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Abstract. The dynamic behavior of phase singularities,
or optical vortices, in the pseudo-phase representation of
dynamic speckle patterns is investigated. Sequences of
band-limited, dynamic speckle patterns with predetermined
Gaussian decorrelation behavior were generated, and
the pseudo-phase realizations of the individual speckle
patterns were calculated via a two-dimensional Hilbert
transform algorithm. Singular points in the pseudo-phase
representation are identified by calculating the local
topological charge as determined by convolution of the
pseudo-phase representations with a series of 2 × 2 nabla
filters. The spatial locations of the phase singularities are
tracked over all frames of the speckle sequences, and
recorded in three-dimensional space ðx; y; f Þ, where f
is frame number in the sequence. The behavior of the
phase singularities traces ‘vortex trails’ which are represen-
tative of the speckle dynamics. Slowly decorrelating speckle
patterns results in long, relatively straight vortex trails, while
rapidly decorrelating speckle patterns results in tortuous,
relatively short vortex trails. Optical vortex analysis such
as described herein can be used as a descriptor of biological
activity, flow, and motion. © 2012 Society of Photo-Optical Instrumen-

tation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.5.050504]
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Speckle fields arising from scattering media such as biological
tissue contain locations of zero intensity and undefined phase.
The phase in the immediate vicinity of these singular points
rotates through a full 2π radians along a circular path surround-
ing these points. This spiral behavior of the phase values has
lead to these singular points being referred to as optical vortices.
Optical vortices may be described in terms of topological charge
nt with each vortex typically possessing a topological charge of
�1, depending upon the direction of rotation of the phase
values;1,2 however, higher order charges are possible. As a direct
outcome of the principle of conservation of charge, vortices only
appear in pairs, with one member of the pair possessing a
topological charge of þ1 and the other pair member possessing
a topological charge of −1. This further implies that optical

vortices can only be created and destroyed in pairs. As the
scattering particles in the dynamic media move, the phase in
the scattered field, and therefore the locations of the optical
vortices, also change in a related fashion. The behavior of opti-
cal vortices and beams that contain optical vortices has received
much attention lately.2–4 Much of this attention has focused on
the density and behavior of the optical vortices as the field
propagates through a turbulent atmosphere.2,4 Sendra et al.5

evaluated vortex behavior in dynamic speckle images, and
pointed to the biological and industrial applications of analyz-
ing vortex activity. They note there is a strong relationship
between the motion of a scattering diffuser and the resultant
motion of the optical vortices in the observed dynamic speckle
pattern.

The apparent robustness of optical vortices combined with
the observation that vortices in a dynamic, stochastic optical
field move in a manner that correlates with the motion of scat-
tering particles (or medium) implies that optical vortex behavior
may be used as a surrogate for understanding the dynamic beha-
vior of scattering media. Particular applications in biomedicine,
where vortex analysis may be of use, include investigating the
dynamic behavior of scattering suspensions, particle sizing,
monitoring cellular activity, and microcirculation studies, for
example. The purpose of this letter is to demonstrate one
approach to studying optical vortex behavior in simulated
speckle intensity patterns that exhibit dynamic behavior similar
to that observed when coherent light is scattered by biological
tissues.

To investigate the spatio-temporal behavior of optical
vortices in dynamic speckle patterns, we generated sequences
of band-limited dynamic speckle patterns in the Matlab envir-
onment using the numerical method we described in an earlier
publication.6 Using this approach, we were able to generate fully
developed, dynamic speckle patterns with very well-controlled
first and second order statistics, and also with prescribed
decorrelation behavior. Following the generation of the speckle
sequences, the pseudo-phase ϕ̂7 of the speckle patterns was
generated using a two-dimensional (2-D) Hilbert transformation
of the speckle patterns. This representation of ϕ̂ is not unique,
and an entirely different representation of the pseudo-phase can
be generated if, for example, one were to employ a 2-D Fourier
transformation in place of the Hilbert transformation. This is the
classic phase-retrieval problem. Regardless of the numerical
method used to generate the pseudo-phase, the operation simply
exploits information already present in the signal without adding
any new information.5 Once a 2-D representation of ϕ̂ is
generated, the singular points which identify the optical vortices
can be located. These points then can be tracked as the speckle
pattern dynamically evolves.

We begin our formal discussion of the problem by noting
that the complex representation of an optical field and its rela-
tionship to the intensity image is given by

Uðx; y; z; tÞ ¼ Aðx; y; zÞ exp½iωt�

Iðx; y; zÞ ¼ lim
T→∞

Z
T∕2

−T∕2
jUðx; y; z; tÞj2dt

¼ jAðx; y; zÞj2;

(1)

Address all correspondence to: Sean J. Kirkpatrick, Michigan Technological
University, Department of Biomedical Engineering, 1400 Townsend Drive,
Houghton, Michigan 49931, Tel: +906-487-2167; E-mail: sjkirkpa@mtu.edu 0091-3286/2012/$25.00 © 2012 SPIE

Journal of Biomedical Optics 050504-1 May 2012 • Vol. 17(5)

JBO Letters

http://dx.doi.org/10.1117/1.JBO.17.5.050504
http://dx.doi.org/10.1117/1.JBO.17.5.050504
http://dx.doi.org/10.1117/1.JBO.17.5.050504
http://dx.doi.org/10.1117/1.JBO.17.5.050504
http://dx.doi.org/10.1117/1.JBO.17.5.050504
http://dx.doi.org/10.1117/1.JBO.17.5.050504


where the phasor amplitude of the field, A, is itself a complex-
valued function of space. The local true phase of the field is
defined as usual as ϕðx; yÞ ¼ tan−1 Im½Uðx; yÞ�∕Re½Uðx; yÞ�.
To generate a 2-D representation of the pseudo-phase ϕ̂ðx; yÞ
from Iðx; yÞ we use a Hilbert transform in two dimensions,
such that

Ûðx; yÞ ¼ Iðx; yÞ þ jHfIðx; yÞg (2)

and

ϕ̂ðx; yÞ ¼ tan−1
ImfÛðx; yÞg
RefÛðx; yÞg :

The phase singularities are defined in terms of nt:

nt ≡
1

2π

I
c
∇ϕ̂ðx; yÞ · d~l; (3)

where ∇ϕ̂ðx; yÞ is the local phase gradient, and the contour
integral is taken over path l on a closed loop c around the vortex.
It is clear that nt ¼ 0 everywhere ϕ̂ is differentiable, except at
the singularity where the phase is undefined. Since ϕ̂ is a
continuous function, and has continuous first derivatives, by
Stokes theorem we can see that

nt ≡
1

2π

I
c
∇ϕ̂ðx;yÞ · d~l¼ 1

2π

Z Z
D

�
∂2ϕ̂
∂x∂y

−
∂2ϕ̂
∂y∂x

�
∂x∂y; (4)

where D is a disc of radius a enclosing the circular path over
which nt is evaluated.

8,9 This formulation suggests the locations
of the optical vortices can be determined efficiently through a
series of convolution operations:

Fig. 1 Example of a band-limited numerically generated speckle pattern (a), its pseudo-phase representation (b), and the pseudo-phase representation
with the positively charged (green stars) and negatively charged (red circles) optical vortices identified (c).

Fig. 2 Autocorrelation functions of the rapidly decorrelating speckle
sequence versus the more slowly decorrelating speckle sequence
used in this study.
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nt ¼ ϕ̂ðx; yÞ ⊗ ∇1 þ ϕ̂ðx; yÞ ⊗ ∇2 þ ϕ̂ðx; yÞ ⊗ ∇3

þ ϕ̂ðx; yÞ ⊗ ∇4;

where

∇1 ¼
�
0 1

0 −1

�
; ∇2 ¼

�
1 −1
0 0

�
;

∇3 ¼
�−1 0

1 0

�
; ∇4 ¼

�
0 0

−1 1

�
;

(5)

and ⊗ is the convolution operator. Figure 1(a)–1(c) displays a
numerically synthesized speckle pattern, its pseudo-phase repre-
sentation, and the pseudo-phase representation with the optical
vortices indicated by the superimposed stars and circles, respec-
tively. Here, the vortices with positive topological charge are
indicated by green stars and those with a negative topological
charge by red circles.

Two sequences of 100 dynamic speckle patterns each were
generated numerically. These speckle sequences displayed
temporal decorrelation behavior, as shown in Fig. 2. From this
figure, we see that both sequences exhibited Gaussian dec-
orrelation behavior, but with drastically different characteristic
times. The ‘fast’ sequence was defined by a time constant of
τf ≅ 9 frames, while the ‘slow’ sequence was characterized
by a longer time constant τs ≅ 36 frames. For both sequences,
pseudo-phase representations were generated for each frame,
and the locations of the vortices identified. These locations
were then plotted in ðx; y; f Þ, where f is frame number in the
sequence. Following the convention of Fig. 1(c), the positively
charged vortices were plotted in green stars, and the negatively
charge vortices were plotted in red circles.

The results of this operation are shown in Fig. 3(a) and 3(b).
Several observations can be made regarding these figures. A key
observation is the vortices are robust. That is, individual vortices
persist through at least several frames, even in the rapidly
decorrelating speckle example. The locations of the individual
vortices over several frames trace a path, or a vortex trail. In the
rapidly decorrelating speckle sequence, the vortex trails are rela-
tively short and tortuous [Fig. 3(a)]; however, in the slowly vary-
ing sequence, the vortex trails are quite long, and trace a much
straighter path [Fig. 3(b)]. It is clear that in the limit of a truly
static speckle sequence, the vortices would maintain their ðx; yÞ

positions through all frames f . Careful examination of Fig. 3(a)
and 3(b) also reveals locations where positively and negatively
charged optical vortices annihilate each other. Elsewhere, new
vortices are formed. These events always occur in pairs (i.e.,
both a positively and a negatively charged vortex is either
destroyed or created), and arise because of the conservation
of charge principle.4

In an actual, physical setting, the motion of the speckles aris-
ing from scatter from biological tissues arises from numerous
sources, including the random motion of cellular activity, and
from the more-ordered motion of red blood cells, for example.
We may generalize and simply say that motion in these speckle
patterns is from biological activity. From this discussion, it
becomes apparent that the spatio-temporal behavior of optical
vortex trails is an indicator of biological activity, and specific
imaging configurations and experiments could be designed to
focus on one particular type of motion. For example, one could
coherently image cell sheets, and use the above vortex analysis
to quantify cellular metabolic activity. Alternatively, it is feasible
that one could coherently image the microcirculation, and use
vortex analysis to study microcirculatory flow.
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Fig. 3 Three-dimensional representation of the vortex trails for the rapidly decorrelating speckle sequence (a), and the more slowly decorrelating
speckle sequence (b). The green stars represent the positively charged vortices and the red circles represent the negatively charged vortices.
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