
Coherence entropy during propagation through
complex media
Xingyuan Lu ,a,† Zhuoyi Wang ,a,† Qiwen Zhan,b,* Yangjian Cai,c,d,* and Chengliang Zhaoa,*
aSoochow University, School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Suzhou, China
bUniversity of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
cShandong Normal University, School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulations,
Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan, China

dEast China Normal University, Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and
Shandong Normal University, Shanghai, China

Abstract. The deformation, flicker, and drift of a light field owing to complex media such as a turbulent
atmosphere have limited its practical applications. Thus, research on invariants in randomly fluctuated
light fields has garnered considerable attention in recent years. Coherence is a statistical property of light,
while its full and quantitative characterization is challenging. Herein, we successfully realize the orthogonal
modal decomposition of partially coherent beams and introduce the application of coherence entropy as a
global coherence characteristic of such randomly fluctuated light fields. It is demonstrated that coherence
entropy remains consistent during propagation in a unitary system by unraveling complex channels. As
representative examples, we study the robustness of coherence entropy for partially coherent beams as
they propagate through deformed optical systems and turbulent media. Coherence entropy is anticipated to
serve as a key metric for evaluating the propagation of partially coherent beams in complex channels. This
study paves the way for a broader application scope of a customized low-coherence light field through
nonideal optical systems and complex media.

Keywords: complex media; propagation invariant; modal decomposition; orbital angular momentum; statistical optics; coherence.

Received Mar. 20, 2024; revised manuscript received May 31, 2024; accepted for publication Jun. 4, 2024; published online
Jul. 18, 2024.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.6.4.046002]

1 Introduction
In contrast to amplitude, phase, and polarization, coherence is
a statistical property of photons that characterizes their phase
space occupation.1–4 Recent research on partially coherent beams
has sufficiently demonstrated the versatility of coherence
manipulation in various applications, such as higher-resolution
speckle-free imaging,5–7 ghost imaging,8,9 antiturbulence optical
interconnects,10,11 and the ultimate capability to shape12 in both
macroscopic devices13,14 and informational photonic systems.15–17

Passive decoherence is a common phenomenon that occurs when
coherent light passes through complex media, which induces
random fluctuations. Thus, research on embedded invariants,

such as spatial mode18 and polarization,19–21 has garnered con-
siderable attention in optical communications and encryptions.
Premeditated decoherence and coherence modulation can make
the statistical characteristics of the light field serve as an addi-
tional information channel.22

However, the full characterization of incoherent light fields is
challenging. A four-dimensional cross-spectral density or mu-
tual coherence function is required to describe the coherence
properties in the quasi-monochromatic case.1–4 In other words,
the full characterization of incoherent light fields requires a four-
dimensional measurement. On the detection plane, point-to-
point or a complex-valued two-dimensional slice of cross-spec-
tral density can be measured.23–25 Although full-space reference
points scanning may yield complete information, the integrity
and reproducibility of this information remain unexplored. A
single two-dimensional cross-spectral density slice is not suffi-
cient to characterize a partially coherent beam, and it is also
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difficult to achieve orthogonal modal decomposition. Owing
to a lack of measurement methods, limited research has been
conducted on invariants in the statistical characteristics of light
fields.

In this work, we introduce the utilization of coherence en-
tropy, a global coherence characteristic of randomly fluctuated
light fields, in the analysis of partially coherent beams generated
from orthogonal modes.26–30 A full four-dimensional characteri-
zation of partially coherent light fields was conducted to quan-
tify coherence entropy and demonstrate its robustness during
propagation through diverse complex media.31 Based on theo-
retical analysis and experimental results, we found that in a
unitary channel, the output mode-weights and corresponding
coherence entropy can be recovered to be consistent with that
on the source plane by utilizing the transmission matrix on
source bases. In a turbulent atmosphere, the coherence entropy
of a low-coherence beam remains unaltered when the convolu-
tion kernel of turbulence is negligible in comparison with the
kernel induced by the coherence function. More flexibly, by
unraveling complex channels, the coherence entropy could be
recovered in turbulent media. The coherence entropy related to
the overall mode-weights can also be extended to the vector
light source32–34 with a diagonal beam coherence-polarization
matrix based on the assumption that two polarizations construct
the same set of orthogonal spatial basis.

2 Theory
A partially coherent light field, which is a randomly fluctuated
electric field, is the statistical average of instantaneous electric
fields. The cross-spectral density function aids in analyzing
second-order statistics,2 such as the average intensity and
degree of coherence when it propagates through complex media.
In practical applications, a single slice of four-dimensional
cross-spectral density can be measured.23–25 Such a slice does
not adequately reflect the genuine global characteristic of the
four-dimensional partially coherent beam, especially for a beam
with nonuniform correlation structures or a mode-superposed
beam with no specific mathematical model. According to
Mercer’s theorem,35 for a continuous, Hermitian, nonnegative
definite Hilbert–Schmidt kernel, the cross-spectral density can
be reformed using modal decomposition as follows:

W0ðr1; r2Þ ¼
X
N

λnϕ
�
nðr1Þϕnðr2Þ; (1)

where r is a source vector coordinate and “*” means conjugate;
the frequency is omitted for brevity under the assumption of
quasi-monochromatic light. Thus, a partially coherent beam
simply means being spatially partially coherent. Here, ϕn is
an orthogonal eigenfunction with a total number N, and the
corresponding coefficient is λn, which can be calculated
according to the homogeneous Fredholm integral equationR
W0ðr1; r2Þϕnðr1Þdr1 ¼ λnϕnðr2Þ. For instance, the cross-spec-

tral density may be decomposed into incoherence superposition
of a set of Hermite–Gaussian (HG) modes,36 as shown below,

W0ðr1; r2Þ ¼
XNc

m¼1

XNc

n¼1

λmnHG
�
mnðr1ÞHGmnðr2Þ; (2)

where λmn is the mode-weight of HGmn, and the total number of
HG modes is Ntotal ¼ Nc × Nc. For a partially coherent beam

with a simple model, the theoretical mode-weights were calcu-
lated by fitting the beam waist and coherence width, e.g.,
a Gaussian Shell modal (GSM) beam (see Supplementary
Material). The orthogonal basis may be considered a three-
dimensional secret key matrix and the mode-weights the pass-
word. Such a description contains a high volume of information
regarding the partially coherent beam, which can be regarded as a
true global description. Statistical properties, such as average in-
tensity and cross-spectral density, can be flexibly reconstructed
when required.

We now consider a one-sided unitary optical system with a
transmission matrix T (which acts only on spatial distributions),
after which the cross-spectral density of the output partially
coherent light is expressed as

WTðρ1; ρ2Þ ¼
X
N0

λ0nϕ0�
n ðρ1Þϕ0

nðρ2Þ; (3)

where ρ is the vector coordinate on the output plane. The
unitary nature of T preserves the inner products, so the spatial
basis jϕ0

ni ¼ Tjϕni is still orthogonal as hϕ0
njϕ0

mim≠n ¼
hϕnjT†Tjϕmim≠n ¼ hϕnjϕmim≠n ¼ 0.19 For a beam with the
given mathematical model, the basis ϕ0

n can be calculated.
As an example, the Fraunhofer diffraction (a typical unitary
channel) of a GSM beam through a circular lens was derived
(see Supplementary Material). In a broader context, the
determination of ϕ0

n involves the application of the unitary
transmission matrix to the initial ϕn, with the preservation of
orthogonality ensuring the realization of incoherent modal de-
composition. Subsequently, selecting ϕ0

n as the decomposition
basis, the mode-weight λ0n will correspond to the weight of ϕn,
with its value equal to λn. Conversely, the mode-weight varies
when an unsuitable spatial basis is selected. Importantly, the cal-
culation of ϕ0

n is closely linked to the transmission matrix T,
which includes optical elements, propagation, and turbulence
phases.

To quantitatively evaluate the changes of mode-weights in
complex media, the coherence entropy was introduced, and
defined as26–30

S ¼ −X
Ntotal

λmn logNtotal
ðλmnÞ: (4)

The coherence entropy ranges from a minimum value of 0,
indicating a fully ordered state where only one mode possesses a
weight of 1, to a maximum value of 1, representing the most
disordered state characterized by multiple modes with equal
weights and no bias. Thus, the value of coherence entropy is
contingent upon the relative distribution of mode-weights. It
can be utilized to evaluate the robustness of partially coherent
light transmission in optical systems and to detect variations in
the light field induced by the system. Entropy is a fundamental
concept that quantifies the level of disorder. Recent research has
explored the connection between information entropy and the
spatial coherence width of a partially coherent beam.16 The pres-
ence of disordered phases in a dielectric nanofin array leads to
varying sizes of instantaneous intensity speckles. Consequently,
a greater amount of information entropy is associated with
reduced spatial coherence. Similarly, in the context of modal
decomposition, the coherence entropy tends to increase as the
coherence width decreases.
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3 Results
To experimentally investigate the coherence entropy during
propagation, multimode ptychography was employed to recon-
struct the full information of the cross-spectral density function,
that is W0ðr1; r2Þ ¼

P
M
t¼1 P

�
t ðr1ÞPtðr2Þ.31 fPtðrÞg represents

the measured mixed modes that are not necessarily orthogonal,
and M denotes the total number, which is not necessarily equal
to Ntotal. To further calculate the mode-weight for the chosen
orthogonal basis, e.g., HG basis, each measured mode was
decomposed as PtðrÞ ¼

PNc
m¼1

PNc
n¼1 umntHGmnðrÞ. Thus, the

cross-spectral density in Eq. (2) was reorganized as

W0ðr1; r2Þ ¼
XNc

m¼1

XNc

n¼1

�XM
t¼1

ðumntÞ2
�
HG�

mnðr1ÞHGmnðr2Þ: (5)

Therefore, the mode-weight λmn in Eq. (2) was calculated
using

λmn ¼
XM
t¼1

ðumntÞ2; (6)

where umnt ¼
R
PtðrÞ · HG�

mnðrÞd2r. This means that for any
partially coherent beam with a complex or unknown model,
the mode-weights matrix λmn of the chosen orthogonal basis
can be obtained using the incoherent modal decomposition with
measured mixed modes fPtðrÞg.

Figure 1 shows a schematic of orthogonal modal decompo-
sition for a GSM beam (see Appendix), whose coherence
depends on the beam spot size on the rotating ground glass
disk (RGGD). As shown in Part-3, the mixed modes fPtðrÞg
were reconstructed according to the multimode ptychography
iterative engine, whose update function follows Eq. (10).
Examples of the reconstructed mixed modes for a low-coher-
ence GSM beam and the diffraction patterns are shown in
Fig. 1. Considering a GSM beam and two mode-superposed
partially coherent light sources as examples, Fig. S1 in the
Supplementary Material shows that the calculated mode-
weight of an orthogonal basis (shown in bars) agrees with that
actually used for superposition. If only the traditional two-
dimensional focal cross-spectral density is measured, the mode-
weights cannot be obtained, except for beams with known
models and analytical solutions. However, the four-dimensional

Fig. 1 Schematic diagram of incoherent modal decomposition. Part-1: generation of a partially
coherent beam with adjustable coherence width. The coherence width can be modified by shifting
the spherical lens before the RGGD back and forth. Part-2: intensity monitor. The GSM beam
propagates through a spherical lens system (f ¼ 300 mm), and CCD1 is used to monitor the in-
tensity distribution. Part-3: modal decomposition. A high-scattering object (USAF) is placed on the
measurement plane, and CCD2 is used to obtain the diffraction pattern. The USAF is fixed on a
translation stage, and it moves on the transverse plane to take diffraction patterns. The spherical
lens system is replaced with (a) a cylindrical lens system and (b) a turbulent atmosphere system
for the study of coherence entropy in complex media. The focal length of cylindrical lens is
150 mm. BE, beam expander; GAF, Gaussian amplitude filter; USAF, 1951 USAF resolution test
chart; CCD, charge-coupled device; BS, beam splitter; and CL, cylindrical lens.
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cross-spectral density measurement results of our modal decom-
position method yield complete information and exhibit a high
flexibility.

To demonstrate the recovery of mode-weights in deformed
systems and the significance of the measurement scheme, we
examined a GSM beam passing through a cylindrical lens sys-
tem. The schematic of this system is shown in Fig. 1(a). In con-
trast to the GSM beam passing through a spherical lens, the
distribution of focal intensity has been elongated after it passes
through the cylindrical lens [Figs. 2(a) and 2(b)], and the defor-
mation also occurs on the cross-spectral density distribution.
Here, “T” represents the transmission matrix of the cylindrical
lens system. If original symmetric HG modes [Fig. 2(c)] defined

according to the beam width and coherence width along the
short axis are used, the mode-weights of the focused elongated
beam [Fig. 2(e)] are not consistent with those of the source GSM
beam [Fig. 2(d)]. This is in good agreement with the theoretical
analysis (see Supplementary Material). However, when we
applied the transmission matrix T on the source orthogonal
basis to obtain a new spatial basis [Fig. 2(f)], the mode-weight
distribution can be recovered.37,38 We can capitalize on such
flexibility of the measurement scheme for broader applications.
Figures 2(g)–2(j) show the mode-weight adjustment of a GSM
beam with various degrees of coherence. Here, δ0 represents
coherence length and w0 represents the beam width. The
“before” shown with orange bars means that the mode-weights

Fig. 2 Basis adjustment for modal decomposition. (a) A GSM beam in the source plane and (b) the
elongated beam spot after going through a cylindrical lens system. Using the symmetric HG basis,
mode-weight results in panels (d) and (e) are calculated for (a) and (b), respectively. (f) Basis
after applying the transmission matrix on panel (c), which helps recover the mode-weights.
(g)–(j) Mode-weight distributions of a GSM beam propagating through a cylindrical lens for various
coherent widths. The orange bars correspond to the mode-weight distribution before adjusting the
orthogonal basis, and the green bars show the mode-weights after adjusting the orthogonal basis.
Here, only the main part (5 × 5) of the mode-weight distribution (8 × 8 in total) is displayed.
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were calculated according to a symmetrically distributed HG
basis, and the “after” (green bars) means that the mode-weights
were adjusted by applying the transmission matrix on the source
orthogonal basis. After basis adjustment, the mode-weight can
be corrected to be consistent with that of the source plane for
both high- and low-coherence cases.

To further illustrate that coherence entropy can be recovered
in deformed systems, theoretical mode-weights and their corre-
sponding coherence entropies were simulated for a GSM beam
passing through a cylindrical lens system, as shown in Table 1.
The row labeled “GSM source” shows the dependence of coher-
ence entropy on coherence width. The lower the coherence
width, the higher the coherence entropy. After passing through
the cylindrical lens system, if the spatial basis is not suitable, the
computed coherence entropy will deviate from the coherence
entropy of the source. The last row shows the results obtained
after basis adjusting by applying the transmission matrix on the
source basis. It shows that the coherence entropy can be re-
covered.

In comparison to static systems, the complexity of the trans-
mission matrix in turbulent media is heightened. When a GSM
beam passes through the turbulent atmosphere, the intensity
captured by the camera drifts and deforms constantly. Figure 3
shows the mode-weight results of a GSM beam with three coher-
ence widths passing through a turbulent atmosphere generated
using a temperature-adjustable hot plate. The low-turbulence
atmosphere in Figs. 3(a)–3(c) corresponds to room temperature,
and the high-turbulence atmosphere in Figs. 3(d)–3(f) corre-
sponds to 200°C. The coherence length δ0 was determined to be
4.35w0 for high coherence, 1.58w0 for medium coherence, and
0.34w0 for low coherence (see Appendix). Figures 3(g)–3(i)
show the difference between the mode-weight matrices of these
two turbulence cases. As the coherence width decreases, the
mode-weight profile expands, owing to the broadening of the
beam and degradation in coherence induced by turbulence.
However, a comparison of the first and second rows shows that
the fluctuation of mode-weights decreases with the coherence.

Figures 3(j)–3(l) provide a quantitative analysis of the propa-
gation robustness by assessing the coherence entropy of a GSM
beam as it propagates through turbulent atmosphere. Three
coherence and three turbulence cases were compared. For
each parameter setting, 10 sets of data were analyzed. The bars
in blue, yellow, and red correspond to the mean values of
coherence entropy, with the hot plate set at room temperature
(low turbulence), 100°C (medium turbulence), and 200°C (high
turbulence). The corresponding beam drift in Fig. S5 in the
Supplementary Material shows the effect of the turbulent atmos-
phere generated using the hot plate. For the high-coherence
case, the beam may drift out of the region defined by the beam
width at a turbulence of 200°C. As shown in Figs. 3(j)–3(l), for
the low-turbulence case (blue bars), as the coherence decreases,
the height of the blue bar increases, which indicates an increase
in coherence entropy. For medium-turbulence (yellow bars) and

high-turbulence (red bars) cases, the coherence entropy is higher
than that for the low-turbulence case. This is attributed to the
broadening of mode-weights. Although the coherence entropy
increases as the turbulence becomes stronger, for a low-coher-
ence beam, the coherence entropy is nearly constant for various
turbulence cases. Furthermore, the standard deviation of coher-
ent entropy is represented by the black lines on the bars. The
stronger the turbulence, the larger the standard deviation.
Compared with the high- and medium-coherence cases, the co-
herence entropy for a low-coherence beam is more robust to the
turbulent atmosphere.

As illustrated in previous research,39 for a Schell-model light
source passing through a random medium (linear, isotropic, and
homogeneous), the spectral density is the convolution of the
three terms, written as Sðρ; zÞ ¼ Sf ⊗ p1 ⊗ p2. Here,⊗means
convolution, Sf is the spectral density of the coherent portion at
a distance z, and p1 and p2 are the Fourier transforms of the
source degree of coherence and second-order complex phase
correlation function of the random medium, respectively. The
size of kernels of p1 and p2 can be estimated from Figs. 3(c)
and 3(d), respectively. The kernel of p2 can be neglected when
the size is considerably smaller than the kernel p1. It corre-
sponds to a light source with lower coherence, where the impact
of turbulence is mitigated to some extent due to the discrepancy
between the broadening caused by turbulence and the profile of
the mode-weights. Similar results can be seen in Figs. 2(g)–2(j),
and the mode-weights of low-coherence light are more robust to
complex systems than that of high-coherence light before basis
adjustment. However, a trade-off must be considered in this
context: as coherence decreases, the number of modes in the
light fields increases, leading to increased complexity in modal
decomposition experiments.

When the turbulent transmission matrix is determined or
measured, the examination of mode-weights and coherence
entropy in turbulent media becomes more flexible through the
use of basis adjustment, facilitating applications in information
coding and robustness evaluation. Additionally, to showcase
the versatility of the proposed modal decomposition approach
across different bases, experiments involving orbital angular
momentum (OAM) multiplexing,18,40,41 and decomposition were
conducted. With traditional demultiplexing methods, the broad-
ening of the OAM spectrum induced by propagation through
complex media has not been sufficiently addressed. To solve
this problem, we demonstrate the improvement in OAM-based
optical encryption and decryption through complex media using
basis adjustment (Fig. 4). The multifocal array consisting of
various integer vortices42 is widely used for OAM demultiplexing.
A comparison of the regular OAM demultiplexing in free space
based on incoherent decomposition with Laguerre–Gaussian
basis (see Appendix) and a multifocal array is given in Figs. 4(a)
and 4(b). The phase distortion induced by turbulent media
[see Fig. 4(c)] was simulated using Zernike polynomials.43

Consequently, the OAM demultiplexing through turbulent

Table 1 Theoretical simulation of GSM coherence entropy before and after basis adjustment.

δ0 ¼ 4w0 δ0 ¼ 2w0 δ0 ¼ 1w0 δ0 ¼ 0.5w0

GSM source 0.1094 0.2657 0.5142 0.7777

With inappropriate basis 0.3615 0.4424 0.5816 0.7645

After basis adjustment 0.1092 0.2640 0.5139 0.7777
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media became chaotic for both cases, as shown in Figs. 4(d)–
4(f). The application of the unitary transmission matrix incor-
porating the perturbation phase on the source orthogonal bases
results in the preservation of orthogonality in the output bases,
as demonstrated in Fig. S6 in the Supplementary Material.
Subsequently, OAM demultiplexing after propagation through
turbulent media can be achieved through incoherent decompo-
sition. For example, an input binary number series “001101011-
011100111” was decrypted based on a threshold of 0.25 when
reading the normalized mode-weight distribution in Fig. 4(f).
Similarly, a string of clock-style numbers “215006” was en-
crypted using OAM multiplexing; its coding correspondence
is shown in Fig. 4(g). Traditional multifocal arrays cannot
decrypt such information [see Fig. 4(h) and corresponding
simulation results in Fig. S7 in the Supplementary Material].
However, the decryption can be successfully performed after
applying basis adjustment in incoherent decomposition.

Furthermore, the coherence entropy proposed in this study
defined using an OAM mode-weight matrix may prove
instrumental in OAM-based optical communications through
complex media.44,45 In addition, the evaluation of random fluc-
tuations induced by the light source or optical system is no
longer limited to the beam shape or other two-dimensional
attributes. To demonstrate this, we performed a channel robust-
ness experiment based on the conservation of coherence entropy
(Fig. 5). Mode-weights depicted in Fig. 5(a) and Figs. 5(b) and
5(c) were calculated for a focal system in the absence and pres-
ence of turbulent media, respectively. In Figs. 5(a) and 5(b), the
decomposition bases utilized on the output plane were deter-
mined by applying only the transmission matrix of focused
propagation on the Laguerre–Gaussian bases. Conversely, in
Fig. 5(c), the turbulence phase was taken into account in the
transmission matrix and basis calculation. The inset intensity
patterns were captured at a focal plane that showed the distortion

Fig. 3 Coherence entropy of a GSM beam passing through the turbulent atmosphere. The mode-
weights for a GSM beam propagating through (a)–(c) low turbulence (MW1) and (d)–(f) high tur-
bulence (MW2) atmosphere. (g)–(i) The differences in mode-weights (jMW1 −MW2j) for two tur-
bulence cases. A low-turbulence atmosphere corresponds to room temperature; a high-turbulence
atmosphere is realized by a hot plate at 200°C. (j)–(l) Coherence entropy calculated from mode-
weights. (k) and (l) Zoomed-in field of view of the medium-coherence and low-coherence cases.
Illustrations in panel (j) show the two intensity deformations caused by a turbulent atmosphere.
The deformation is less apparent for lower-coherence case. The blue, yellow, and red bars
correspond to the mean value of coherence entropy, under low-, medium-, and high-turbulence
atmospheres, respectively. The black error bar shows the standard deviation of 10 data sets.
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effects owing to the turbulent media. After applying basis ad-
justment, the mode-weights were corrected from Figs. 5(b)
and 5(c); the reconstructed intensity is shown in Fig. 5(c)
(see corresponding HG decomposition in Fig. S8 in the
Supplementary Material). In Fig. 5(d), the measured coherence
entropy without turbulence is highlighted using a black line. A
blue dashed line and orange circles correspond to the coherence
entropy through turbulent media and corrected coherence en-
tropy after basis adjustment, respectively. A simple demonstra-
tion of encoding, which leverages the conservation coherence
entropy, is shown in Figs. 5(e)–5(g). The correspondence be-
tween colors and the values of coherence entropy is shown
in Fig. 5(d). Given that the intensity is highly chaotic after
a light beam passes through turbulent media, the input values
of coherence entropy drastically increased. Consequently,
the color information of architectural images was scrambled
[Fig. 5(f)]. However, owing to the conservation of coherence
entropy, the correct image could be reconstructed, as shown

in Fig. 5(g). The retrieval of information benefits from the pre-
cise feedback of the channel transmission matrix. Consequently,
when the system encounters unforeseen perturbations, the co-
herence entropy will fluctuate, indicating the instability of the
system.

4 Discussions and Conclusions
This study examines the coherence entropy as defined by the
mode-weights of orthogonal bases within partially coherent
light fields. The use of orthogonal modal decomposition allows
for an exploration of the propagation robustness of coherence
entropy within a unitary system, encompassing both static
and turbulent media. Our findings demonstrate the recovery
of coherence entropy through the unraveling of complex chan-
nels and the selection of appropriate bases. The recovery of both
mode-weight and coherence entropy is closely linked to the
principle of energy conservation. Therefore, in the event that

Fig. 4 Performance improvement in OAM-based optical encryption and decryption through
turbulent media using basis adjustment. OAM demultiplexing in free-space using (a) incoherent
decomposition and (b) traditional multifocal array consisting of different integer vortices.
(c) Wavefront distortion induced by the turbulent media. Chaotic OAM demultiplexing through
turbulent media using (d) orthogonal modal decomposition and (e) traditional multifocal array.
(f) Corrected OAM demultiplexing through turbulent media using mode adjustment for incoherent
decomposition. (g) Encryption of a clock-style number string “215006.” (h) Experimental demon-
stration showing that the correct decryption may be achieved after applying mode adjustment in
incoherent decomposition, while the traditional method yields highly inaccurate results.
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absorption is distributed evenly among all modes, the relative
distribution of mode-weights and corresponding coherence
entropy will remain unchanged. Conversely, if absorption is
not uniform, the coherent entropy will be altered. Given the sus-
ceptibility of coherent entropy to changes in mode weights and
basis selection, this metric can be utilized to evaluate the robust-
ness of the optical system. The existing approach for detecting
coherence entropy is reliant on the chosen basis, and the devel-
opment of a basis-independent detection method could enhance
the applicability of coherence entropy in various fields.

However, it is noteworthy that the coherence entropy, as de-
fined by the mode-weights of a nonorthogonal basis, may not
necessarily be retrievable. An interesting example is the van
Cittert–Zernike theorem (no energy loss), wherein the modes
undergo a Fourier transform, i.e., a typical unitary channel.
We discuss an incoherent source with equal mode-weights,
i.e., S ¼ 1. Following the Fourier theorem, on the output plane,
a partially coherent light beam can be obtained (nonequal
mode-weights). This result may indicate a decreased entropy
in a unitary system. However, each mode on the output plane

corresponds to a plane wave with a certain tilted phase, which
is not an orthogonal mode. Thus, the entropy defined according
to these mode-weights is not included in our analysis. The
analysis of coherence entropy can be extended to a vector beam
with diagonal beam coherence-polarization matrix based on the
assumption that the two initial polarization components share
the same set of orthogonal spatial basis (see Supplementary
Material). The modal decomposition of diagonal coherence-
polarization matrix can be simplified as that of a scalar cross-
spectral density defined with Weq ¼ Wxx þWyy.

33 Thus, the
overall mode-weights and corresponding coherence entropy for
such a vector partially coherent beam in a unitary system can be
reconstructed by selecting appropriate decomposition bases.

Owing to the random fluctuations in turbulence, the coher-
ence entropy carried by high-coherence light increases as it
propagates through these media. The variation in coherence
entropy increases with the turbulence strength. Without basis
adjustment, light fields with lower coherence are more robust
to turbulence in terms of coherence entropy. Turbulence can
also be described as a set of phase screens and propagation

Fig. 5 Channel robustness evaluation using the coherence entropy. Mode-weight distribution
(a) in free space and (b) through turbulent media. Inset intensity patterns show the distortion effect
caused by turbulent media. The mode-weights and corresponding reconstructed intensity are
shown in panel (c). T −1 refers to the process of mode adjustment. (d) Measured coherence
entropy in free-space (black line), through turbulent media (blue dashed line), and after mode
adjustment (orange circles). Channel robustness that leverages the conservation of coherence
entropy is demonstrated by sending a color-encoded image through the turbulent media, as shown
in panels (e)–(g), with the correspondence between colors and values of coherence entropy
shown in panel (d).
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(slicing up a thick medium), both of which are unitary. The
product of unitary matrices is also unitary. Then, the application
of the transmission matrix to the selection of orthogonal bases
offers a more flexible and accurate approach to studying the
robustness of coherence entropy in turbulent media. The coher-
ence entropy, as a global characteristic, is expected to become a
key metric for evaluating the propagation of partially coherent
beams through complex media with broader practical applica-
tion prospects.

5 Appendix: Methods

5.1 Theoretical Calculation of Mode-Weights

According to the literature,1,2 the cross-spectral density
function W0ðr1; r2Þ may be decomposed as W0ðr1; r2Þ ¼PNc

m¼1

PNc
n¼1 λmnϕ

�
mnðr1Þϕmnðr2Þ. Here, λmn represents the

mode-weights of the mode, ϕmn represents eigenfunctions
orthogonal to each other, and Ntotal ¼ Nc × Nc is the number
of orthogonal eigenfunctions. Considering a GSM beam as an
example, by solving the homogenous Fredholm integral equa-
tion

R
W0ðr1; r2Þϕmnðr1Þdr1 ¼ λmnϕmnðr2Þ, the cross-spectral

density may be decomposed into the incoherent superposition
of HG modes36 and

ϕmnðrÞ ¼
�
2c
π

�
1∕2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþnm!n!
p Hm

�
x

ffiffiffiffiffi
2c

p �
Hn

�
y

ffiffiffiffiffi
2c

p �
· exp½−cðx2 þ y2Þ�;

λmn ¼
�

π

aþ bþ c

��
b

aþ bþ c

�
mþn

; (7)

where a ¼ 1∕4w2
0, b ¼ 1∕2δ20, c ¼ ða2 þ 2abÞ1∕2. Hm and Hn

representmth-order and nth-order Hermite polynomials, respec-
tively. Another example of orthogonal basis is the Laguerre–
Gaussian function,46

ϕplðrÞ ¼
�
2c
π

�
1∕2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!

ðpþ jljÞ!

s � ffiffiffiffiffi
2c

p
r
�jlj

Ljlj
p ð2cr2Þ

· expð−cr2Þ expðilθÞ;
λpl ¼

π

2c
ð1 − ϵÞϵjlj

2
þp; ϵ ¼ aþ b − c

aþ bþ c
; (8)

where Ll
p is the Laguerre polynomial, with p and l being the

radial and azimuthal indices, respectively. Therefore, for a
GSM beam, provided that the beam waist w0 and coherence
width δ0 are known, the theoretical mode-weights can be calcu-
lated. In addition, the mode-weights remain unchanged when
GSM beam passes through a spherical lens. Thus, the cross-
spectral density of a GSM beam on the focal plane can be writ-
ten asWfðρ1; ρ2Þ ¼

PNc
m¼1

PNc
n¼1 λmnϕ

�
fmnðρ1Þϕfmnðρ2Þ, where

ϕfmn are the eigenmodes in the focal plane that can be deter-
mined according to the focal beam width and focal coherence
width, and λmn remains constant compared to that in the source
plane. Strictly speaking, the upper limit of the sum Nc should
tend to infinity before a GSM beam can be accurately repre-
sented by a polynomial. However, the λmn gradually decreases
to zero with an increase in the order. Therefore, it can also be
approximated by considering finite sums.36

5.2 Experimental Generation of a Partially Coherent
Light Source

As shown in Fig. 1, Part-1 shows the generation of a GSM beam
according to the adjustable coherent width. The coherent light
emitted from a semiconductor laser (VentusHR, wavelength
λ ¼ 532 nm) is expanded by a beam expander (BE) and then
focused by a spherical lens (focal length f1 ¼ 100 mm) onto
the RGGD. The scattered light is collimated by the second
spherical lens (f2 ¼ 250 mm) and shaped by a Gaussian ampli-
tude filter (GAF, 1-mm beam waist). After the GAF, a GSM
beam with an adjustable coherence is obtained. The coherence
width may be modified by shifting the first spherical lens before
rotating the RGGD back and forth. The larger the beam spot, the
lower the coherence. For convenience, the GAF can also be
replaced with a spatial light modulator or digital micromirror
device. Part-2 shows the intensity monitor of GSM propagating
through spherical lens system (f3 ¼ 300 mm). The first camera
(CCD1, ECO445 SVS-VISTEK, 1296 pixels × 964 pixels,
3.75 μm) is located on the focal plane of the spherical lens.
The coherence widths in Fig. 3 correspond to δ0 ¼ 4.35w0 (high
coherence), δ0 ¼ 1.58w0 (medium coherence), and δ0 ¼ 0.34w0

(low coherence).

5.3 Experimental Measurement of Mode-Weights

In Fig. 1, Part-3 is used to measure the mixed modes of the GSM
beam. The GSM beam that is to be measured illuminates a high-
scattering object (1951 USAF resolution test chart), and the
second camera (CCD2, Electron-Multiplying CCD, iXon Life
Oxford, 1024 pixels × 1024 pixels, 13 μm) is placed at a dis-
tance of 146 mm after the object to take the diffraction patterns.
To obtain a higher volume of information for reconstruction, a
two-dimensional translation stage (CONEX-MFACC Newport)
is used to scan the USAF for ptychographic data acquisition.
The focal spot is approximately 200-μm wide, and the step size
is 40 μm. Finally, the mixed modes and sample information are
reconstructed using a multimode ptychography engine.31 The
cross-spectral density and mode-weights may then be calculated
further.

For the partially coherent beam with a known model, e.g.,
GSM, the mode-weights can be calculated using the analytical
solution, e.g., Eq. (7). Here, we introduced a model-independent
mode-weight measurement method that is suitable for more gen-
eral partially coherent beams. The characteristics of the partially
coherent beam are evident once the propagation or scattering
occurs. Therefore, coherent diffraction imaging is used to
reconstruct the complete four-dimensional cross-spectral density
function of a partially coherent beam. To improve the redundancy
of information in the diffraction pattern, which is the key to
the convergence of iterative algorithm, a high-scattering object
(USAF) is placed between the beam and camera (see Fig. 1).
In the conventional coherent diffraction imaging (CDI) device,
the beam acts as a probe, and the object is the target to be
reconstructed. Here, although the target of the measurement is
the light source, we can still use the procedure of CDI. Given
that the oversampling ratio should be larger than 2,47 one
diffraction pattern is not sufficient to reconstruct the mixed
modes of the GSM. Therefore, a ptychographic scanning is
performed.

The purpose of the CDI iterative algorithm is to minimize
the difference of collected intensity and calculated average-
intensity or the output field ψðρÞ right behind the object plane.
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For instance, in the coherence case (i.e., single-mode case), one
must solve min kψðρÞ − PðρÞ ·OðρÞk2. Here, PðρÞ is the
probe, and OðρÞ is the object. The partially coherent beam is
the superposition of multimodes, and thus, the problem should
be transformed into minimizing collected intensity Iccd and sum-
mation of calculated intensity of each mode. Subsequently, each
single diffraction field can be renewed with Iccd as48

Ψ0i
t;jðkÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ij_ccdðkÞ

q
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
M

jΨi
t;jðkÞj2

r �
Ψi

t;jðkÞ; (9)

where t refers to the tth mode;M is the total number of modes in
the partially coherent beam; i represents the ith iteration num-
ber; j represents the jth scanning position; Ij_ccd denotes the jth
collected intensity; and ρ and k are the coordinates of object
and camera planes, respectively. Here, ψðρÞ ¼ F−1fΨ0

t;jðkÞg.
According to the gradient descent algorithm,48 the object and
probe can be updated using the following equation:

Oiþ1
j ðρÞ ¼ Oi

jðρÞ þ α
P�i
t;jðρÞ

jPi
t;jðρÞj2max

½ψ 0i
t;jðρÞ − ψ i

t;jðρÞ�;

Piþ1
t;j ðρÞ ¼ Pi

t;jðρÞ þ β
O�i

j ðρÞ
jOi

jðρÞj2max

½ψ 0i
t;jðρÞ − ψ i

t;jðρÞ�; (10)

where α and β are the update factors. The final Pt represents
the modes that are reconstructed from the collected diffractive
intensities, whose resolution is limited by the ptychography
retrieval algorithm that is twice the pixel size. Here, the pixel
size defined with λz∕D equals 6 μm,48 λ ¼ 532 nm is the wave-
length, z ¼ 146 mm is the distance from the sample to the cam-
era, and D ¼ 13 mm is the actual lateral size of camera. Then,
the cross-spectral density of the GSM beam on the focal plane
can be calculated using Wfðρ1; ρ2Þ ¼

P
M
t¼1 P

�
t ðρ1ÞPtðρ2Þ.

However, PtðρÞ is not orthogonal but a random mode.25 To
calculate the mode-weights for the chosen engine modes (e.g.,
HG modes), each probe mode is further decomposed using HG
basis as PtðρÞ ¼

PNc
m¼1

PNc
n¼1 umntHGmnðρÞ. Thus, the focal

cross-spectral density may be reorganized as Wfðρ1; ρ2Þ ¼PNc
m¼1

PNc
n¼1½

P
M
t¼1ðumntÞ2�HG�

mnðρ1ÞHGmnðρ2Þ. Therefore, the
mode-weights can be calculated as λmn ¼

P
M
t¼1ðumntÞ2,

where umnt ¼
R
PtðρÞ · HG�

mnðρÞd2ρ.
Regarding the error of modal decomposition, the upper limit

of the sum Nc should tend to infinity. For the partially coherent
beam with a known model and analytical solution of mode-
weights or the mode-superposed beam, the orthogonal basis
may be easily determined. However, for a totally random par-
tially coherent beam, the basis is difficult to choose, and the
error of finite decomposition modes increases. Nevertheless,
we still emphasize that the scheme of the proposed modal de-
composition is flexible, especially when dealing with beams
superimposed by orthogonal modes.
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