
P
n

J
N
E

P

B

M
C
W
1

M
N
E

P

B

F
N
N
C
B

M
N
E

P

B

S
L
C
7
L

V
N
E

P

B

A
M
3

Journal of Biomedical Optics 15�4�, 046007 �July/August 2010�

J

rincipal component model of multispectral data for
ear real-time skin chromophore mapping
ana M. Kainerstorfer
ational Institutes of Health

unice Kennedy Shriver National Institute of Child Health
and Human Development

rogram on Pediatric Imaging and Tissue Sciences/Section
on Analytical and Functional Biophotonics
�PPITS/SAFB�

ethesda, Maryland 20892
and

edical University of Vienna
enter for Medical Physics and Biomedical Engineering
aehringer Strasse 13

090 Vienna, Austria

artin Ehler
ational Institutes of Health

unice Kennedy Shriver National Institute of Child Health
and Human Development

rogram in Physical Biology/Laboratory of Integrative and
Medical Biophysics/Section on Medical Biophysics
�PPB/LIMB/SMB�

ethesda, Maryland 20892

ranck Amyot
ational Institutes of Health
ational Institutes of Neurological Disorders and Stroke
linical Neuroscience Program
ethesda, Maryland 20892

oinuddin Hassan
ational Institutes of Health

unice Kennedy Shriver National Institute of Child Health
and Human Development

rogram on Pediatric Imaging and Tissue Sciences/Section
on Analytical and Functional Biophotonics
�PPITS/SAFB�

ethesda, Maryland 20892

tavros G. Demos
awrence Livermore National Laboratory
MS
000 East Avenue, L-592
ivermore, California 94551

ictor Chernomordik
ational Institutes of Health

unice Kennedy Shriver National Institute of Child Health
and Human Development

rogram on Pediatric Imaging and Tissue Sciences/Section
on Analytical and Functional Biophotonics
�PPITS/SAFB�

ethesda, Maryland 20892

ddress all correspondence to: Jana Kainerstorfer, NIH/NICHD/PPITS/SAFB 9
emorial Drive, Room B1E11, Bethesda, MD 20982. Tel: 301-594-0352; Fax:

01-480-2427; E-mail: kainersj@mail.nih.gov
ournal of Biomedical Optics 046007-
Christoph K. Hitzenberger
Medical University of Vienna
Center for Medical Physics and Biomedical Engineering
Waehringer Strasse 13
1090 Vienna, Austria

Amir H. Gandjbakhche
Jason D. Riley
National Institutes of Health
Eunice Kennedy Shriver National Institute of Child Health

and Human Development
Program on Pediatric Imaging and Tissue Sciences/Section

on Analytical and Functional Biophotonics
�PPITS/SAFB�

Bethesda, Maryland 20892

Abstract. Multispectral images of skin contain informa-
tion on the spatial distribution of biological chro-
mophores, such as blood and melanin. From this, param-
eters such as blood volume and blood oxygenation can be
retrieved using reconstruction algorithms. Most such ap-
proaches use some form of pixelwise or volumetric recon-
struction code. We explore the use of principal compo-
nent analysis �PCA� of multispectral images to access
blood volume and blood oxygenation in near real time.
We present data from healthy volunteers under arterial oc-
clusion of the forearm, experiencing ischemia and reac-
tive hyperemia. Using a two-layered analytical skin
model, we show reconstruction results of blood volume
and oxygenation and compare it to the results obtained
from our new spectral analysis based on PCA. We dem-
onstrate that PCA applied to multispectral images gives
near equivalent results for skin chromophore mapping and
quantification with the advantage of being three orders of
magnitude faster than the reconstruction algorithm. © 2010
Society of Photo-Optical Instrumentation Engineers.

�DOI: 10.1117/1.3463010�

Keywords: multispectral imaging; tissue oxygenation; blood volume;
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1 Introduction
Assessing spatial distributions of skin chromophores such as
blood and melanin can be achieved by diffuse multispectral
imaging. Acquiring several wavelength images in the near-
infrared spectrum together with an analytical skin model, al-
lows fitting the data to the model, thus extracting and map-
ping the spatial distribution of those parameters.

Diffuse multispectral imaging of the skin and image recon-
struction of skin chromophores has found its application in
the clinic, successfully assessing parameters for healthy and
diseased skin.1–7 Assessment of the metabolic state of skin

1083-3668/2010/15�4�/046007/9/$25.00 © 2010 SPIE
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urface lesions is often desired in clinical routines as a mea-
ure for treatment outcome. Near-infrared diffuse multispec-
ral imaging of the skin combined with an analytical, numeri-
al, or stochastic skin model can provide this information by
roducing spatial maps of skin chromophore
oncentrations.5,8,9 The main parameters of interest are blood,
elanin, lipids, and water, which exhibit separable absorption

oefficients in the near-infrared wavelengths range. The dis-
dvantage of finding these parameters by fitting the data to an
nalytical skin model lies in the computationally expensive
ata postprocessing. This makes immediate conclusions diffi-
ult or even impossible if the image size is large, whereas in
linical routines it is often desired to assess the metabolic
tate of a tumor in real time. We are not aware of any current
maging protocol and reconstruction algorithm, which can as-
ess quantitative blood concentrations in real time.

Principal component analysis �PCA�, first introduced in
901,10 is a statistical tool, which linearly transforms data into
n orthogonal coordinate system, where the axes correspond
o the inherent information within the data set. The idea is to
eveal the data components �in a decreasing order� that best
xplain the variance in the data. PCA has found applications
n fields such as face recognition,11,12 and image
ompression,13 and is a common technique for finding pat-
erns in high dimensional data.14 It is further used for analyz-
ng and visualizing gene expression data,15–17 for dimension
eduction in hyperspectral imaging,18 as well as image
nhancement.19 The main advantage of PCA is the speed of
omputation, which is on the order of seconds per image. For
he biomedical optical imaging field, PCA found its place in
arious applications. The usage ranges from noise reduction
nd image enhancement19 in multispectral data for biological
ell analysis20 to pattern analysis for skin lesion
lassification.21 Applied to RGB images, PCA was used on
elative color features for unsupervised lesion
lassification.22–24

When imaging the skin in the visible light range, the domi-
ant absorbing materials are blood and melanin and should
herefore explain most of the variance in multispectral data.
revious work by Tsumura et al.25 showed that skin color in
igital RGB images can be described by attributing melanin
nd blood to the first two principal components. Fadzil et al.26

nd Nugroho et al.27 used the same idea and applied PCA and
ndependent component analysis to RGB data for blood and

elanin extraction of vitiligo lesions to qualitatively evaluate
he skin repigmentation progression.

In this work, we evaluate the use of PCA for retrieving
uantitative near-real-time blood volume and blood oxygen-
tion maps of skin areas of several square centimeters from a
elected set of spectral images in the near-infrared range
700–1000 nm�. Our experimental protocol involves imag-
ng of healthy volunteers’ lower forearm before, during, and
fter arterial occlusion. Occlusion experiments were chosen,
s the behavior of blood oxygenation is well known, which is
schemia during and reactive hyperemia after release of pres-
ure.

In the first part of the paper, we describe the two layered
nalytical skin model used and show reconstruction results of
lood volume and blood oxygenation over time. In the second
art, we apply PCA to the same data set and show that the first
igenvector correlates with blood volume and the second ei-
ournal of Biomedical Optics 046007-
genvector with blood oxygenation. Finally, we compare re-
construction results to the eigenvectors found by PCA and
demonstrate the relationship between blood volume and the
first eigenvector, as well as the relationship between blood
oxygenation and the second eigenvector.

2 Materials
2.1 Instrumentation
The noninvasive, noncontact diffuse reflectance multi-spectral
imaging system used in this work has been described in detail
elsewhere5 and shall only be described briefly here. Polarized
light from a white-light source �halogen 150 W, Techniquip,
Pleasanton, California� is used for illumination of the sample.
A second polarizer �Optarius, Malmesbury, UK� is placed be-
fore the detection unit, with its polarization orientation per-
pendicular to the incident beam polarization, thus guarantee-
ing diffuse reflectance measurements and removal of specular
reflection.28

Images are captured by a CCD camera �Princeton Instru-
ments CCD-612-TKB, Roper Scientific, Trenton, New Jersey�
after passing consecutively one of six narrow bandpass filters
�40 nm FWHM, CVI Laser, Albuquerque, New Mexico� on a
filter wheel centered at 700, 750, 800, 850, 900, and
1000 nm. For calibration purposes, images from a 90% re-
flectance paper �Kodak, Rochester, New York� are also ac-
quired at each image filter.

2.2 Occlusion Experiments on Healthy Volunteers
A pressure cuff was used to occlude the upper right arm of
five right-handed healthy volunteers with 180 mm Hg pres-
sure. This amount of pressure was chosen to achieve arterial
occlusion, and the pressure lasted for 5 min. Multispectral
images were taken every 30 s before occlusion, during occlu-
sion and for 5 min afterward, resulting in 21 time points in
total. Occlusion experiments were chosen as the behavior of
blood volume and blood oxygenation over time is well
known, which is ischemia during, and reactive hyperemia af-
ter occlusion.4,8,29,30

All volunteers signed a consent form approved by the In-
stitutional Review Board of the Eunice Kennedy Shriver Na-
tional Institute of Child Health and Human Development un-
der the Protocol No. 08-CH-0001.

3 Methods
3.1 Reconstruction of Skin Chromophores
Diffuse multispectral images obtained during the occlusion
experiment were used for reconstruction of blood volume and
blood oxygenation. Preprocessing of the data included spec-
tral and spatial illumination artifact removal as described in
Ref. 5. The next step in preprocessing was rigid-body regis-
tration for motion artifact removal and was performed by
MultiStackReg in Image J �Bethesda, Maryland�. In a last
step, curvature correction was performed to remove shape
based intensity bias.31

Four wavelength ��� images were used �700, 750, 800, and
850 nm� and reconstruction was performed using MATLAB

�Math Works, Natick, Massachusetts� by a least-squares non-
linear fitting of the data to the analytical skin model used.5

The analytical skin model is based on a two-layered structure,
July/August 2010 � Vol. 15�4�2
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he first one being the melanin containing epidermis, the sec-
nd one being the blood containing dermis, with optical prop-
rties of the skin taken from literature values,32–34 and can be
ritten as

Ie��� = SAe���2Ad��� , �1�

here Ie is the wavelength dependent intensity measured in
he CCD camera. The attenuation by the epidermis, Ae, is
ased on Lambert’s law and can be written as

Ae��� = e−�e.de = e−�vm0.66·1011·�−3.33·de� �2�

ith vm the concentration of melanin, de the thickness of the
pidermis and �e the absorption coefficient of the epidermis,
hich is based on the absorption of melanin. The attenuation
y the dermis, Ad, which includes the absorption due to blood
olume, vdb, and oxygenation, vboxy, is based on the analytical
olution of photon migration in turbid media35 based on ran-
om walk theory and can be written as

Ad��� =
e−2��d/�s��

�24��d/�s��
�1 − e−�24��d/�s���

� 1.06 − 1.45��d/�s��
0.35, �3�

�d = vdb��1 − vboxy� · �deoxy + �vboxy� · �oxy� , �4�

here �s� is the reduced scattering coefficient and �d is the
bsorption coefficient of the dermis, with �deoxy and �oxy be-
ng the absorption coefficients of deoxygenated and oxygen-
ted blood, respectively. The scaling factor S, blood volume,

db, and blood oxygenation, vboxy, are unknown a priori and
ere solved for.

The scaling factor was calculated for each subject and time
oint and averaged over time. This so obtained subject spe-
ific scaling factor was then used to compute the 2-D maps of
lood volume and oxygenation over the course of the experi-
ent. Computational time for each 2-D image, which is in the

rder of 200�200 pixels, was 45 min on a 2.6-GHz, 3-GB
AM personal computer �PC�.

PCA
CA10 linearly transforms the data into an orthogonal coordi-
ate system whose axes correspond to the principal compo-
ents in the data, i.e., the first principal component accounts
or as much variance in the data as possible and, successively,
urther components capture the remaining variance. Through
n eigenanalysis, the principal components are determined as
igenvectors of the data set’s covariance matrix and the cor-
esponding eigenvalues refer to the variance that is captured
ithin each eigenvector.

We use three wavelengths �750, 800, and 850 nm� from
he occlusion experiment, which provides three 2-D images.
hese wavelengths were chosen because they are centered
round 800 nm, which is the isosbestic point of blood, where
he absorption coefficient of deoxygenated �Hb� and oxygen-
ted �HbO2� blood are equal. Figure 1 shows the absorption
pectra for Hb and HbO2, illustrating that the absorption of
b is dominant at 750 nm and for HbO at 850 nm. In this
2

ournal of Biomedical Optics 046007-
wavelength range, the dominant chromophore is blood and
should therefore explain most of the variance of the data.

After subtracting the mean of the data, PCA was per-
formed on the collection of 3-D pixel vectors �x1 , . . . ,xn� of
the zero mean data. We first diagonalize the covariance matrix

Cov�X� = E�XXT� , �5�

where X= �x1 , . . . ,xn� is the zero mean data matrix. The three
eigenvectors p1 , p2,p3—the principal components ordered ac-
cording to the magnitude of their eigenvalues—provide the
transformed data

Y = WTX , �6�

where W= �p1 p2 p3�. Rearranging the vectors in Y into ma-
trices yields again three 2-D images. The first image repre-
sents the projected data along the first eigenvector. As men-
tioned above, blood is the dominant chromophore and it will
turn out that the first layer correlates with blood volume. The
second image is each data point’s projection along the second
eigenvector, and we will show that it correlates with blood
oxygenation. The computational time to process one set of
data �three images at 21 timepoints� on a 2.6-GHz, 3-GB
RAM PC was in the order of 1 s.

5 Results
In order to evaluate the potential of PCA to retrieve the spatial
distribution of chromophores, we first generate a conventional
pixelwise reconstruction of blood volume and oxygenation
over an imaging area of several centimeters. We then compare
results after applying PCA to the contributions of the principal
components. The objective was to demonstrate the anticipated
response �ischemia and reactive hyperemia� for all subjects
and a qualitative and quantitative assessment of the consis-
tency between reconstruction results and the eigenvectors.

Figure 2 shows 2-D reconstruction maps of fractional
blood volume concentrations over time for one representative
healthy volunteer’s lower forearm. Only every second time
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Fig. 1 Absorption spectra of deoxygenated �Hb� and oxygenated
�HbO2� blood with the isosbestic point of blood at 800 nm. For 750
and 850 nm, the absorption coefficients for oxygenated and deoxy-
genated blood are well separable.
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oint is shown for conciseness, with the first row showing the
aseline before occlusion, rows 2 and 3 showing results dur-
ng and after occlusion, respectively. Veins contain more
lood than the surrounding tissue and are clearly separable in
he reconstruction maps by increased blood volume. Figure 3
hows the corresponding blood oxygenation result over time,
efore, during, and after occlusion. Veins do not show a sig-
ificant difference in blood oxygenation compared to sur-
ounding tissue and cannot be easily separated. The overall
issue oxygenation follows the typical expected trend of is-
hemia during occlusion �drop of oxygenation compared to
aseline� and reactive hyperemia after occlusion �over shoot
ompared to baseline�.

To evaluate the ischemic and hyperemic behavior even fur-
her, average concentrations of blood volume and oxygenation
ere calculated over the entire 2-D maps for each time point.
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ig. 2 Fractional blood volume concentrations over time. The first
ow shows the reconstructed blood volume map over several centi-
eters of a lower forearm before occlusion. The second row shows
lood volume of the same area of the arm during occlusion, and the
hird row shows results after release of pressure. Veins are clearly
istinguishable due to the increase in blood compared to surrounding

issue.
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ig. 3 Fractional blood oxygenation over time of the same area as
hown in Fig. 1. The second row shows blood oxygenation during
cclusion and the expected ischemic behavior, which is a decrease in
xygenated blood. The third row shows the expected hyperemic be-
avior, which is an overshoot of oxygenation.
ournal of Biomedical Optics 046007-
The results for four subjects can be seen in Fig. 4�a� for blood
volume and Fig. 4�b� for blood oxygenation, with error bars
given by the standard deviation over all pixels per time point.
Only four of the five subjects were included in the analysis, as
the analysis of the fifth subject was hindered by motion arti-
facts greater than one-third of the image size. The dashed
lines indicate the time points of beginning and ending of ap-
plied pressure. Figure 4�a� shows that blood volume stays
over time within 5% variation, while Fig. 4�b� shows changes
in blood oxygenation over time, corresponding to ischemia
during and reactive hyperemia after occlusion.

Figure 5 shows a set of three wavelength images �750,
800, and 850 nm�, represented in a 3-D scatter plot in the
wavelength space, with each pixel being color coded by the
reconstruction results of blood volume �Fig. 5�a�� and blood
oxygenation �Fig. 5�b��. Data shown in Fig. 5 are from the
same subject as in Figs. 2 and 3 at the twelveth time point,
which is the first point after occlusion. All other subjects and
time points show a similar behavior, which can be summa-
rized as follows: �i� the data are of elliptical distribution, in-
dicating that they can be described by a linear transformation.
�ii� The reconstruction values of blood volume lay along the
main axis of the ellipse, which will be described as eigenvec-
tor 1 �vertical black line in Figs. 5�a� and 5�b��, and are well
separable. �iii� The reconstruction results of blood oxygen-
ation show a separation perpendicular to the main axis of the
ellipse, which will be described as eigenvector 2 �horizontal
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Fig. 4 �a� Average blood volume and �b� Blood oxygenation over time
for four subjects. The dashed lines indicate start and end of occlusion.
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lack line in Figs. 5�a� and 5�b��. All three points combined
ndicate that a linear transform of the data by PCA is not only
alid, but that it should be possible to separate blood volume
nd oxygenation. The separation between blood volume and
xygenation with PCA can only be possible if alignment per-
endicular to each other is given. This is an inherent necessity
or PCA because data are being described with eigenvectors,
hich are perpendicular to each other.

We subsequently performed PCA for each set of wave-
ength images and time points for all subjects. Doing so, we
btained three eigenvectors per time point and subject. Eigen-
ector 1 was found to be the same for each subject and over
ll 21 time points, except for small angular shifts �data not
hown�, and being well aligned with blood volume �see Fig.
�a��. Stability over time and subjects in eigenvector 1 indi-
ates reliability in calculation. Eigenvector 2 and 3 showed
arge deviations within one subject and no consistent pattern
as found over time, indicating that the separation between

igenvectors 2 and 3 was ambiguous. An ambiguity in eigen-
ectors 2 and 3 indicates that blood volume and oxygenation
annot be reliably separated. Neither eigenvector 2 nor 3
howed any temporal change similar to blood oxygenation

ig. 5 3-D scatterplots of wavelength specific intensity data color code
he eigenaxes found by PCA. Eigenvector 1 is aligned with blood vol

ig. 6 Transformed data after PCA in the eigenvectors 2 and 3 plane, c
erformed on one time point, �b� over the data including all time po
igenvectors obtained in �b�. �Color online only.�
ournal of Biomedical Optics 046007-
over time. Figure 6�a� demonstrates this nonspecific behavior,
showing a transformed data set along the second and third
eigenvector, color coded by blood oxygenation. Data shown
here are from the same subject as in Fig. 5, but at different
time points. Because the apparent structure of the oxygenation
results is not aligned with either eigenvector, PCA failed to
attribute one specific direction to blood oxygenation when
performed on one single data set of three wavelength images.

The blood oxygenation color-coded data appeared aligned
and perpendicular to the primary axis of the ellipse when
looking at each time point separately. The next step in the
analysis was therefore to create one large data set per subject,
which included all time points �21�3 wavelength images�
and resulted into one set of eigenvectors per subject. Figure
6�b� shows the result of the same subject for the large data set
color coded by blood oxygenation. The data are well aligned
along the second eigenvector with blood oxygenation values
being aligned in the same direction, therefore showing a de-
pendence of the second eigenvector on oxygenation. Figure
6�c� shows the same data as in Fig. 6�a� �one time point� but
transformed with the eigenvectors found by the data set in-

�a� blood volume and �b� blood oxygenation. The black lines indicate
nd eigenvector 2 with blood oxygenation. �Color online only.�

ded with the corresponding blood oxygenation results. �a� shows PCA
d �c� shows the transformed data of one time point using the set of
d with
ume, a
olor co
ints, an
July/August 2010 � Vol. 15�4�5
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luding all time points. When applying the subject specific
igenvector set, the data and their oxygenation become
ligned to the second eigenvector. This phenomenon is con-
istent for all subjects and time points, making it possible to
eparate blood volume and oxygenation.

In Fig. 7, we demonstrate the validity of image summation
creating a single data set for all time points� for PCA analy-
is. Here we assume that the set of 21 images is sufficient to
evelop a patient-specific component space. We plot n against
ngular offset of the eigenaxes, where n is the number of
mages used to generate the PCA summation space. For each

we generate 100 random choices of images �note that du-
lication occurs only for n=1 and n=21�. Figure 7�a� shows
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ig. 7 Validity of image summation for PCA. Solid lines are the aver-
ge distance from local ensemble plus their standard deviation.
ashed lines are the distance of local ensemble average from “truth”

21 image ensemble�. �a� shows data from eigenvector 1; �b� from
igenvector 2; and �c� from eigenvector 3.
ournal of Biomedical Optics 046007-
the plot of average angular separation of an individual sum-
mation space from the average space �21 images�, with stan-
dard deviation for eigenvector 1 �data in blue�. The separation
of the final angular eigensystem from ground truth �given as
the eigensystem of the entire image ensemble� is also shown
�data in red�. Figures 7�b� and 7�c� show the same data for
eigenvectors 2 and 3.

Figure 8 shows the 2-D representation of the transformed
data along the three eigenvectors over time for the same sub-
ject as in Figs. 2 and 3. The eigenvectors used were obtained
by taking a combined data set of all time points per subject.
Figure 8�a� shows the result for the first eigenvector, which
shows the same structures and temporal behavior as blood
volume in Fig. 2. Eigenvector 2 can be seen in Fig. 8�b�,
which shows a similar temporal and spatial appearance as
blood oxygenation, as seen in Fig. 3. Figure 8�c� shows ei-
genvector 3, which does not show significant trends or struc-
tures and might be attributed to noise. It shall be mentioned
that the scales in the three images are different from each
other and that the first eigenvector is one magnitude larger
than eigenvectors 2 and 3.

The results in Fig. 9 show the average distances along the
eigenvectors. The average was taken as in Fig. 4 over the
entire 2-D maps for each time point, with error bars given by
the standard deviation over all pixels per time point. The
qualitative behavior over time for eigenvector 1 �Fig. 9�a��
matches the behavior seen in Fig. 4�a�; eigenvector 2 �Fig.
9�b�� shows the same temporal behavior as Fig. 4�b�. Com-
bined with the results from Figs. 5 and 6, the data suggest that
the first eigenvector can be described by blood volume and
the second one by blood oxygenation. The third eigenvector
�Fig. 9�c�� does not show any change over time.

Figure 10�a� shows the direct comparison between eigen-
vector 1 and blood volume and Fig. 10�b� between eigenvec-
tor 2 and blood oxygenation for all pixels and time points per
subject. A clear, almost linear relationship can be seen be-
tween eigenvector 1 and blood volume, indicating that these
two are uniquely correlated. The same trend can be seen for
all subjects, but subject 3 shows a shift toward higher blood
volume values. Figure 10�b� shows the results for eigenvector
2 versus blood oxygenation. The relationship is not as linear
but blurred compared to Fig. 10�a�, as well as shifted along
the eigenvector axis. This indicates that blood oxygenation
values can be recovered within a constant shift compared to
reconstruction results.

6 Discussion
Diffuse multispectral imaging of skin in the near-infrared
wavelength range allows for quantitative chromophore assess-
ment, which can be used to attain functional information.
Blood volume and oxygenation are especially of interest for
skin-lesion treatment follow-up as a parameter of the angeo-
genic process and metabolic state of a tumor. Previous work
of assessing these parameters in healthy and diseased skin1–9

included fitting the acquired intensity data to an analytical
model of photon migration in diffuse media. Reconstructed
concentration maps are therefore based on the wavelength-
dependent absorption coefficient and require an accurate
model. Furthermore, model-based reconstruction is computa-
July/August 2010 � Vol. 15�4�6



t
f

a
l
k
g

F
s
s
a

Kainerstorfer et al.: Principal component model of multispectral data for near real-time skin chromophore mapping

J

ionally intense and time consuming, therefore not applicable
or real-time assessment in a clinical setting.

PCA has been used as a tool to analyze digital RGB im-
ges for extracting blood and melanin concentration and for
esion segmentation in various conditions.21–25 To our best
nowledge, no attempt was done for extraction of blood oxy-
enation using PCA from RGB or multispectral images or for
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ig. 8 Eigenvectors obtained by PCA over time for one subject. �a�
hows the first eigenvector, which corresponds to blood volume; �b�
hows the second eigenvector, which corresponds to blood oxygen-
tion; and �c� shows the third eigenvector.
ournal of Biomedical Optics 046007-
comparison of PCA to reconstruction results. The reconstruc-
tion results of four healthy volunteers undergoing occlusion of
the upper arm and imaged at the forearm �Fig. 2–4� presented
in this work demonstrate that the spatial distribution �Fig. 8�
and temporal behavior �Fig. 9� of eigenvector 1 matches that
of blood volume and eigenvector 2 matches that of blood
oxygenation. In order to obtain these results, one data set,
including all time points per subjects, was created, because
we have seen that PCA does not otherwise pick up on blood
oxygenation. Surprisingly, the subject-specific eigenvector set
is the same for all four subjects with only small angular shifts
of �7 deg �data not shown�. This overlap in eigenvectors
indicates that it might be possible to create one general set of
eigenvectors describing blood volume and oxygenation. This
of course raises the question if such a description is valid
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Fig. 9 Average eigenvectors over time for four subjects. The dashed
lines indicate start and end of occlusion. �a� shows eigenvector 1, �b�
eigenvector 2, and �c� eigenvector 3.
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hen applied to a different data set, i.e., from skin lesions,
nd if the transformation still holds. In addition, arterial blood
ould not be imaged because arteries lie deeper in the skin. It
ould be of interest to validate the PCA results with arterial
xygenation values, which are on the order of 99%.

The results also indicate an almost linear dependence of
he first eigenvector with blood volume �Fig. 10�a��, demon-
trating that values from PCA can be converted to actual con-
entrations of blood volume. Only subject 3 showed a devia-
ion from the others in terms of a shift toward higher values of
lood volume. This shift might be explained by the nature of
ur reconstruction algorithm, which assumes the same epider-
al thickness for all subjects’ forearms �60 �m�. We have

ata �unpublished�, which shows that a difference of the epi-
ermal thickness within the standard deviation of reported
iterature values for arms will lead to a significant overestima-
ion of blood volume. The shift in Fig. 10�a�, can therefore be
xplained by the inaccuracy of the reconstruction rather than
ue to PCA errors.

ig. 10 �a� Blood volume versus eigenvector 1 and �b� blood oxygen-
tion versus eigenvector 2.
ournal of Biomedical Optics 046007-
Figure 10�b� indicates that there is a defined relationship
between eigenvector 2 and blood oxygenation, but it is much
more blurred and shifted along the eigenaxis. We hypothesize
that the blurring might be partially explained by reconstruc-
tion errors of blood oxygenation as well as PCA itself. As
mentioned above, PCA applied to one single image did not
successfully align the axis of oxygenation changes to one spe-
cific eigenaxis and a data set including all time points was
required to do so. The data were therefore centered on the
mean of the large data set, not the individual ones. Because
the second principal component is one order of magnitude
smaller than the first component, even small shifts in the data
over time will lead to relatively larger errors �blurring� com-
pared to the first component. The shift along the second ei-
genvector, in particular for subject 2 �Fig. 10�b��, might well
be explained by centering the large data set rather than the
individual ones. When transforming the data with a given set
of eigenvectors, the resulting data are not necessarily centered
on the origin, leading to shifts along the axes.

The results from the direct comparison between recon-
struction of blood volume and oxygenation with the PCA re-
sults of the same multispectral image set indicates that PCA
may be a viable alternative tool for skin chromophore assess-
ment. Future work will have to include phantom experiments
as well as skin structure assessment for improvement of the
reconstruction results and thus explaining remaining variation
in the direct comparison between PCA and reconstruction re-
sults. Because PCA is considerably faster �three orders of
magnitude� compared to the time-consuming reconstruction
algorithms commonly used, it may provide a significant ad-
vantage for extracting metabolic information results in real
time. Future work will include applying PCA to multispectral
data from skin surface lesions, as well as acquiring more data
from healthy volunteers to increase statistical power.

7 Conclusion
We acquired multispectral images from healthy volunteers’
lower forearms during an occlusion experiment and compared
reconstruction results for blood oxygenation and blood vol-
ume with results from PCA. Reconstruction was performed
by fitting the data to our two layered analytical skin model
and blood oxygenation results showed the expected course of
ischemia during occlusion and reactive hyperemia afterwards.
PCA was performed on a large data set of all time points per
subject, and one subject specific set of eigenvectors was used
to transform the time-dependent data. Results showed that the
first principal component corresponds well to the time course
and spatial distribution of blood volume, the second one to
blood oxygenation, and the third one did not show any tem-
poral or spatial change. A direct comparison between recon-
struction results and principal components showed a linear
dependence between blood volume and blood oxygenation
with the first and second component, respectively. The corre-
spondence between blood oxygenation and the second princi-
pal component was blurred, and a shift between subjects was
observed, indicating that the dependence is more susceptible
to noise and errors. The results are encouraging and demon-
strate the potential of PCA for quantitative skin chromophore
assessment. The biggest advantage of PCA compared to re-
construction algorithms is its computational inexpensiveness,
July/August 2010 � Vol. 15�4�8
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ith PCA being three orders of magnitude faster. This allows
or real-time mapping of skin chromophores with PCA and
ould therefore find great use in clinical routines.
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