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1 Introduction
The artificial intelligence (AI) revolution is upon us, transforming not
just our daily lives with smart assistants, personalized recommenda-
tions, and autonomous systems but also profoundly altering the land-
scape of scientific research and knowledge discovery. This revolution is
characterized by the integration of AI into every domain of human
activity, from healthcare and finance to education and entertainment.
Its transformative effects are also being felt in the world of scientific
research, e.g., in the physical sciences, where AI is not just assisting in
data analysis1 but is also driving new discoveries2 and pushing the
boundaries of knowledge and applied sciences. The interplay between
AI and physics has reached a point where advancements in one field are
catalyzing progress in the other, creating feedback loops of innovations
that are reshaping our understanding of the universe and the tools we
use to explore it.

1.1 Physics and AI

The interaction between physics and AI has been a symbiotic one,
where principles from physics have been applied to enhance AI models,
and AI, in turn, has been used to solve complex problems in physics.
This dynamic interplay is beautifully exemplified by the work of the
2024 Nobel laureates in Physics, John Hopfield3 and Geoffrey Hinton.4

Some of their pioneering contributions to artificial neural networks,5–16

which are deeply rooted in concepts borrowed from or inspired by
physics,6,7,11,12 have laid the foundations for the modern AI revolution;
see Fig. 1. John Hopfield, a physicist by training, was one of the first to
draw a strong connection between physics and neural networks. His
work was inspired by the complex world of spin glasses—disordered
magnetic systems with intricate interactions. Hopfield recognized an
analogy between these physical systems and networks of intercon-
nected neurons in the brain.7 This insight led him to develop a type of
recurrent neural network, known as the Hopfield network,17 capable of
storing and retrieving patterns [Fig. 1(a)]. His 1982 paper,7 a corner-
stone in the field of AI, demonstrated how principles from condensed
matter physics could be harnessed to create computational systems that
have learning and memory. The Hopfield network provided methods to
explore how associative memory18 works, both in biological systems
and artificial ones, and became one of the foundational models for
AI research. Hopfield’s work was groundbreaking not just because
it connected physics to AI but because it introduced the concept of
energy landscapes9,19 to neural networks. In a Hopfield network, the
system settles into states of minimum energy, akin to how a physical
system seeks equilibrium. This analogy to physical systems allowed
researchers to use well-established methods from statistical mechanics

to analyze and better understand neural networks, which opened up
new avenues for creating advanced AI systems that could more closely
emulate human cognition.

Similar to Hopfield’s scientific explorations at the intersection of
physics and AI, Geoffrey Hinton, a cognitive psychologist and com-
puter scientist, also took the push–pull relationship between AI and
physics as a major inspiration for his seminal work. Hinton recognized
the potential of Boltzmann machines,12 a type of stochastic neural net-
work inspired by statistical mechanics, to learn complex patterns from
data [Fig. 1(b)]. One of Hinton’s groundbreaking contributions was de-
veloping efficient learning algorithms for these networks.14,15,20 These
algorithms enabled neural networks to extract meaningful features from
data, such as images, text, or language, by optimizing the network’s
parameters through processes similar to energy minimization. He also
popularized the backpropagation algorithm,13,21,22 revolutionized convo-
lutional neural networks,23 and introduced techniques such as dropout
to improve training.24 Hinton’s work laid the groundwork for modern
deep learning architectures, the applications of which have revolution-
ized fields such as computer vision, natural language processing,
robotics, and biomedical sciences.

Beyond the seminal works of Hopfield and Hinton, the influence of
physics on AI extends to various other areas. For instance, the concept
of renormalization group, a powerful tool in condensed-matter and par-
ticle physics used to study systems with many interacting components
across different scales, has found applications in deep learning for
analyzing hierarchical structures and improving the efficiency of train-
ing algorithms.25 Another example is the use of quantum mechanics
principles to develop new types of neural networks, known as quantum
neural networks,26 which leverage quantum phenomena such as super-
position and entanglement to potentially achieve exponential speedups
for certain computational tasks. Furthermore, ideas from information
theory, a field with deep roots in thermodynamics and statistical
mechanics, have been instrumental in developing algorithms for
compressing and efficiently representing information in AI systems.
As another important example, diffusion models,27 a new class of
powerful generative models, draw direct inspiration from the physics
of diffusion28,29 and Brownian motion. These examples illustrate the
rich and ongoing cross-fertilization between physics and AI, where fun-
damental concepts from physics continue to inspire novel approaches
and solutions in the realm of AI.

2 AI in Optics and Photonics
The impact and uses of AI in physics extend far beyond data analyses
and simulations. It is fostering a deeper understanding of fundamental
principles, enabling the design of entirely new physical systems. This
influence is particularly evident in fields, such as optics and photon-
ics,30–32 where AI is revolutionizing the way that scientists manipulate,
control, and harness light. From designing novel optical materials with
unprecedented properties to optimizing the performance of complex
photonic devices, AI is pushing the boundaries of possibilities regard-
ing the manipulation and control of light, unveiling exciting new pos-
sibilities for applications in computing, sensing, imaging, and beyond.
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2.1 AI in Computational Imaging and Sensing

One of the exciting areas where AI has been making a significant
impact is computational imaging and sensing. Traditional imaging
methods often face limitations due to the physical constraints of optics,
such as resolution limits or noise. AI, however, is offering powerful new
tools to mitigate some of these barriers. In microscopy, for example, AI
algorithms can enhance image resolution, remove noise and artifacts,
and even reconstruct 3D structures from limited data.33 Techniques such
as super-resolution microscopy, which breaks the diffraction limit of
light to reveal finer details than previously possible, have been signifi-
cantly advanced by AI.34–40 In holographic imaging, AI algorithms have

excelled in solving complex physics-based inverse problems,41–46 such
as reconstructing a 3D scene from holographic data,47 with greater
accuracy and speed than traditional methods, also providing different
contrast mechanisms, e.g., reconstructing the images of specimens with
brightfield contrast using their monochrome holograms.47 In fact, AI
has been driving major innovations through such cross-modality image
transformations,36,48 where the spatial and spectral information typically
associated with one imaging modality is extracted from data acquired
using a different modality. This capability is opening up exciting new
possibilities for biomedical imaging49 and remote sensing,50 among
others. A compelling example is virtual staining in digital pathology
and microscopy.51,52 Traditional histological staining of tissue involves

Fig. 1 Some of the major contributions of John Hopfield and Geoffrey Hinton, with their connec-
tions to physical systems. (a) Left: the Hopfield model, a recurrent neural network capable of
storing and retrieving patterns. John Hopfield proposed an energy-based memory model capable
of storing and retrieving patterns, drawing intuition from the energy dynamics of spin glass. The
network’s dynamics are driven by minimizing the energy of the model state EðsÞ. Center: the
energy landscape of a Hopfield network, depicting how the network converges to stable states
(attractors) represented as valleys in the energy landscape. Right: a spin glass system, i.e.,
a disordered material with magnetic interactions among atomic spins. The energy of a state in
the Hopfield model is similar to the energy Hamiltonian HðσÞ of the spin glass state σ. (b) Left:
the Boltzmann machine, a stochastic generalization of the Hopfield network, includes hidden
units (represented by gray nodes) that enhance its representation capability. By incorporating
the Boltzmann distribution from statistical mechanics, Geoffrey Hinton introduced stochasticity into
his neural network models, enhancing their ability to learn complex patterns. Right: the Boltzmann
distribution, which governs the probability of a state based on its energy. This distribution plays
a key role in the stochastic activation of artificial neurons in Boltzmann machines.
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applying chemical stains to biological tissue to highlight various fea-
tures under a microscope. However, this staining process can be time-
consuming, laborious, and costly and can also damage the samples.
Deep neural networks can now routinely transform label-free images
of specimens into virtually stained microscopic images that mimic
the appearance of traditionally stained images, eliminating the need for
the chemical staining processes.49,53 This allows for faster, cheaper, and
more efficient analysis of biological samples and has significant impli-
cations for histology as well as live-cell imaging, where minimizing
or eliminating chemical perturbations to the native biological system
(through, e.g., external labeling and tags) is crucial.

AI is also making significant inroads in optical sensing, impacting
both the design of sensors and the interpretation of sensor data.54 In
areas such as biosensing and environmental monitoring, AI algorithms
can rapidly process complex optical signals to detect subtle changes
and identify specific analytes or conditions with greater sensitivity
and specificity.55–63 AI is also being used to design novel optical sensors
with improved performance. For instance, in the development of optical
sensors for point-of-care diagnostics, AI can optimize the design of the
optical detection systems to enhance sensitivity/specificity and reduce
sample volume requirements, while also providing multiplexed detec-
tion that can be used for the rapid and quantitative measurement of
a panel of biomarkers and disease conditions.63–68 By automating the
optimization, quantitative multiplexed sensing, and decision processes,
AI is accelerating the development of innovative optical sensors with
tailored functionalities for various applications in point-of-care sensing,
diagnostics, and environmental monitoring, as well as structural health,
among many others.54,69–72

2.2 AI-Driven Optics and Photonics Design

AI is also revolutionizing the design of optical materials, devices, and
systems73–76 by enabling a paradigm shift in “inverse” design.30,77

Traditional inverse design approaches in optics and photonics typically
rely on iterative optimization algorithms. These algorithms start with an
initial guess of the device structure and repeatedly simulate its perfor-
mance, using the results to refine the design parameters. This process
continues until the desired performance metric is achieved. While these
methods can be effective, they often require significant computational
resources and time, especially for complex tasks and designs. In con-
trast, deep learning-based approaches offer more efficient and powerful
alternatives. These alternative methods employ training a neural net-
work on a large dataset of optical structures and their corresponding
performance metrics.78 Once trained, the network can rapidly predict
the performance of new designs and even generate novel structures with
desired properties. This learning-based approach significantly acceler-
ates the design process and enables the exploration/optimization of
a wider range of parameters and possibilities.79–81 AI-powered inverse
design has already led to the creation of materials and systems with
unprecedented capabilities. These include unidirectional imagers,82

invisibility cloaks that can render objects invisible,83 and ultra-efficient
light absorbers for enhanced solar energy harvesting,84 among many
others. Furthermore, this AI-powered optimization framework allows
for the smart design of free-form optics, enabling the creation of com-
pact and lightweight optical systems with superior performance.85–87

3 Addressing Challenges in AI-Enabled
Physics: Potential Role of Optics and
Photonics

Despite the remarkable progress made at the intersection of physics
and AI, its widespread adoption faces some bottlenecks.88,89 Some of
these challenges are primarily related to high energy consumption,

bandwidth limitations, and latency of AI systems, as well as halluci-
nations/artifacts in inference. For example, while AI offers immense
potential in computational imaging, hallucinations in the generated/
reconstructed images create concerns, as there might be features or
details in the output images that are not present in the original data,
which could be catastrophic, especially for biomedical imaging-
related applications. This can occur in both inverse problems and cross-
modality image transformations, leading to inaccurate reconstructions
or misleading interpretations. To mitigate some of these issues, re-
searchers have been incorporating physics-based loss functions into the
training of AI models. These loss functions penalize deviations from
known physical principles, guiding the learning and inference of the
AI model to generate outputs consistent with the underlying physics
of the system.52,90 For example, in holographic image reconstruction,
a physics consistency-based loss function was used to incorporate
knowledge about the wave equation, driven from Maxwell’s equations,
ensuring that the reconstructed scene adheres to the laws of wave
propagation in free-space. This was shown to prevent the generation
of unrealistic artifacts and significantly improve the fidelity of the holo-
graphic image reconstructions for out-of-distribution objects, showing
superior external generalization behavior based on physics consistency-
driven learning.90

Another challenge for future AI systems is that training and rapidly
running complex AI models require immense computational power,
leading to substantial energy demands91 and large carbon footprints.92

In addition, transferring vast amounts of data between memory and
processing units can strain bandwidth and introduce latency, making
real-time applications potentially difficult to implement through very
large-scale models.93 This is one of the areas where optics and photon-
ics might offer promising solutions.30,87,89,94–97 Optical computing plat-
forms leverage the inherent parallelism and speed of light to perform,
e.g., matrix multiplications and other computationally intensive tasks
with significantly lower energy consumption and latency compared
to electronic systems.98–104 Free-space optical computing platforms,
such as diffractive optical networks and smart metasurfaces, can per-
form visual computing, i.e., directly executing analog computation on
visual information from an input scene without the need for digitization
or preprocessing of information, enabling massively parallel processing
of optical information with minimal energy dissipation. These ap-
proaches offer a powerful platform for the implementation of frontend
analog information processing, delivering a compressed form of repre-
sentation to back-end digital neural networks,87,94,105,106 providing us
with the best of both worlds.107–110 This collaboration between optical
analog processing and digital processors using neural networks can also
swap places, where neural networks are used as digital encoders of in-
formation for optical networks106,111–113 to decode with extreme parallel-
ism, requiring no external power except for the illumination light.

4 Outlook
As physics and AI continue to drive innovations in the optics and pho-
tonics field, the synergy between these two disciplines will inevitably
deepen. Physics has been providing foundational principles that guide
AI development, while AI has been helping to unravel complex physi-
cal phenomena, offering new advances in various fields, from quantum
mechanics to cosmology. However, challenges remain in fully integrat-
ing AI into physical sciences. The “black box” nature of many AI
algorithms can hinder physical interpretability and trust, making it
difficult to comprehend the underlying principles driving AI-generated
solutions. In addition, ensuring that AI models generalize accurately
and avoid “hallucinations” or spurious results requires careful valida-
tion and a robust feedback loop between physics and deep learning
systems. By fostering a deeper integration that addresses these
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challenges with proper regulations and checks and balances, we can
create large-scale AI-powered models and systems that are not only
innovative but also reliable, interpretable, and capable of pushing
the boundaries of scientific discovery and technological advancements
in physical sciences at large. The recent Nobel Prize in Physics,
awarded for pioneering work at the intersection of artificial neural net-
works and physics, signals the tremendous potential of this push–pull
relationship between AI and physics, heralding a new era of research
where they propel each other towards groundbreaking advances and
discoveries.
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