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Abstract. A simple single mode matching (SMM) method is proposed to analyze the optical 
throughput for subwavelength metal tapers. Both a 2D gold-clad taper gap and a 3D gold 
taper rod are analyzed with the SMM method. Including metal losses, these structures are 
calculated to have optimal squeezing taper angles of 14° with 71% efficiency and 32° with 
44% efficiency, which is in good quantitative agreement with previous finite-difference time-
domain simulations. The SMM method uses only analytic calculations and 2-by-2 matrix 
multiplication. Therefore, compared to past approaches, the SMM method is an efficient 
method to optimize the subwavelength metallic taper structures, while including losses, and it 
can be extended to more complex tapers and gratings in an obvious way. It also has the 
potential for fully analytic calculations. 
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1 INTRODUCTION 
Surface plasmon localization and enhancement in nano-strucutures has drawn great interest 
for its potential use in near-field optical microscopy and lithography [1-4], subwavelength 
optical waveguiding [5-8], and surface enhanced Raman scattering, which allows single-
molecule detection [9-14]. To efficiently coupling light into nanoscale devices, many 
structures have been designed [15-18]. As one solution, the subwavelength metallic taper 
structure allows for significant field enhancement towards the end of the taper [19-21]. Since 
the coupling efficiency of taper structure is dependent on the taper angle, optimizations to 
these structures have considered solving for the optimal angle. Two methods have been 
reported to calculate the optimal angle of the taper structures: the finite-difference time-
domain method (FDTD) and the adiabatic theory [20, 22, 23]. FDTD is a comprehensive 
fully-vectorial method that can achieve accurate results; however, plasmonic structures 
require small grid sizes, and for stability, small time-steps. Therefore, FDTD is 
computationally intensive and time-consuming, which is a limitation in large structures in 2D, 
such as a gradual taper, and 3D structures.  The adiabatic method is fully-analytic and 
efficient, but only accurate when the taper structure satisfies adiabaticity. Further calculations 
are required to ensure that there is negligible reflection. 

In this paper, we propose a simple single mode matching (SMM) method that allows for 
rapid calculation of the optical transmission efficiency through both 2D and 3D taper 
structures. This method calculates the reflection and transmission of the lowest order mode at 
a stepped-interface, including the influence of material loss in each segment. By comparison 
with past results, it is verified that the SMM method can efficiently achieve accurate results 
under different configurations, including both loss and reflection. Examples of a 2D gold 
taper gap and a 3D gold taper rod are presented, which have been calculated in the past by 
FDTD and the adiabatic method [22, 23]. Our results compare well quantitatively with those 
works. The proposed method can be easily extended to more complex structures. 
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2. THE SMM METHOD IN 2D 

2.1 Structure and Gap Mode Description 
To demonstrate the SMM method, we analyze in detail a tapered gap in 2D. The analyzed 
structure is shown in Fig. 1. All the configurations are exactly the same as previous work for 
comparison [22]. A vacuum taper gap is formed between two gold media. The initial width of 
the taper, iW  is 316.4 nm, and the final width, fW  is 1.512nm. The relative permittivity for 

the gold mε  is set to -16.2+0.5i, and for vacuum vε  is 1. This structure is uniform and infinite 
in z -direction.  

The wave mode in the taper gap used to calculate the optical transmission efficiency is the 
lowest order TM surface plasmon (SP) mode, which has the transverse magnetic field 
component in z -direction and electric field component in x - and y -directions. The 
wavelength in vacuum vλ  is 632.8 nm. Only the y -component electric field and z -
component magnetic field are considered, because they are the transverse components 
required for formulating the orthogonality relations.  

 
 

Fig. 1. The geometry of a 2D taper gap structure between two gold media. The 
widths iW  and fW  are fixed and the length L  varies for different taper 

angleθ .  For comparison with past works, iW  = 316.4nm,  fW  = 1.512nm 

and the permittivity of gold mε is -16.2 + 0.5i, vε is 1 for vacuum. 

2.2 Method 
The methodology here is based on the mode matching theory truncated to a single mode [24]. 
The taper gap is divided into small steps along x -direction (as shown in Fig. 2), and the 
method is then implemented on each two adjacent steps to calculate the transmission 
matrix tM . A 0.1 nm step size is applied here.  

Assuming two adjacent steps, step 1 and step 2, in which 
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and can be solved using Eqs. (1) and (2) and the orthogonality relations:  
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Fig. 2. The schematic diagram of the SMM model. The calculation step size in 
x -direction is 0.1 nm. iH and rH represent the incident and reflective 

transverse magnetic fields, respectively. 
 

To take into account the influence of the dissipation in each step, the propagation matrix 
pM  should be considered, which is formed by 
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β  is the SP wave vector, and x∆ is the distance SP propagating in a step. 
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The transmission efficiency result can be achieved by 
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Subscript α indicates the step number. For this 2D taper gap structure, the magnetic and 
electric fields can be expressed by the function of the gap width w , 
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where 1C  and 2C  are the normalization coefficients , ω  is the angular frequency of SP wave 
and vk is the wave vector in vacuum. The wave vector in the taper gap β  is also a function of 
w  and can be determined by equation [25], 
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2.3 Results  
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Fig. 3. The SP wave vector β at different widths in the taper gap. Blue line 
represents the real part of β , and red line is the imaginary part. 
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Figure 3 shows the dependence of the wave vector β on the gap width. The real part (blue 
line) of β is close to vacuum wave vector vk when the gap width w is above 0.3 vλ , and then 
becomes large as w  decreases. Similar to the real part, the imaginary part (red line) of β is 
very small (~ 0.001 vk ) when w is 0.5 vλ and increase rapidly when w close to 0. For the 
imaginary part of wave vector is related to the dissipation, it can be seen that the wave loss is 
significant with small w even the permittivity imaginary part of the gold is only 0.5 in this 
example.  
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Fig. 4. The dependence of the normalized optical transmission efficiency 
through the taper gap on the taper angle θ . Blue line: with dissipation, in 
which mε  =  -16.2 + 0.5i; Red line: without dissipation, mε  =  -16.2. 

 
Figure 4 shows the dependence of the normalized optical transmission efficiency through 

the taper gap structure on the taper angleθ , calculated using Eqs. (1)-(9). Both the cases with 
dissipation and without dissipation are calculated. For the case without dissipation, the 
imaginary part of the relative permittivity is set to zero. Without dissipation (red line), the 
transmission efficiency is unity whenθ  is zero because there is negligible back-scattering for 
this adiabatic taper. The transmission efficiency decreases as the taper angle becomes larger 
due to backscattering. With the dissipation (blue line), the transmission efficiency goes to 
zero for 0°, since longer tapers have greater material losses. The transmission efficiency 
increases to maximum about 0.71 when θ  is 14°. This is the optimum angle for the trade-off 
between back-scattering that dominates for large angles and losses that dominate for small 
angles. For the limit situation, the whole structure is equivalent to an infinite 2D 
subwavelength waveguide at 0° taper angle which is corresponding to infinite dissipation and 
a gold plate with a 1.512 nm wide slit at 180° which is corresponding to maximum reflection. 
This optimum angle for the 2D taper gap agrees well with the previous work using 
comprehensive FDTD calculations where the value of 13.5° was found as the optimum [22]. 

For consistency within this work, the optical transmission efficiency of a 2D taper gap 
with another gold permittivity ( mε is -11.44 + 1.12i) has also been investigated [23, 26], 
which is shown in Fig. 5. It can be seen that this taper gap structure has larger transmission 
efficiency at high taper angle condition than the former one due to its smaller reflection, but 
lower transmission peak (0.58 at 22.5°) due to loss. 
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Fig. 5. The dependence of the normalized optical transmission efficiency 
through the taper gap on the taper angle θ . Blue line: with dissipation, in 
which mε  =  -11.44 + 1.12i; Red line: without dissipation, mε  =  -11.44. 

 
To further test the validity of the SMM method, a 3D gold taper rod is considered below. 

 

3 THE SMM METHOD IN 3D 

3.1 Structure and Gap Mode Description 

 
 

Fig. 6. The model of a 3D gold taper rod structure in vacuum. Here 2 a× = 
600nm, 2 b×  =  10nm and the permittivity of gold mε  is -11.44 + 1.12i, vε is 
1 for vacuum. 

 
Figure 6 shows the model of the 3D gold taper rod structure in vacuum. The vacuum 
wavelength vλ  is 632.8 nm. The initial diameter 2 a× and the final diameter 2 b× are 600 nm, 
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10 nm, respectively. The gold permittivity mε is -11.44+1.12i, and the vacuum permittivity 

vε is 1. (Note that the different value of the relative permittivity here is used for direct 
comparison with past numerical calculations). 

The SP wave mode used here is the lowest order surface plasmon TM mode, whose 
magnetic field is parallel to the azimuthal direction in the cylindrical coordinate system. 
Therefore, the ϕ -component of magnetic field and the r -component of electric field are 
considered for the orthogonality relations. The vacuum wavelength vλ of SP wave is also 
632.8 nm. All the configurations are the same as a recent work [23]. 

Figure 7 shows the schematic diagram of the SMM mode in 3D gold taper rod. The 
calculation step in x -direction is 0.1 nm as shown. 

 
Fig. 7. The schematic diagram of the SMM model in 3D gold rod. The 
calculation step size in x -direction is 0.1 nm. iH and rH represent the incident 
and reflective transverse magnetic fields, respectively. 

3.2 Method 

A similar methodology is applied in this example as in the 2D case. Instead of yE , zH , the 
r -component electric field rE and ϕ -component magnetic field Hϕ are considered: 
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1C , 2C  are the normalization coefficients, I and K are the first kind and the second kind of 
modified Bessel functions, respectively, and the subscripts indicate the orders [27]. ω is the 
angular frequency of SP wave and ρ is the rod radius at certain position. p is defined as  
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vk , mk  are the wave vectors in vacuum and gold, respectively. Using the boundary condition, 
SP wave vector β can be achieved by equation below [27], 
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Here the orthogonality relations are in form as: 
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3.3 Results 
 
Figure 8 shows the dependence of the wave vector β on the diameter 2ρ. The real part (blue 
line) of β is close to vk when diameter is over 0.2 wavelength but increases rapidly when the 
diameter is made very small. The imaginary part (red line) is 0.01 vk when the diameter equals 
to half vλ and increases rapidly to vk when the taper rod diameter decreases to 0.01 vλ .  

Figure 9 shows the dependence of the normalized optical transmission efficiency through 
the gold taper rod structure on the taper angle θ, as calculated using the same basic method as 
in Eqs. 1-5, but with modification to the cylindrical geometry as represented by Eqs. 10-14. 
Without dissipation, the transmission efficiency decreases from 1 at zero degree to 0.42 at θ  
= 60°. For there is lossless-metal, mode reflection in this case is larger than the 2D taper gap 
case, which contributes to the larger optimal taper angle. With dissipation (blue line), the 
optical transmission efficiency reaches a maximum of 0.44 at θ  = 32°. As is consistent with 
the 2D case, the transmission is zero at 0° due to material losses over an infinitely long taper. 
Therefore, the optimal taper angle is bigger than in 2D, which is due to the combined effects 
of greater loss and greater mode reflection. 
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Fig. 8. The SP wave vector β at different widths in the taper gap. Blue line 
represents the real part of β , and red line is the imaginary part. 
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Fig. 9. The dependence of the normalized optical transmission efficiency 
through the gold taper rod on the taper angle θ . Blue line: with dissipation, in 
which mε  =  -11.44 + 1.12i; Red line: without dissipation, mε  =  -11.44. 

 
 

In a recent work, the adiabatic method has been applied to small taper angle realm and the 
FDTD method to large taper angle realm. The optimal taper angle for maximum electric field 
at exit side was 35°, which is in good agreement with the result of this paper [23]. 
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4 DISCUSSION 

4.1 Comparison with Other Methods 
Two other methods have been used to calculate the SP wave propagation properties through 
metal taper structures: the FDTD method and the adiabatic method. Both of them have very 
distinct advantages and drawbacks as discussed above. Here we add the SMM method. The 
SMM method introduced by this paper considers both the mode reflection and dissipation, 
which allows for operation over a wide range of angles (approximately 0°-70°, as discussed 
below). This method inherently contains the physics associated with the lowest-order mode, 
so that it is easy to interpret the results in terms of the properties of that mode, and to make 
generalizations to other geometries. Furthermore, the method is very efficient due to its 
analytic nature.  

4.2 Validity of the SMM Method 
Considering past FDTD calculations, there is discrepancies with the SMM work for angles 
greater than 90° [22]. In particular, the FDTD calculations show a faster reduction in the 
transmitted light than the SMM method. This error is due to the truncation of the SMM 
method to a single mode only, whereas there is scattering to higher order modes for highly-
angled tapers. While in principle, this problem can be solved by adding higher modes into the 
calculation, this will remove the benefit of simplicity in the proposed approach. Therefore, we 
suggest that this method may be applied for tapers in the range of approximately 0°-70°, and 
for larger angles, comprehensive numerical methods should be used. Neglecting higher-order 
modes also removes the possibility of coupling to anti-symmetric modes in systems where 
there is symmetry breaking. 

4.3 Extensions of this Work 
The SMM method described here can be generalized to other structures, not only simple 
linear tapers. For example, it is possible to consider a nonlinear taper structure that would 
reduce the back scattering and enhance the transmission efficiency. For the 3D gold taper rod, 
at the optimum angle 32°, 28% of the transmission loss is from back scattering, which means 
there is room for further the enhancement in the transmission efficiency by optimizing the 
taper geometry with a nonlinear taper. 

Another possible extension of this work is the application of the SMM method to periodic 
structures. These structures are interesting for potential Bragg resonances [28, 29]. This 
would require using periodic conditions (or scaled periodic conditions when including losses) 
in the matrix calculations. 

Finally, an interesting extension of this work would be to deduce analytic results for the 
optical transmission based on the SMM method. Since the method is semi-analytic in the 
present form, a parametric description of the mode-matching and propagation would allow for 
a fully-analytic treatment. While that proposal is a challenging endeavor, beyond the scope of 
this present investigation, it has the potential benefit of allowing for a fully analytic 
determination of the optimum structure simply by taking a derivative.  

5 CONCLUSION 
In summary, a simple SMM method is presented to calculate the optical transmission 
efficiency through subwavelength metal taper structures. It is found that a 14° optimal angle 
with 71% transmission efficiency for the 2D taper gap structure in gold and a 32° optimal 
angle with 44% transmission efficiency for the 3D taper gold rod structure, which both agree 
well with the previous results [22, 23]. The method is more efficient than comprehensive 
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numerical calculations and more accurate than adiabatic methods; it retains the influence of 
reflection and losses simply by multiplying out 2-by-2 matrices. The SMM method may be 
extended to other nonlinear geometries, for example, to optimize the subwavelength 
squeezing of light or to enhance Bragg resonances. Many applications that presently use 
plasmonic field enhancements stand to benefit from the SMM method, such as SERS which 
allows the technique to be sensitive enough to detect single molecule [9-14]. 
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