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Abstract. Optical computing is considered a promising solution for the growing demand for parallel computing
in various cutting-edge fields that require high integration and high-speed computational capacity. We propose
an optical computation architecture called diffraction casting (DC) for flexible and scalable parallel logic
operations. In DC, a diffractive neural network is designed for single instruction, multiple data (SIMD)
operations. This approach allows for the alteration of logic operations simply by changing the illumination
patterns. Furthermore, it eliminates the need for encoding and decoding of the input and output,
respectively, by introducing a buffer around the input area, facilitating end-to-end all-optical computing. We
numerically demonstrate DC by performing all 16 logic operations on two arbitrary 256-bit parallel binary
inputs. Additionally, we showcase several distinctive attributes inherent in DC, such as the benefit of
cohesively designing the diffractive elements for SIMD logic operations that assure high scalability and
high integration capability. Our study offers a design architecture for optical computers and paves the way
for a next-generation optical computing paradigm.
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1 Introduction
Optical computing is a longstanding and captivating topic in the
fields of optics and photonics. It is considered a potential post-
Moore computing technology1 that offers distinct advantages,
including high bandwidth, rapid processing speed, low power
consumption, and parallelism.2,3 Around the 1980s, optical com-
puting was actively explored, with developments in technolo-
gies, such as optical vector matrix multipliers4–7 and optical
associative memories.8–10 Among these, shadow casting (SC)
emerged as a prominent optical computing technology of that
era.11–14 SC facilitated single instruction, multiple data (SIMD)
for logical operations through optical and spatially parallel com-
puting. The SC scheme relied on shadowgrams, which optically
generated a single output image through massively parallel logic
operations from two binary input images. The versatility of
SIMD logic operations was attained by altering the illumination
pattern of the shadowgrams. Another key aspect involved the
computational encoding and decoding of input and output im-
ages, respectively, designed to balance light intensities between

the zeros and ones in the binary images. This computational pro-
cess was an obstacle in achieving end-to-end optical computing.
Despite the anticipated benefits in speed and energy efficiency,
these optical computing technologies in the 1980s stagnated due
to limitations in hardware (fabrication) and software (design) for
optical components at that time. As a result, they lagged behind
the major progress made in electronic computing.

Over the past few decades, significant advancements in mi-
crofabrication, mathematical optimization, and computational
power have dramatically transformed the field of optical com-
puting from what it was in the 1980s. Several pioneering optical
computing techniques have been studied, including waveguide-
based photonic circuits and diffractive neural networks (DNNs).
Waveguide-based photonic circuits, which integrate waveguide
interferometers, have high compatibility with currently existing
electronic computers and circuits. They have led to a wide range
of applications, such as vector-matrix operations,15–17 logical op-
erations,18–24 and integrated reconfigurable circuits.25–27

DNNs consist of cascaded diffractive optical elements (DOEs),
which emulate neural network connections as light waves pass
through the DOEs. This configuration utilizes the spatial paral-
lelism of light and realizes fast and energy-efficient computation.
Awide range of attractive applications based on DNNs has been
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proposed, including image classification,28–33 image process-
ing,34–37 linear transformations,38–40 and logic operations.41–47

Currently, the demand for computation in SIMD logic oper-
ations has intensified, particularly due to advancements in cut-
ting-edge technologies such as image processing, machine
learning, and blockchain.48–50 Traditional computation with cen-
tral processing units is often inadequate to meet the computa-
tional needs of these fields. Consequently, graphics processing
units,51 tensor processing units,52 field-programmable gate ar-
rays (FPGAs),53,54 and application-specific integrated circuits55,56

are employed as SIMD-specific devices. The trend towards
high-speed, energy-efficient, and massively parallel computing
aligns well with the advantages of optical computation. As a
result, there has been a rapid increase in efforts to develop prac-
tical optical computing methods for SIMD logic operations.
Optical SIMD logic operations have been achieved using wave-
guide photonic circuits.26,27 However, a drawback of this ap-
proach is its limited scalability, which arises from the need
for precise yet large-scale fabrication.

The use of DNNs holds potential as a solution to this issue,
owing to the parallelism inherent in free-space propagation. For
instance, several types of DNN-based logic operations have
been proposed to overcome this drawback,41–47 but these pre-
vious methods typically involve only one or a few types of logic
operations on a small number of bits, and the realization of
SIMD logic operations using DNNs remains unachieved.
Moreover, these methods still require computational encoding
and decoding of the input and output, respectively, posing a sig-
nificant challenge for end-to-end optical computing, similar to
the SC scheme.

In this study, considering the background mentioned above,
we present a method termed diffraction casting (DC) for con-
ducting all 16 optical SIMD logic operations on more than
one hundred bits by incorporating the SC scheme and DNNs.
DC revives SC through the use of DNNs. Therefore, DC shares
the motivation of SC but exhibits several differences and advan-
tages over SC. Unlike SC, which is based on geometrical optics,
DC is grounded in wave optics. As a result, DC incorporates
wave phenomena such as diffraction and interference through

the use of DOE cascades in DNNs and is anticipated to offer
greater integration capability compared to SC. Another advan-
tage of DC is its elimination of the need for computational en-
coding and decoding of the input and output, respectively, which
have been inherent bottlenecks in the SC scheme and previous
DNN-based logic operations referred to above. This is enabled
by introducing a buffer area around the input pair. In the rest of
the paper, we will elaborate on the architectural design of DC,
including the forward model, the optimization process, and pro-
vide numerical demonstrations.

2 Materials and Methods

2.1 Concept of Diffraction Casting

DC is designed for 16 types of SIMD logic operations, process-
ing two input binary images to produce one output binary im-
age. Figure 1 depicts the conceptual architecture of DC. DC
consists of a reconfigurable illumination, DOEs, and an input
layer. The reconfigurable illumination enables switching be-
tween logical operations and casts light on the DOE cascade
forming a DNN. In this paper, we focus on the reconfigurable
illumination with binary amplitude modulation implemented
using a digital micromirror device (DMD) illuminated with co-
herent light from a laser, and on DOEs with phase modulation,
assuming the use of commercially available optical com-
ponents.

We place the two input images side by side on the input layer
within the DOE cascade to achieve a simple optical setup. The
output of the logic operation appears as an intensity distribution
at the end of the cascade and is captured with an image sensor.
The final result is binarized by assuming a one-bit image sensor
or a computational process. The reconfigurable illumination and
DOEs are specifically trained to perform the 16 SIMD logic op-
erations on any two binary images, as detailed in the subsequent
subsection. Once the training process is completed, DC enables
massively parallel optical logic operations on arbitrary binary
inputs just by selecting the illumination patterns, without neces-
sitating any modifications to the DOEs.

Output images

NOR

OR

AND

Reconfigurable illumination

Input layer

Diffractive optical elements (DOEs) 
forming a diffracive neural network (DNN)

Fig. 1 Schematic diagram of DC. The selection of a logic operation is performed using reconfig-
urable illumination without any modification to the DOEs.
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2.2 Optical Forward Model

Figure 2 illustrates the forward and backward processes of DC.
We consider a total of L types of SIMD logic operations on N
parallel bits. These operations are conducted by an optical cas-
cade composed of K layers, including one illumination layer,
one input layer, and K − 2 DOE layers, with the layer index
denoted as k ∈ f1; 2;…; Kg. The first layer of the optical cas-
cade is the binary reconfigurable illumination rl ∈ f0,1gPx×Py ,
where l ∈ f1; 2; � � � ; Lg is the index of the logic operations. An
input pair f ∈ f0,1gNx×2Ny, composed of side-by-side binary
images, is located on the input layer, denoted as the Kin’th layer
in the cascade.

Here, Nx and Ny represent the pixel counts of the individual
images within the input pair along the x and y directions, respec-
tively, where Nx × Ny ¼ N. The phase distributions for
each DOE layer are denoted by ϕk ∈ RPx×Py, and Px and Py
indicate the pixel counts of the DOEs along the x and y axes,
respectively. The result of the logic operations is observed with

the image sensor located downstream of the K’th layer in the
optical cascade.

We now describe the forward process of DC. The complex
amplitude modulation vk ∈ CPx×Py , induced by the reconfigur-
able illumination, input pair, and the phase-only DOEs at the
k’th layer in the cascade, is expressed as

vk ¼
8<
:

rl for k ¼ 1;
I ½f � þ t for k ¼ Kin;
expðjϕkÞ otherwise;

(1)

where j denotes the imaginary unit. Here, I is an operator trans-
forming the input pair into an amplitude image on the input
layer, composed of the following two steps. The first step is up-
sampling along the x and y directions with factors of sx ∈ N and
sy ∈ N, respectively. The second step is zero padding to enlarge
the upsampled input pair to the DOE size (Px × Py pixels).

Cost 
function

Input pair

Ground truth

Image sensor

Operation
choice

DOEs DOEs

... ...

... ...

RMSE

Intermediate
field

Final
result

Input layer

...
...

Phase distributions
 on DOEs

Binary patterns
on reconfigurable 

illumination

Reconfigurable 
illumination

Buffer

Logic
operation

Fig. 2 Forward and backward processes of DC. The reconfigurable illumination, the DOEs, and
the scaling factor are optimized through the training process.

Mashiko, Naruse, and Horisaki: Diffraction casting

Advanced Photonics 056005-3 Sep∕Oct 2024 • Vol. 6(5)



t ∈ f0,1gPx×Py expresses a buffer surrounding the upsampled
input pair, as illustrated in Fig. 2 and is defined as follows:

tðux;uyÞ

¼
(
0 forfux;uyg ∈

�
Px−sxNx

2
; PxþsxNx

2

i
×
�
Py−2syNy

2
; Pyþ2syNy

2

i
;

1 otherwise;

(2)

where ux ∈ N and uy ∈ N are indices along the x and y direc-
tions. This buffer is employed to compensate for light intensities
transmitted or blocked on the input pair and enables the removal
of computational encoding and decoding of the input and out-
put, processes that are indispensably employed in previous
optical logic operation methods, including the SC scheme.

The propagation process passing through the k’th layer in the
cascade is written as

wkþ1 ¼ Dk½vkwk�; (3)

where wk ∈ CPx×Py is a complex amplitude field just before the
k’th layer. Dk is a diffraction operator representing the propa-
gation from the k’th layer to the ðkþ 1Þ’th layer, calculated
based on the angular spectrum method.57 The initial field w1

is specified as an all-ones matrix, indicating a uniform field
at the start.

The output intensity field of the optical cascade is observed
with the image sensor as follows:

h ¼ aO½jwKþ1j2�; (4)

g ¼ B½h�: (5)

Here, h ∈ RPx×Py represents the intermediate field, obtained
through an operator O that first crops the central sxNx × syNy
pixels from the output intensity field and then downsamples it to
the original input image size of Nx × Ny. This process includes
scaling the intensity by a factor of a ∈ R>0, which corresponds
to either amplifying or attenuating the signal. g ∈ RNx×Ny is the
final result of the logic operation, with the binarization operator
B defined as

B½b� ¼
�
0 for b < 0.5;
1 for b ≥ 0.5;

(6)

where b ∈ R is an arbitrary variable. The binarization process,
which converts analog signals to Boolean ones, is implemented
using either a one-bit image sensor or through computational
means. The variation of the threshold in the binarization is
not crucial to the performance of DC. This is because the scaling
factor a in Eq. (4) is optimized for the threshold through the
gradient descent process, as described in the next section,
and thus neutralizes the impact of the threshold.

2.3 Optimization Process

To realize optical logic operations in parallel, the illumination rl,
the DOEs ϕk, and the scaling factor a are optimized based on
gradient descent in this study. First, we describe the optimiza-
tion process by assuming a single logic operation (L ¼ 1) and a
single input pair for simplicity, where the illumination is defined

as rL¼1. Then, we extend the optimization process to arbitrary
numbers of logic operations and input pairs.

2.3.1 Derivatives for a single logic operation and
a single input pair

We define a cost function e for a single logic operation and
a single input pair based on the mean squared error (MSE) as
follows:

e ¼ 1

N

X
∀
jej2; (7)

where
X
∀

represents the summation of all the elements of a

tensor on its right side. Here, the error e is defined by

e ¼ h − ĝ; (8)

which represents the difference between the intermediate field h
and the ground truth of the operation result ĝ. This is to avoid the
intermediate field’s signals around the threshold values in B,
ensuring a robust binarization process.

To optimize rL¼1 and ϕk based on gradient descent, the par-
tial derivatives of e with respect to these variables are expressed
by employing the chain rule as follows:

∂e
∂rL¼1

¼ ∂v1
∂rL¼1

·
∂e
∂v1 ; (9)

∂e
∂ϕk

¼ ∂vk
∂ϕk

·
∂e
∂vk : (10)

The right sides of these partial derivatives include the partial
derivative of e with respect to vk, calculated as

∂e
∂vk ¼

4a
N

w�
kD

−1
k ½v�kþ1D

−1
kþ1½� � � ½v�KD−1

K ½wKþ1O−1½e��� � � ���;
(11)

where D−1
k andO−1 are operators representing the inverse proc-

esses of Dk and O, respectively, and the superscript * denotes
the complex conjugate.

The partial derivatives with respect to each optimized vari-
able are finally written as follows. The partial derivative with
respect to rL¼1 is described as

∂e
∂rL¼1

¼ Re

� ∂e
∂v1

�
; (12)

where Re½·� denotes the real part of a complex amplitude. The
partial derivative with respect to ϕk is described as

∂e
∂ϕk

¼ Re

�
−jv�k ∂e

∂vk
�
: (13)

The partial derivative with respect to a is described as

∂e
∂a ¼ 2

aN

X
∀
he: (14)
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2.3.2 Derivatives for multiple logic operations and
multiple input pairs

Next, we extend the optimization process from a single logic
operation and a single input pair as described above, to L logic
operations and M input pairs. In this scenario, the cost function
E based on the MSE is expressed as

E ¼ 1

LM

X
l;m

el;m; (15)

where el;m denotes the cost associated with the l’th logic oper-
ation and the m’th input pair, derived from Eq. (7). The partial
derivatives of E with respect to rl, ϕk, and a are presented as
summations of the partial derivatives of el;m with respect to
these variables, derived from Eqs. (12)–(14), respectively,

∂E
∂rl ¼

X
m

∂el;m
∂rl ; (16)

∂E
∂ϕk

¼
X
l;m

∂el;m
∂ϕk

; (17)

∂E
∂a ¼

X
l;m

∂el;m
∂a : (18)

2.3.3 Updating procedure

The variables rl, ϕk, and a are updated with the partial deriv-
atives in Eqs. (16)–(18) based on the Adam optimizer.58 The up-
dating processes for the DOEs ϕk and the scaling factor a are
described as follows:

ϕk ← ϕk − Adam

� ∂E
∂ϕk

�
; (19)

a ← a − Adam

�∂E
∂a

�
; (20)

where Adam½·� represents an operator to calculate the updating
step in the Adam optimizer with the derivatives. To simplify the
physical realization of the illumination rl, we assume its binary
implementations, such as DMDs, by introducing stochastic per-
turbations into the gradient descent process.59 The first step in
the update process for the variables is as follows:

r̃l ← C

�
r̃l − Adam

�∂E
∂rl

��
; (21)

where r̃l is an intermediate variable for the backward process in
the optimization of rl. Here, C is an operator for clipping the
range of values as follows:

C½b� ¼
8<
:

0 for b < 0;
1 for b > 1;
b otherwise:

(22)

Subsequently, rl in the forward process is updated as follows:

rl ¼ B½r̃l þ q�; (23)

where q ∈ RPx×Py is a uniform distribution between �0.5,
introduced to avoid local minima in the binary optimization.
After the optimization process, rl is finalized as follows:

rl ¼ B½r̃l�: (24)

3 Numerical Demonstration

3.1 Experimental Conditions

We numerically demonstrated DC with all 16 logic operations
ðL ¼ 16Þ for the Boolean input pair f left and f right, as shown in
Table 1. In this numerical demonstration, the wavelength of the
coherent light for the reconfigurable illumination λ was defined
as 0.532 μm. The optical cascade comprised eleven layers
ðK ¼ 11Þ, incorporating nine DOEs, with the input layer posi-
tioned as the sixth layer ðKin ¼ 6Þ. The intervals between the
layers were equally set to 3 × 104λ ð≈ 1.60 × 104 μmÞ. For
the illumination pattern rl, the DOEs ϕk, and the input layer,
the pixel pitch was 16λ ð≈ 8.51 μmÞ. This pixel pitch was

Table 1 Logic operations defined on input pair.

Input pair
f left
f right

Operation
index l Logic operation

Boolean
0 0 1 1
0 1 0 1

Output
ĝ l

1 0 0 0 0 0

2 f left∧f right (AND) 0 0 0 1

3 f left∧f right 0 0 1 0

4 f left 0 0 1 1

5 f left∧f right 0 1 0 0

6 f right 0 1 0 1

7 f left⊕f right (XOR) 0 1 1 0

8 f left∨f right (OR) 0 1 1 1

9 1 1 1 1 1

10 f left∧f right (NAND) 1 1 1 0

11 f left∨f right 1 1 0 1

12 f left 1 1 0 0

13 f left∨f right 1 0 1 1

14 f right 1 0 1 0

15 f left⊕f right (XNOR) 1 0 0 1

16 f left∨f right (NOR) 1 0 0 0
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chosen by considering commercially available spatial light mod-
ulators (SLMs), including DMDs, as well as the microfabrica-
tion technique used for configuring DOEs,60 and the simplicity
of using an integer product.44,45 The pixel count was 160 ð¼ PxÞ
along the x axis and 288 ð¼ PyÞ along the y axis, respectively.
For the input pair fm, the pixel count of the individual image in
the pair was 16 ð¼ NxÞ along the x axis and 16 ð¼ NyÞ along the
y axis, where the parallel bits N became 256, and the upsam-
pling factors sx and sy were both 8. The width of the region with
ones on the buffer t, as defined in Eq. (2), was set to 16 pixels.
To prevent the circulant effect on the diffraction calculation, the
complex amplitude fields were zero-padded with a width of 64
pixels during the layer-by-layer propagation processes.

For the optimization process, the input pairs were generated
with values initially selected from uniform random distributions
between 0 and 1 and were then binarized using randomly se-
lected thresholds, also between 0 and 1. The numbers of input
pairs for training and testing were 80,000 and 256, respectively,
without any duplication. The batch size M was set to 16 for
training. The number of iterations was 5000. The learning rates

for the Adam optimizer, as used in Eqs. (19)–(21), for rl, ϕk, and
a were set to 3 × 10−2, 1 × 10−2, and 3 × 10−3, respectively.
These variables were initially set to uniform random distribu-
tions for rl and ϕk, and 10 for a. The final performance of
DC with L logic operations was evaluated by the root mean
squared errors (RMSEs) between the final result gl;m and the
ground truth ĝl;m for M test input pairs, as shown in Fig. 2
and described as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LMN

X
l;m

X
∀

jgl;m − ĝl;mj2
s

: (25)

3.2 Result

The optimization results for the illumination rl and the DOEs ϕk
are presented in Figs. 3(a) and 3(b), respectively. The scaling
factor a was optimized to 23.8. In the numerical demonstration
shown in Fig. 4, DC was performed using two test input pairs
with 256 parallel bits. The first pair, shown in Fig. 4(a), was

(b)

1

(a)

l = 1 l = 2 l = 3 l = 4

l = 5 l = 6 l = 7 l = 8

l = 9 l = 10 l = 11 l = 12

0
l = 13 l = 14 l = 15 l = 16

-π

0

π

k = 2 k = 3

k = 7

k = 4

k = 8

Upstream of input layer

Downstream of input layer

k = 5

k = 9 k = 10 k = 11

Fig. 3 Optimization results. (a) Binary amplitude patterns on a DMD for the reconfigurable illumi-
nation and (b) phase distributions on the DOEs. Scale bar is 1 mm.
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composed of random patterns. The second pair, shown in
Fig. 4(d), was composed of characteristic patterns. Ground
truths of their 16 SIMD logic operations are displayed in
Figs. 4(b) and 4(e), respectively. The operation outputs are
shown in Figs. 4(c) and 4(f), respectively, where all operations
were successful, and their RMSEs were zero. Furthermore, the
RMSEs for 256 test input pairs of random patterns were also
found to be zero. These outcomes underscore the promising

potential of DC. More detailed discussions are provided in
the next section and the appendix.

4 Analysis
We conducted numerical analyses of the performance of DC
under various optical conditions. Throughout this analysis, the
experimental conditions were consistent with those described in

(a)

l = 9 l = 13l = 10 l = 14l = 11 l = 15 l = 16l = 12

l = 1 l = 5l = 2 l = 6l = 3 l = 7 l = 8l = 4

(b)

(c)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(d)

l = 9 l = 13l = 10 l = 14l = 11 l = 15 l = 16l = 12

l = 1 l = 5l = 2 l = 6l = 3 l = 7 l = 8l = 4

(e)

(f)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 4 Examples of the DC process with the optimized illumination and the DOEs shown in Fig. 3.
(a) Test input pair of random patterns and its corresponding (b) ground truths of the 16 operations,
with the operation index l noted below each, and (c) their operation outputs, with the RMSE noted
below each. (d) Test input pair of characteristic patterns and its corresponding (e) ground truths of
the 16 operations, with the operation index l noted below each, and (f) their operation outputs, with
the RMSE noted below each. Scale bars in (a) and (d) are 1 mm, indicating the physical scale after
the upsampling process.
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Sec. 3, except where otherwise noted. Further analyses are pro-
vided in Appendix A.

4.1 Number of DOEs

The computational performance of DC, with the number of
DOEs set to K − 2, was evaluated using the RMSEs, as illus-
trated in Fig. 5. In this evaluation, the number of input parallel
bits N was set to 4, 16, 64, 128, and 256. Correspondingly,
the upsampling factors along the x and y axes were adjusted
to (64, 64), (32, 32), (16, 16), (8, 16), and (8, 8) ½¼ ðsx; syÞ�,
respectively, aiming to maintain consistent pixel counts of
128 ð¼ sxNx; syNyÞ on the input layer after upsampling. The
layer index of the input layer Kin was set to bðK − 2Þ∕2c þ 2.
When the number of DOEs was zero, only the illumination pat-
tern was optimized.

As illustrated in Fig. 5, the calculation error decreased with an
increase in the number of DOEs. Additionally, the necessary
number of DOEs for achieving error-free calculation increased
with the number of input parallel bits N, but at a rate less than
proportional toN. This rate of increasewas smaller than predicted
in previous works,32,38 indicating an advantage of DC in terms of
scalability and integration capability through the use of spatially
parallelized optical processes for logic operations.

4.2 Multiplexing Advantage

The DOEs implemented 16 logic operations in a multiplexed
manner in DC, as shown in Table 1. We confirmed the computa-
tional errors under different numbers of DOEs, denoted as
K − 2, when the optical cascade was designed for single logic
operations. The layer index of the input layer, Kin, was set to
bðK − 2Þ∕2c þ 2. In Fig. 6, computational errors for AND,
OR, NAND, and NOR operations, selected from the 16 opera-
tions, are shown. Results for all 16 logic operations are provided
in Fig. 8. In most of these results, error-free or nearly error-
free calculations for single logic operations were achieved
when the number of DOEs was greater than 6. On the other
hand, as shown in Fig. 5, the necessary number of DOEs for
multiplexing 16 logic operations was 9, which is significantly
less than 6 × 16, for error-free calculations. Furthermore,
the computational errors for some logic operations, such as
XNOR and NOR, were reduced by multiplexing all the logic

operations, which may help prevent falling into local minima
in the optimization process. These results verified the advantage
of multiplexing logic operations, in terms of both architecture
configuration and training process, as well as the integration
capability of DC.

5 Conclusion
We revived SC as DC by employing DNNs to achieve scalable
and flexible optical SIMD operations. The optical cascade of
DC consisted of reconfigurable illumination, DOEs, and an in-
put layer. The illumination patterns and DOEs were designed to
perform 16 logic operations on any binary input image pair, and
the output intensity of the optical cascade was binarized to pro-
duce the final results. In this study, we achieved 16 switchable
logic operations on 256 bits, which is an outstanding achieve-
ment compared with previous studies.41–47 In contrast to these
methods, where the optical diffraction processes from each
spatial region of logic operations and bits must be separately
designed, our method allows both interference between spatial
regions of bits and interference between logic operations, ena-
bling these regions to be densely located based on end-to-end
designs of the illumination patterns and DOEs. This advantage
has enabled high scalability and integration capability with all-
optical operation, eliminating the need for computational encod-
ing and decoding, all of which were numerically demonstrated.

An issue with DC for practical applications is its low energy
efficiency. This may be addressed by adopting illumination with
phase modulation and optimizing physical conditions, including
the layer interval, buffer, and image sensor. We are planning the
physical implementation of DC based on the setups shown in
Sec. 7. Owing to its flexible and reconfigurable architecture
offered by a learning-based approach, DC can be extended to
a versatile range of inputs and operations beyond SIMD logic
operations, such as image processing, including image filtering,
and advanced reconfigurable optical computing methods like
optical FPGAs. Furthermore, incorporating multiplexing in vari-
ous optical quantities, such as time,61,62 wavelength,63 polariza-
tion,39,64 and orbital angular momentum,42 would enhance the
computational capacity in DC. Thus, our study on DC offers
a novel design architecture for optical computers and optical
accelerators and paves the way for a next-generation optical
computing paradigm.
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Fig. 6 Computational errors associated with the varying number
of DOEs for single logic operations.
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6 Appendix A: Supplementary Analyses
This appendix provides detailed analyses of DC. Throughout
this appendix, the experimental conditions are consistent with
those described in Sec. 3, except where otherwise noted.

6.1 Training Process

Figure 7 illustrates the trends of the cost function based on the
MSE without the binarization process in Eq. (15) and the com-
putational error based on the RMSE in Eq. (25) during the

training process. At the end of the training process, the cost
function converged to nearly zero but not exactly zero. On the
other hand, the computational error converged to exactly zero
around the final iteration step. This indicates that the binariza-
tion process rectified the optical outputs and eliminated their
small errors.

The code for the numerical demonstrations in this study
was implemented with MATLAB 2022a (MathWorks) and
was executed on a computer with an AMD EPYC 7763 64-core
processor at a clock rate of 2.45 GHz and an NVIDIA A100
SXM4 with 80 GB of memory. The computational time for
the entire training process was ∼7 h.

6.2 Multiplexing Advantage

In Sec. 4.2, the computational errors of DC designed for single-
logic operations of AND, OR, NAND, and NOR were selec-
tively presented. The errors for all 16 logic operations are shown
in Fig. 8. In most logic operations, error-free or nearly error-free
calculations were achieved when the number of DOEs was
greater than ∼6. On the other hand, multiplexing all 16 logic
operations achieved error-free calculation when the number
of DOEs was 9, as shown in Fig. 5, which was much smaller
than 6 × 16 and supported the advantage of multiplexing the
logic operations.

6.3 Physical Volume of DC

The physical volume of the optical cascade in Sec. 3.2 was
calculated as 3.89 × 1012λ3ð≈ 5.86 × 1011 μm3Þ, where the
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Fig. 7 Error trends during the training process.
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pixel pitch on the DOEs was 16λ and the intervals between the
layers in the optical cascade were 3 × 104λ, respectively. We in-
vestigated the computational error with respect to the reduction
of the physical volume by scaling down both the pixel pitch and
the interval with the same magnification ratio, varying the pixel
pitch from 1∕8λ to 16λ by powers of two. The result is shown in
Fig. 9. In this case, the minimal physical volume without com-
putational error was 5.94 × 107λ3 ð≈ 8.94 × 106 μm3Þ, where
the pixel pitch was λ ð¼ 0.532 μmÞ, and the interval was
1.17 × 102λ ð≈ 6.23 × 10 μmÞ. This result indicated that the
minimal physical volume of DC is constrained by the diffraction
limit.

6.4 Position of the Input Layer

The computational error was calculated by varying the position
of the input layer Kin from 2 to 11 in the optical cascade with
11 layers, as depicted in Fig. 10. This result shows the impor-
tance of the DOEs downstream from the input layer in reducing
computational error. It suggests that there is an advantage in po-
sitioning the input layer at an upper layer, excluding the top one.

6.5 Energy Efficiency

We evaluated the light-energy efficiency of DC using the fol-
lowing definition:

Energy efficiency ¼
P
∀
½O½jwKþ1j2��jl¼9; f¼1

PxPy
: (26)

Here, the denominator represents the total input energy to the
optical cascade. The numerator is the total energy on the output
area of interest, calculated when the logic operation is config-
ured to produce one output (l ¼ 9) and all elements of the input
pair f are set to 1. The energy efficiency was assessed with
respect to the scaling factor a and the width of the buffer t.

6.5.1 Scaling factor

The light-energy efficiency is associated with the scaling factor
a, which amplifies or attenuates the signals captured by the im-
age sensor before the binarization process. A larger a indicates
lower energy efficiency and vice versa. In the above demonstra-
tions and analyses, a was included in the optimized parameters,
as shown in Eq. (20). Here, a was set to a specific value and was
not updated during the optimization process. Once the optimi-
zations of the illumination pattern rl and the DOEs ϕk were
completed, the energy efficiency in Eq. (26) and the computa-
tional error were calculated. This process was repeated by
changing a from 2 to 32. The relationship between the energy
efficiency and the computational error is shown in Fig. 11. The
RMSEs for the energy efficiencies between 1.81% and 8.71%
were less than 2.38 × 10−3. Therefore, nearly error-free calcu-
lation was achieved within this range of energy efficiencies.

The primary sources of energy loss were amplitude modula-
tion on the illumination plane, light leakage from the optical
cascade, and the cropping of the limited square area by the im-
age sensor at the end of the optical cascade. The first issue can
be solved by employing phase modulation on the illumination
plane, although its modulation speed is lower than that of am-
plitude modulation on currently available SLMs. The second
issue may be alleviated by reducing the intervals between
layers. The third issue can be addressed by increasing the sensor
area, employing anisotropic sampling, or utilizing anamorphic
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imaging. Another approach to improve energy efficiency is to
increase the width of the buffer, as indicated in the next section.
The trade-off between energy efficiency and computational
error will not be an issue in a proof-of-concept experimental
demonstration with an optical setup, such as those shown in

Sec. 7, by increasing the illumination intensity. However, this
issue must be considered in practical applications, where energy
efficiency in computation is a crucial factor.

6.5.2 Buffer width

The buffer t was introduced into DC to compensate for the light
intensities transmitted or blocked by the input pair. It was ex-
pected to eliminate the computational encoding and decoding
processes employed in previous methods for optical logic oper-
ations, including the SC scheme. In the above demonstrations
and analyses, the buffer width was set to 16 pixels. The plots in
Fig. 12 show the energy efficiencies and computational errors at
different buffer widths, including zero width. In this analysis,
the scaling factor awas included in the optimization parameters.
This result supported the necessity of the buffer for error-free
calculation. Furthermore, a larger buffer width increased the en-
ergy efficiency.

The RMSE for the logic operations at 1 ≤ l ≤ 8 without the
buffer was reduced from 4.24 × 10−2 to 0 by adding a buffer of
one pixel. On the other hand, the RMSE for the logic operations
at 9 ≤ l ≤ 16 with no buffer was significantly improved from
4.40 × 10−1 to 0 by adding a one-pixel buffer. As shown in
Table 1, operations at 1 ≤ l ≤ 8 do not include the operation
with an input of f left ¼ 0; f right ¼ 0 and an output of ĝl ¼ 1.
Conversely, the operations at 9 ≤ l ≤ 16 include such an
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Fig. 12 Relationship between computational errors and energy
efficiencies with the varying buffer width (BW [pixels]).
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operation. This result also verified the role of the buffer—com-
pensating for the balance between the light intensities of the
input and output in the optical cascade.

6.6 Alignment Error

An issue in the physical demonstration of DC will be alignment
errors. The system’s performance under alignment errors along
the x and z axes is presented in Fig. 13, showing the computa-
tional error with one-dimensional alignment on the individual
layers, including the illumination and input layers. The align-
ment error along the y axis was omitted in this analysis because
its impact is considered similar to that along the x axis due to
their symmetry. As shown in these results, the impact of the
alignment error along the x axis was greater than that along
the z axis.

Several methods for compensating for alignment errors in
DNNs have been proposed, and these can be applied to con-
figure our setup. The first approach is enhancing robustness
against alignment errors or model errors by introducing
them during the computational training process.65 The second
approach is using a closed-loop process to feed back align-
ment errors or model mismatches to controllable optical ele-
ments, such as SLMs.66,67 The third approach is incorporating

integrated chip fabrication techniques, which significantly
reduce alignment errors or model mismatches.32,43

7 Appendix B: Optical Setup
Two candidate experimental setups for DC are presented in
Fig. 14. Both setups employ DMDs for the reconfigurable
illumination and input due to the high speed and high contrast
in DMD modulation. The first setup, shown in Fig. 14(a),
uses transmissive phase modulation elements, such as DOEs.
While it can be bulky, it is easier to align optical components.
The polarization state of the light may optionally be con-
trolled to prevent stray light from the DMDs. This type of
setup has been demonstrated in DNNs for object classification
and classical or quantum logic gates.28,31,41,46 The second setup,
shown in Fig. 14(b), uses a mirror and reflective phase modu-
lation elements, such as SLMs. This reflective setup may be
more compact and compatible with the closed-loop approach
described in Sec. 6.6 to compensate for alignment errors. The
diagonal propagation process can be considered when design-
ing the phase modulations using rotational transformation in
numerical diffraction.68 This type of reflective setup has been
demonstrated in DNNs for a beam mode converter, a quantum
gate, and optical reservoir computing.69–71
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Fig. 14 Candidates for the experimental setups of DC using (a) transmissive phase modulation
with DOEs and (b) reflective phase modulation with SLMs.
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