. Note that this procedure is similar to MDL threshold-
ng in signal restoration.28,29

The wavelet detrending method has several advantages
ver the conventional filtering approach. Note that the con-
entional filtering cannot prevent the removal of the hemody-
amic signal, since it decides the cutoff frequency using only
he paradigm repetition frequency, and the nonnegligible
mount of the hemodynamic signals can often be filtered out.
his is especially true for the event-related paradigm30 since it
oes not have a well-defined cutoff frequency. Compared with
he conventional method, the wavelet-based detrending algo-
ithm includes the design matrix X in the least-squares esti-
ation process described in Eq. �20�. Hence, the canonical

emodynamics time series is fully utilized in the estimation
rocess, and the algorithm is more robust. Furthermore, the
avelet-based approach is more effective in removing rela-

ively fast varying trends thanks to the optimality of wavelet
ransform in describing the transient changes of fast varying
ignals.22

.3 Minimum Description Length Principle for Model
Order Selection

n Eq. �20�, we have shown a simple one-step method for
imultaneous estimation of the global trend � and the signal
trength � for a given hyperparameter J0 in terms of maxi-
um likelihood estimation. The remaining issue is the deter-
ination of the hyperparameter J0. Even though J0 is a single

nteger valued parameter, it affects the whole behavior of the
stimated trend signal, since J0 determines the number of
avelet coefficients n0 that describe the trend. More specifi-

ally, if n0 is an inappropriately large number, the hemody-
amic response is distorted due to the overfitted trend esti-
ate, whereas a smaller n0 value may not capture the

nknown trend properly. Therefore, the accuracy of the order
stimate J0 �or n0� ultimately determines the quality of the
rend estimation.
ournal of Biomedical Optics 034004-
The problem of estimating the order J0 �or n0� is formally
called the model order selection problem.17,31,32 A good model
order selection criterion should satisfy two conflicting goals
simultaneously: goodness of fit and concision of the model.
Balancing these two goals is crucial in preventing the over- or
underfitting. Akaike information criterion �AIC�,33 Schwartz
information criterion �SIC�,32 and minimum description
length �MDL� suggested by Rissanen17 are the most popular
criteria currently available. The best model is then selected as
the one that gives the smallest cost among several plausible
models.

These three methods assume that the probability density
function �pdf� is a function of unknown model order n0. Thus,
the distance between the true pdf and the estimated pdf in-
duced from the parameter estimate n̂0 plays an important role.
More specifically, AIC and SIC are closely related to the
Kullback-Leibler �K-L� distance,34 defined as follows:

I�f ,g� =� f�y�log� f�y�
g�y�n0�	dy = Ef�log� f�y�

g�y�n0�	� ,

�24�

where Ef�·� stands for the expectation with respect to f , f
denotes a true pdf for data vector y, and g denotes an approxi-
mated pdf governed by the model order n0, respectively. The
K-L distance can serve as a measure of the difference between
the true pdf and an estimated pdf. The K-L distance gives a
nonnegative value in general, but zero if and only if f
=g�y �n0�. The basic concept of AIC and SIC is to minimize
the K-L distance. However, it is not trivial to evaluate the K-L
distance directly, since it is hard to define the true pdf f and
g�y �n0�. Therefore, asymptotic approximations for the K-L
distance have been derived. For example, AIC uses a cross-
validation perspective, and SIC employs a prior pdf for the
model order n0 �Refs. 35�. An improved version of AIC that
reduces the probability of overfitting is also available,31 and
denoted by AICC. In many cases, AICC outperforms the con-
ventional AIC.35 The AICC and SIC cost functions for de-
trending are then summarized as:

AICC = − log P�y�n0� +
1

2

N + n0

N − n0 − 2
,

SIC = − log P�y�n0� +
1

2
n0 log N , �25�

where log P�y �n0� denotes the log-likelihood of y under the
model order n0. The first term −log P�y �n0� can be easily
computed under an assumption that the noise is uncorrelated,
independent, and normally distributed:

− log P�y�n0� = − log��2�
2�−N/2 exp�−
�y − X� − ��2

2
2 �	 ,

�26�

where 
2 denotes the unknown noise variance. Using the par-
tial derivative of Eq. �26� with respect to 
2, the maximum
likelihood estimate 
̂2 of the unknown noise variance is given
as
May/June 2009 � Vol. 14�3�5



w
p

w
s
�
t

p
o
o
p
t
r
t
i
c
c
t
d
c
i
p
d
t

p
M
o
o
l

w
s
T
S
c
m
s
v
c

2

Jang et al.: Wavelet minimum description length detrending for near-infrared spectroscopy

J


̂2�n0� =
1

N
�y − X� − ��2, �27�

here we explicitly represent the dependency of 
̂2 on the
arameter n0. Substituting Eq. �27� into Eq. �26�, we get

− log P�y�n0� =
N

2
log 
̂2�n0� + const, �28�

here const stands for a term that is not related to the model
election problem. Then, by substituting Eq. �28� into Eq.
25�, we can find the optimal model order n0 that minimizes
he cost functions AICC and SIC, respectively.

The MDL principle follows a different philosophy com-
ared with AIC and SIC. Formally, it is based on the Kolmog-
rov’s descriptive complexity,36,37 which defines the amount
f complexity as the length of the shortest binary computer
rogram that is able to describe an object. In more intuitive
erms, the MDL principle is based on the so-called Occam’s
azor, interpreted as “If there are many explanations consis-
ent with the observed data, choose the simplest.”37 However,
t is hard to compute to Kolmogorov’s descriptive
omplexity.37 Rissanen suggested that the description length
an be regarded as the number of binary bits used for data
ransmission between a hypothetical pair of an encoder and a
ecoder.17 This idea is heavily supported by Shannon’s source
oding theorem, since the expected description length of data
s minimum on average when the true model parameter of the
df is used.37,38 Note that this interpretation is parallel to K-L
istance, which is zero if and only if the model parameter is
rue.

According to MDL, our task is to measure the total ex-
ected codelength to encode the measurement and the model.
ore specifically, the total code is composed of two parts:

ne for encoding measurements based on a model and the
ther for encoding the model itself. Hence, the total code
ength is described as

MDL�n0� = − log2 P�y�n0� + L�n0� , �29�

here −log2 P�y �n0� is related to the goodness-of-fit with re-
pect to log2 basis to translate it into the code length in bits.
he code length L�n0�, however, is distinct from AIC and
IC. In MDL detrending, the hypothetical encoder should en-
ode the position of each wavelet coefficient as well as its
agnitude. If we assume the uniform distribution of the po-

ition of coefficients and the optimized truncation for real-
alued magnitude,39 the code length L�n0� for MDL criterion
an be written as:28

256 512 768 10

5

10

15

Number of coefficients

−
lo

g(
P

)

(a)

Fig. 1 �a� A prior code length: −
ournal of Biomedical Optics 034004-
L�n0� =
1

2
n0 log2 N + n0 log2 N =

3

2
n0 log2 N , �30�

where n0 log2 N and �1 /2�n0 log2 N denote the code length
for the location and magnitude of the wavelet coefficients,
respectively. Since Eq. �30� was originally derived by Saito
for a wavelet image compression problem,28 we call this Sai-
to’s MDL.

Note that the code length for encoding positions of coeffi-
cients in Saito’s MDL can be written as

�1/2�n0 log2 N = n0�− log2� 1

N
�	 , �31�

which implies that locations are encoded using Shannon’s
coding scheme under the assumption of uniformly distributed
coefficients along all decomposition levels. However, consid-
ering the smoothness of a global trend, it is not appropriate to
assume that all wavelet coefficients have identical probability
of being components of the trend estimate regardless of their
scale. In practice, we can easily conjecture that coarser scale
wavelet coefficients are more likely to be included in the
trends.

Therefore, we consider an alternative a priori distribution
for the wavelet coefficients, whose probability varies across
scale. Note that the new code should satisfy Kraft’s inequality,
defined as:

�
x�X

2−L�x� 	 1, �32�

where X denotes a set of binary codes, and L denotes the
length of the binary codes. Kraft’s inequality is the sufficient
and necessary condition for the prefix code that guarantees the
unique translation of received code words.37,38 This is a basic
constraint for pdf to be used in the MDL framework. Among
a number of pdfs that have scale dependent probabilities, we
select the universal prior for integers proposed by Rissanen:39

Pu�n� = 2−Lu�n�, n � 0, Lu�n� = log
2
* n + log2 c,

c � 2.865064, �33�

where log
2
* n=log2 n+log2�log2 n�+log2�log2�log2 n��+. . .,

the sum involves only the nonnegative terms, and c is defined
to bring the left side of Kraft’s inequality to unity. Interest-
ingly, the corresponding code length for this prior assigns a
shorter code length for coarser scale wavelet coefficients, as
shown in Figs. 1�a� and 1�b�. On the contrary, the uniform

4 16 64 256 1024

5

0

5

Number of coefficients

(b)

�. �b� The log-scale view of �a�.
24

1

1

−
lo

g(
P

)

log �P
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rior in Saito’s MDL assigns the same code length for all
cales. Therefore, the universal prior for integers provides a
arger penalty for choosing a finer scale; hence, it prefers a
oarser scale trend estimate.

By extending this concept, it is reasonable to assign the
ame code length for wavelet coefficients within the same
cale. A slight modification is required in order to give an
dentical probability to coefficients within the scale. Specifi-
ally, suppose mj denotes the number of wavelet coefficients

n the j’th scale. The code length L̂�j� from the modified
niversal prior corresponding to the j’th scale is then given by

L̂�j� =
1

mj
�
n=0

mj−1

Lu�n + sj� , �34�

here sj =1+�k=J
j+1mk denotes the starting index of the j’th

cale wavelet coefficients, J denotes the coarsest scale, and

u�·� is defined in Eq. �33�, respectively. This modified uni-
ersal prior is illustrated in Fig. 1, which exhibits a staircase-
ike increasing behavior in the code length. The final MDL
riterion can therefore be summarized as follows:

MDL�n0� =
N

2
log2 
̂2�n0� +

1

2
n0 log2 N + �

j=J0

J

mjL̂�j� ,

�35�

here n0=� j=J0

J mj. Here, �1 /2�n0 log2 N encodes the magni-

ude, whereas � j=J0

J mjL̂�j� encodes the location.
We have observed that both AICC and SIC tend to give an

verfitted model for the NIRS signal, as described in the ex-
erimental results. This is because the number of temporal
IRS sequences is much larger than that of fMRI data, and it

s known that the probability of overfitting is more than zero
nder quite general conditions, as N→
 in these priors.35

owever, the MDL criterion does not exhibit such overfitting
hanks to its asymptotic optimality.

.4 Implementation Issues
n order to make at least one wavelet coefficient free of
oundary artifacts, the maximum level of decomposition J
hould allow at least M coefficients at the last decomposition

(a)

ig. 2 RFT experiment setup. �a� Arrangement of optodes. Eight bla
orrespond to 24 source and receiver pairs. �b� Overall position of op
t the motor cortex of the left hemisphere.
ournal of Biomedical Optics 034004-
level, where M denotes the support length of the wavelet.
Under this constraint, the maximum level of wavelet decom-
position is given by:

Jp = �log2
N

M − 1 � , �36�

where �X� denotes an operator that truncates X to the nearest
integers toward zero. In case the number of wavelet coeffi-
cients at the Jp scale is larger than M, we allow an additional
level of wavelet decomposition by boundary extension of the
data so that the number of wavelet coefficients at the coarsest
level always becomes M. This constraint allows us to use the
same form of the modified universal prior of integers regard-
less of the length of the NIRS time series. More specifically, if
the total number of data elongations is Next= �2M −mJp

�
�2Jp, where mJp

= �N�2−Jp� denotes the number of coeffi-
cients in the Jp’th scale, then we have m�Jp+1�= �N�2−�Jp+1��
=M. Therefore, the maximum decomposition level of the
NIRS signal becomes �Jp+1�, and the number of wavelet
coefficients at the finest scale is M. For the specific boundary
extension, we employ a symmetric extension.40

In order to implement wavelet detrending, the wavelet
should be compact. Daubechies wavelets and Symlets22 with
small orders are therefore reasonable candidates. However,
due to the small vanishing moment of these wavelets, the
trend estimate often violates the assumption of smoothness.
Hence, we selected a CDF 9 /7 biorthogonal filter41 with a
vanishing moment of 9, which gives a reasonable trade-off
between the vanishing moment and the wavelet support. Note
that CDF 9 /7 is a standard wavelet filter in lossy compression
of JPEG 2000 �Ref. 42�, due to the compactness and sufficient
vanishing moments.

5 Experimental Results
We performed NIRS experiments using Oxymon Mk III �Ar-
tinis, Netherlands�, which has eight laser diodes and four de-
tectors. In this system, two continuous wave lights �856 nm
and 781 nm� are emitted at each source fiber. A suitable ar-
rangement using 24 pairs of a source and a detector are illus-
trated in Fig. 2�a�. Sources and detectors were attached by
optical fibers on the scalp covering the motor cortex, as illus-
trated in Figs. 2�b� and 2�c�. The distance between the source

(c)

les denote receivers, and eight gray circles denote sources. X signs
�c� Target area for right-finger tapping experiments, which is located
(b)

ck circ
todes.
May/June 2009 � Vol. 14�3�7
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nd detector was 3.5 cm. A 3.0T MRI scanner �ISOL, Korea�
as also used to simultaneously measure the BOLD signal.
he echo planar imaging �EPI� sequence was used with
R /TE=3000 /35 ms, flip angle=80 deg, 35 slices, and
-mm slice thickness. In the subsequent anatomical scanning
ession, T1-weighted structural images were acquired using
he same system.

To evaluate the proposed detrending algorithm, nine
ealthy, right-handed male adults were examined using a
ight-finger tapping �RFT-1� task. The 21-s periods of activa-
ion were alternated with 30-s periods of rest. During the
ctivation periods, subjects were instructed to tap right-hand
ngers. Total recoding time was 552 s. In addition, one sub-

ect was examined under the same conditions; however, in this
ime, the subject did not receive any stimulus during the re-
ording period, which we call the baseline. This baseline data
s used for a subsequent simulation study. No subject had any
istory of neurological disorders. All subjects were informed
bout the whole experiment process. The investigation was
pproved by the Institutional Review Board of Korea Ad-
anced Institute of Science and Technology �KAIST�.

.1 Simulation Study
or comparison, two detrending methods based on the con-
entional filtering8 were implemented. First, finite impulse re-
ponse �FIR� filters were designed using the Kaiser window
ethod, whose cutoff frequencies were appropriately adjusted

or each case.43 In addition, we also compared our method
ith DCT-based filtering, a standard detrending technique in
PM.15 DCT coefficients that are below the cutoff frequency
ere declared as trend estimates. Note that we utilized the

ymmetric extension at both ends of the NIRS data to reduce
oundary distortion during filtering.

1000 4000

0

1

1000

0

2.5

(a)

1000 4000

0

2.5

1000

0

2.5

(d)

ig. 3 �a� A synthetic hemodynamic response �black line� and a nois
round-truth trend. Trend estimates using �c� Wavelet-MDL, �d� FIR w
CT with cutoff frequency 0.015 Hz. Wavelet-MDL gives a closer es
ournal of Biomedical Optics 034004-
A simulated NIRS time series was constructed to have a
global bias, a simulated task-related time series, and AR�1�
noise �auto-regressive noise of order 1�. Note that the autore-
gressive �order 1� plus white noise model is a standard model
for serial correlations in fMRI-SPM �Refs. 15 and 44� from
the empirical perspectives, and the AR�1� model has success-
fully explained the short-range correlations.44 Hence, this
simulation also employs the AR�1� model to account for the
short-range correlations in NIRS time series. The global bias
was extracted from the real NIRS experiment under the base-
line condition using a low-pass filter whose stopband edge
was 0.02 Hz. The hemodynamic response was modeled by
the canonical HRF with its derivatives. The extracted trend
was normalized to �0,2�, and the magnitude of the hemody-
namic response was set to 1.05. The AR�1� noise � was gen-
erated by ��m�=� ·��m−1�+e�m�, where � was set to 0.8,
and e is the vector whose elements are zero mean white
Gaussian variables with variance 
2=3.6�10−3. The noise
covariance matrix is then given by:

���m,m+k = E���m���m + k�� =

2

1 − �2��k�.

This covariance matrix was used in calculating t-scores in Eq.
�11�.

Table 1 t-scores with distinct detrending methods.

Wavelet-MDL Kaiser-A Kaiser-B DCT

t-score 73.22 16.89 47.57 45.73

4000 1000 4000

0

2.5

) (c)

4000 1000 4000

0

2.5

e) (f)

signal �gray line�. �b� The overall simulated signal �gray line� and a
ff frequency 0.02 Hz, �e� FIR with cutoff frequency 0.015 Hz, and �f�
for the unknown trend.
(b

(

e added
ith cuto
timate
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In Figs. 3�a� and 3�b�, the simulated NIRS time series and
ts components are illustrated. Black lines in Figs. 3�c�, 3�d�,
nd 3�f� show global trend estimates using various detrending
ethods. The same cutoff frequency for simulating the

round-truth trend was used in Fig. 3�d�, which represents the
ase where the frequency content of a global trend is exactly
nown. In Fig. 3�e�, a FIR filter with a stopband edge of
.015 Hz is used. Figure 3�f� is the result of DCT-based fil-
ering whose cutoff frequency is 0.015 Hz. Even in the case
here the exact cutoff frequency is known, as illustrated in
ig. 3�d�, it was hard to distinguish between the hemody-
amic signal and the global trend when both signals have the
ame frequency contents. Indeed, the hemodynamic signal is
n extremely low frequency signal considering the sampling
requency of NIRS, and hence it is sometimes similar to the
lobal bias in its frequency content. We can easily see that the
avelet-MDL-based detrending method �Wavelet-MDL�

ives a much closer estimate for the unknown bias, as illus-
rated in Fig. 3�c�. For a quantitative analysis, Table 1 shows
he t-score using Eq. �11�, which confirms that the proposed
etrending method shows the best performance in estimating
he hemodynamics signals.

Recall that the � value in the AR�1� model denotes the
egree of correlation between the neighborhood samples.
ven though this paper chose �=0.8 to represent relatively
trong correlation between the neighboring samples, similar
ehaviors have been obtained for a wide range of � values,
nd our Wavelet-MDL framework has been observed to out-
erform the other methods for all cases.

(a)

ig. 4 Deoxyhemoglobin t-maps for the RFT experiment. �a� Resu
onventional method. The wavelet-MDL detrending method provides

1000 2000 3000 4000 500

−3

0

3

Time (0.1 sec)

(a)

ig. 5 Oxyhemoglobin measurement during the RFT experiment and e
ask-related signals are not removed for the case of Wavelet-MDL.
ournal of Biomedical Optics 034004-
5.2 Experimental NIRS Data

We now apply our algorithm to real NIRS measurements. For
calculating t-values, we used NIRS-SPM software, which has
been developed by our group.11 NIRS-SPM allows the esti-
mation of the temporal correlation and determines a p-value
using the tube formula. For a detailed discussion on the esti-
mation of the temporal correlation, p-value, and related
threshold value, readers can refer to our previous work on this
issue.11 In NIRS-SPM, the conventional filtering based on
DCT is implemented. We set the cutoff frequency as
1 /60 Hz, which is below the frequency of RFT paradigm
repetition frequency of 0.018 Hz.

In Fig. 4�a�, the deoxy-hemoglobin �HbR� t-map from
NIRS-SPM using Wavelet-MDL is illustrated. For clear com-
parison, the magnified figure is illustrated in Fig. 4�b�,
whereas Fig. 4�c� shows the result of the conventional DCT
filtering approach. The temporal covariance was estimated us-
ing a prewhitening method.11 While the task-related activation
is observable in both cases, Wavelet-MDL provides a higher
t-value centered at the target area. The maximum t-values
were 13.95 and 13.16 for Wavelet-MDL and the DCT-based
filtering, respectively. The higher t-values indicate that the
proposed method provides a statistically more significant es-
timate of the activation map.

An oxyhemoglobin time series and trend estimates are il-
lustrated in Fig. 5. Since the design matrix is explicitly incor-
porated during the detrending process of Wavelet-MDL, as
described in Eq. �20�, the oxyhemoglobin signals were almost

(c)

NIRS-SPM. Magnified t-maps using �b� Wavelet-MDL and �c� the
er t-value centered at the target area.

1000 2000 3000 4000 5000
Time (0.1 sec)

(b)

d trend with �a� Wavelet-MDL and �b� the conventional method. The
(b)

lt from
a high
0

−3

0

3

stimate
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onserved, as shown in Fig. 5�a�. However, in the case of the
onventional approach, some components of oxyhemoglobin
ignals were classified as global trends, as illustrated in Fig.
�b�. Figure 6 shows another oxyhemoglobin signal that con-
ains a rapidly varying bias. If we use the conventional de-
rending method, the residual of the fast-varying transient
rend can be classified as an oxyhemoglobin signal. However,

avelet-MDL can estimate the unknown trend even if it has
igh-frequency transient signal, since it is capable of captur-
ng the transient signal and adjusting the complexity of a glo-
al trend automatically, as illustrated in Fig 6�a�. However, in
ig. 6�b�, the fast varying trend was not fully captured by the
onventional approach, and the hemodynamic signal was
amaged.

Last, we compared MDL with AICC, SIC, and Saito’s
DL. Figures 7�b�–7�d� show that the estimated trends based

n AICC, SIC, and Saito’s MDL result in overfitting, whereas
ur algorithm correctly captures the trends. This implies that
he modified universal prior of the integer is effective in

odel order selection.

1000 2000 3000 4000 500

−1

2

5

Time (0.1 sec)

(a)

ig. 6 Oxyhemoglobin measurement during the RFT experiment and
avelet-MDL is capable of removing fast-varying trends without dam

1000 2000 3000 4000 500

−3

0

3

Time (0.1 sec)

(a)

1000 2000 3000 4000 500

−3

0

3

Time (0.1 sec)

(c)

ig. 7 Trend estimate using �a� the proposed MDL, �b� Saito’s MDL, �c
ethod gives the most accurate estimate.
ournal of Biomedical Optics 034004-1
5.3 Group Analysis

Group analyses were performed using NIRS-SPM software.
NIRS data as well as simultaneously recorded fMRI data from
nine subjects were used. Figure 8 shows group activation
maps for the HbR signal at p=0.05, which is overlayed on the
fMRI activation map at p=0.005. The Wavelet-MDL detrend-
ing method gives more specific localization of the target mo-
tor cortex compared to the conventional DCT-based high-pass
filtering. To quantify the accuracy of localization, we calcu-
late the receiver operating characteristic �ROC� for the spatial
correlation of the NIRS activation map with that of fMRI
BOLD. An ROC curve is a graphical plot of “sensitivity”
versus “1-specificity” for a binary classifier. In ROC, �0,1� is
the point of an ideal classifier, and the diagonal line represents
the performance of random guessing. Therefore, the area un-
der the ROC curve is a good indicator of the performance of
a classifier. We evaluated our detrending method by measur-
ing the spatial correlation between NIRS activation maps and
the fMRI BOLD map. The BOLD map with p=0.005 was

1000 2000 3000 4000 5000
Time (0.1 sec)

(b)

ated trend with �a� Wavelet-MDL and �b� the conventional method.
task-related signals.

1000 2000 3000 4000 5000
Time (0.1 sec)

(b)

1000 2000 3000 4000 5000
Time (0.1 sec)

(d)

nd �d� AICC. Compared with other model order criteria, the proposed
0
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5

estim
aging
0

−3
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−3

0

3
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ssumed as the ground truth in Fig. 9. The sensitivity and
pecificity were calculated by changing the threshold values.
he ROC analysis in Fig. 9 shows that the proposed detrend-

ng algorithm outperforms the conventional high-pass filtering
ince the area under the ROC curve is largest for Wavelet-

DL.

Discussion
.1 Temporal Covariance in MDL

n Eq. �26�, we assume that the noise is uncorrelated, inde-
endent, and normally distributed. For the correlated noise,
he covariance matrix � should be considered in Eqs.
26�–�28�. Specifically, consider the negative log-likelihood
or measurement in the wavelet domain. Let r�n0� denote the
esidual vector for model order n0 in the wavelet domain, i.e.,
�n0�=W�y−X�−��. Since the dependency for r on the
odel order n0 is clear in the context, we omit the letter n0 in

he sequel. If we model the correlated noise using the frac-
ional Brownian motion process26 as in the fMRI case,16 the
df of measurement y in the wavelet domain is given by

p�Wy�n0� =
1

�2��2N���1/2 exp�−
1

2
rT�−1r� , �37�

here � denotes a diagonal covariance matrix described in
q. �22�. If we substitute Eq. �22� for � in Eq. �37�, the
egative log-likelihood for measurement is then given by

− log p�Wy�n0� =
1

2�
j=1

J

�Nj log 
 j
2�n0� + 
 j

−2�n0�r j
Tr j� + c ,

�38�

here Nj =2−jN is the number of wavelet coefficients in the
j’th scale, r j is the subvector of r corresponding to the j’th
cale, and c is a constant not related to model order selection.
he maximum likelihood �ML� estimator for level-dependent
ariance 
 j

2�n0� is easily obtained by a straightforward calcu-
ation as follows:

(a)

ig. 8 NIRS-SPM group analysis result at p=0.05. �a� Wavelet-MDL
pecific activation map. The mesh image corresponds to the fMRI act
ournal of Biomedical Optics 034004-1

̂ j
2�n0� =

1

Nj
r j

Tr j , �39�

which is identical with the ML estimates of the residual vari-
ance in the j’th scale. If we substitute Eq. �39� for 
 j

2�n0� in
Eq. �38�:

− log p�Wy�n0� = �
j=1

J
Nj

2
log 
̂ j

2�n0� + c�, �40�

where c� is a constant not related to model order selection.
Now, we employ an exponentially decaying variance model
along decomposition levels that is popularly used for model-
ing the correlated noise in the wavelet domain:24,45,46


 j
2�n0� = �2�n0�2�j , �41�

where � is the spectral decay rate of the correlated noise
model and � denotes a constant that reflects the overall noise

Fig. 9 ROC curves for activation maps using Wavelet-MDL and DCT-
based detrending. The fMRI activation map at p=0.005 shown as an
inset is used as a ground truth, and the sensitivity and the specificity
were calculated by changing the threshold value. The ROC analysis
shows that the area under the ROC curve for Wavelet-MDL was larg-
est, indicating that the proposed algorithm outperforms the conven-
tional method.

(b)

ding and �b� DCT based detrending. Wavelet-MDL provides a more
map at p=0.005.
detren
ivation
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ariance. We can estimated � in the zeroth, decomposition
evel, i.e., in the time domain, as follows:

�̂2�n0� = 
̂0
2�n0� =

1

N
�y − X� − ��n0��2. �42�

y substituting Eq. �41� and Eq. �42� for 
̂ j
2�n0� in Eq. �40�,

e obtain

− log p�Wy�n0� =
N

2
log 
̂0

2�n0� + c�, �43�

here c� is a constant not related to model order selection.
ence, Eq. �43� is identical to Eq. �28�.

.2 t-Value versus Activation Map

ecall that t-value is often used to quantify the performance
f the detrending algorithms.16 However, more correct quan-
ification should be based on the accuracy of the activation

ap at the same p-value. For example, consider a case where
fixed p-value provides an identical threshold value. Then, in
btaining the activation maps, the overall increase in t-values
ay imply that the resulting activation map becomes signifi-

antly larger. Hence, to guarantee the accurate localization,
he higher contrast of t-value between activated and back-
round region is more important. In this perspective, our
roup analysis result confirms that wavelet-MDL detrending
s more accurate in localizing the activation maps.

.3 Precoloring versus Prewhitening

n Ref. 11, we have proposed two different methods to re-
ove the temporal covariance: precoloring and prewhitening.
recoloring tries to remove the temporal correlation by filter-

ng with HRF filter, whereas prewhitening attempts to esti-
ate � based on the assumption that the noise is the AR�1�

rocess. In this perspective, the prewhitening provides more
ccurate estimation of � as long as the AR�1� assumption is
orrect. The t-value in Fig. 4 was hence calculated using pre-
hitening. However, as demonstrated in Ref. 11, precoloring
as more robust in removing the temporal correlation, and the
nal activation maps from precoloring were observed to be
etter due to the limited number of measurements compared
o its fMRI counterpart.11 Hence, this paper calculates the
roup activation map using the precoloring method, as in.
ef. 11.

Conclusion
e developed a Wavelet-MDL-based detrending method that

s robust under motion and physiological variation. In
avelet-MDL detrending, a wavelet transform is applied to

he NIRS time series to decompose it into bias, hemodynamic
ignal, and noise components in distinct scales. With the

DL criterion using a modified universal prior for the integer,
he optimal model order could be easily estimated, and the
nknown drift signal in NIRS data was successfully removed.
xperimental results demonstrated that the new detrending
lgorithm outperforms the conventional approaches.
ournal of Biomedical Optics 034004-1
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