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1 Introduction
Image correlation spectroscopy (ICS) has gained acceptance for
its ability to quantitatively analyze fluorophore distribution in a
user-independent manner from relatively noisy images. Origin-
ally described in 1993 using math from statistical mechanics,1 it
has since gained acceptance for analyzing biological macromo-
lecule organization (> 100 publications using the term in the
title). ICS is especially adept at distinguishing images with a
homogeneous fluorophore (macromolecule) distribution from
those with the same mean intensity, but uneven, clustered fluor-
ophore distribution in an automated and user-independent fash-
ion. The ability to distinguish these two states is extremely
useful in biological systems where clustering of macromole-
cules can differentiate cellular processes (e.g., receptor aggrega-
tion2–4 and collagen fiber organization).5 ICS has since been
extended to analyze fluorophore colocalization (cross correlation
ICS),6–8 dispersion and diffusion in time (spatiotemporal9–11 and
raster ICS),12–16 and macromolecular structure.5,17 More informa-
tion about these variants can be found in several recent reviews,6

showing the versatility of this mathematical technique.
ICS, in all its variants, relies on calculation of the image auto-

correlation followed by a fit of the autocorrelation function to a
two-dimensional (2-D) Gaussian function to extract quantitative
parameters. Few previous works have analyzed the effects of
image structure or artifacts on the fidelity of this process,
and those that have rely heavily on simulations.17,18 Both
autocorrelation and Gaussian curve fitting can be analyzed
analytically via estimation theory; however, no previous work
has established the theory necessary or described the effect
of imaging artifacts in this manner.

It is important to understand the mathematical theory
underlying autocorrelation-based analysis for two reasons.
Firstly, preprocessing, curve fitting, and noise reduction induce
significant variance in ICS analyses. The lack of consensus in

preprocessing and analysis makes comparing results across
publications difficult, and may bias results. Secondly, the
peak of the autocorrelation function is inversely related to
particle number, modified by particle size and shape; however,
the autocorrelation function also encodes further information
about image structure. By expanding on autocorrelation theory,
quantitative image analysis can be advanced. Instead of using
simulations to model autocorrelation-based image analysis, we
seek instead to analytically describe the effects of artifacts com-
monly seen in laser-based microscopy and image processing
operations, followed by a series of practical recommendations
that will provide greater uniformity and accuracy in applying
ICS to fluorescent images.

2 Three Definitions of Autocorrelation
Autocorrelation itself is logically equivalent to comparing all
possible pixel pairs and reporting the likelihood that both
will be bright as a function of the distance and direction of
separation. In a more mathematical definition, autocorrelation
is the convolution of a function with itself. For a digital
image I, of size M × N (images are discretely spatially defined,
2- to 4-dimensional, of finite extent, and have real, bounded,
digital values), autocorrelation can be calculated by Eq. (1)

Giiða; bÞ ¼
XM
x

XN
y

iðx; yÞ � iðx − a; y − bÞ; (1)

where Giiða; bÞ is the autocorrelation function, iðx; yÞ is the
image intensity at position ðx; yÞ, and a and b represent the
distance (or lag) from the corresponding x and y position.
The analysis in this work assumes that the image is homoge-
neous (or ergodic). For example, if an image has boundaries
like a cell on a background it should be cropped to be homo-
geneous. As the mean value and range of real digital images are
based on acquisition system and parameters instead of the
underlying structure, the normalized autocorrelation, denoted
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gii, is used for analyses such as ICS. It is calculated by dividing
G by the square of the mean intensity and subtracting 1 from that
quantity,

giiða; bÞ ¼
P

M
x

P
N
y iðx; yÞ � iðx − a; y − bÞP
M
x

P
N
y iðx; yÞ � iðx; yÞ − 1

¼ F−1fF½iðx; yÞ�2g
NMi2

− 1; (2)

where Fðx; yÞ is the Fourier transform of iðx; yÞ. For images
which are isotropic (i.e., no orientation), Gii and gii will be
radially symmetric, which thus produces giiðdÞ, where d is
the length to ða; bÞ.

Practically, Eqs. (1) and (2) are almost never used; autocor-
relations can be calculated far more efficiently via fast Fourier
transforms using the Weiner-Khinchin theorem,

F−1½Giiða; bÞ� ¼ SðiÞ ¼
���F½iðx; yÞ����2; (3)

where SðiÞ is the power spectrum of the image. This powerful
theorem states that the Fourier transform of the autocorrelation
of an image i is equal to the inverse Fourier transform of SðiÞ.
The power spectrum can be calculated by squaring the magni-
tude of the Fourier transform of i, which for real-valued func-
tions is equivalent to multiplying the Fourier transform by its
converse. This theorem is important for two reasons. First, it
reduces processing time [fromO ¼ n4 to n logðnÞ], and, second,
it links the autocorrelation operator to the more commonly
understood (and blessedly linear) Fourier transform.

The last formulation for the autocorrelation operator we will
use for this analysis is a heuristic formulation of the probability
that two points will accord based on the vector between them.
We will focus on the expected autocorrelations for image classes
which are defined statistically (i.e., white noise with a certain
spatial and intensity profile). For these image classes, autocor-
relation can be understood as the product of the predicted inten-
sity distribution of a pixel ½Piðx; yÞ� in the image and the
predicted intensity distribution of pixels a certain distance
away ½Piðxþ a; yþ bÞ�. This gives a predicted image autocor-
relation, Gpii, and predicted normalized autocorrelation gpii
(assuming the probability density sums to 1),

Gpiiða; bÞ ¼ Piðx; yÞ � Piðxþ a; yþ bÞ and (4)

gpiiða; bÞ ¼ Piðx; yÞ � Piðxþ a; yþ bÞ − 1: (5)

The normalized probability density function ðPiÞ of a real image
can be calculated by dividing the intensity distribution of the
image by the sum of the image values, giving a probability func-
tion which sums to 1.

3 Creation of Test Images
Creating images to test new autocorrelation-based techniques
requires understanding of the acquisition system that will be
used for experimental images. Ideally these test images would
be created on the acquisition system itself, in which case, the
correct noise and point spread fuction (PSF) artifacts will
already be part of the image. If this is not feasible, algorithms
should be tested against test images with artificially created arti-
facts and blur of the same magnitude as expected in real images.

4 Effects of Common Artifacts and Processing
Steps

4.1 Scaling

Multiplication of all image values by a constant, impacts the
autocorrelation nonlinearly: G½k � i� ¼ k2 � G½i�, but it does not
affect the normalized autocorrelation g, as g ¼ G∕meanðiÞ2 ¼
k2G½i�∕ðk2meanðiÞ2Þ ¼ g½i�. For digital images, scaling may
improve autocorrelation fidelity as decimation errors are
minimized. Empirically, scaling an image to use the entire
range of the detector system will offer the best data fidelity.

4.2 Linear Filtering

Linear filtering is defined by the convolution of image iðx; yÞ
with the discrete filter kernel h, and is equivalent to (and nor-
mally calculated by) multiplying their Fourier transforms:
F−1½FðiÞFðhÞ� ¼ F−1½FðiÞ� � F−1½FðhÞ�. It is then trivial to
see that applying a filter to an image before autocorrelation
would be equivalent to convolving the autocorrelation of the
image with the autocorrelation of the filter. From a practical
point of view, if an image is filtered before autocorrelation is
performed, roundoff error may be worth considering. Repeated
transformations into Fourier space can degrade the image if
bit-depth is insufficient.

Similarly, real optical systems have a finite (PSF, commonly
modeled as a Gaussian function), which serves as a low-pass
filter for the acquired image. Therefore, the autocorrelation of
a confocal or multiphoton image will equal that of the true
image convolved with the autocorrelation of the optical system
point spread function. Convolving two radially symmetric 2-D
Gaussians (with amplitudes A1 and A2 and deviations s1 and
s2) in two dimensions results in a third Gaussian function
with a standard deviation equal to sqrtðs12 þ s22∕s1 � s2Þ
and amplitude ½A1 � A2 � ðs12 þ s22Þ�. If one standard devia-
tion, say that of the optical system, is much larger than the
other, it will tend to dominate the deviation of the resulting func-
tion. As a result, for images of small particles (smaller than the
diffraction limit), the deviation of the Gaussian fit will relate to
the PSF for confocal or multiphoton systems, limited by the spot
size of the laser (laser beam waist).1 On the other hand, this will
not be the case for images which have broader autocorrelations,
like images of fibers longer than the diffraction limit (see
Sec. 5.4 on randomly oriented fibers). Comparing the standard
deviation and the beam waist (or optical system point
spread function) has been used in the past as a check on the
processing fidelity. Thus, if the standard deviation from the
Gaussian fit approximately equals the beam waist (i.e., a
positive result) then acquisition and optimization are
satifactory, but a negative result does not necessitate image
rejection.

4.3 Addition of Two Images

The importance of adding two images lies in the ability to model
noise as an image added to the information-containing image.
For Gaussian white noise [e.g., thermal fluctuations in a charge
coupled device (CCD)], this assumption is commonly made and
reasonably accurate. The autocorrelation of the superposition of
two images iðx; yÞ and jðx; yÞ is
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Giþj ¼ F−1½jFðiþ jÞj2� ¼ F−1½jFðiÞ þ FðjÞj2�
¼ F−1½jFðiÞj2 þ jFðjÞj2 þ jFðjÞ � ̱FðiÞ þ FðiÞ � ̱FðjÞj�
¼ Gii þ Gjj þ 2 � Gij: (6)

Therefore, the autocorrelation of the sum of two images is equal
to the autocorrelation of each plus the convolution of image i
with image j. If noise is added to an image, the autocorrelation
of the noisy image will be affected both by the autocorrelation of
the noise with itself and the convolution of the noise with the
image. More details of the implications are described below in
Sec. 5.2 on white noise.

4.4 Thresholding

Thresholding reduces the intensity information of an image
to 0 or 1, allowing use of binary image processing algorithms,
and increasing the image contrast. Theoretically, thresholding
should minimally affect the spatial distribution (which autocor-
relation principally analyzes) of the image. By definition, it will
alter the intensity probability density function, which will affect
the scaling of the normalized autocorrelation. The maximum of
the autocorrelation relates to both image structure and image
probability distribution. A binary image has a mean intensity of
one times the fraction of pixels which are bright. Once normal-
ized, the thresholded image will result in a mean normalized
probability distribution of 1. Any unthresholded image with a
broad normalized intensity probability function would have a
lower average. In theory, therefore, thresholding before autocor-
relation could allow for analysis of spatial distribution indepen-
dent of intensity.

In practice, thresholding will affect spatial distribution as
well as normalized probability distribution. For example, thresh-
olding will enhance the edges of images that have some finite
intensity roll off (soft edges), serving as a high-pass filter.
Depending on the threshold chosen, particle size may be
over- or underestimated, which will affect the roll off of the
autocorrelation function and its maximum value. In cases
where thresholding is hard, (relatively poor signal to noise ratio
or high background to signal ratio) thresholding may obviate the
underlying signal. In experimental work, the threshold level was
shown to greatly affect autocorrelation maximum.17 Likewise, if
the image is relatively noisy, thresholding can amplify noise,
reducing autocorrelation fidelity. For these reasons, thresholding
before autocorrelation analysis should be done judiciously and
documented well.

4.5 Background Subtraction

Background subtraction is a nonlinear noise reduction techni-
que. An image of an empty field is taken to assess the noise
levels of the detector system, and the mean value of this noise
is set to be the 0 value for actual images. This will ensure that the
background of real images is close to zero, while maintaining
the fidelity of information-containing regions.5 This technique is
an inherently nonlinear technique (making it difficult to quan-
titatively analyze) that affects only relatively dark pixels. The
effect should be relatively minimal, however, as bright pixels
dominate the autocorrelation.

4.6 Sampling

As digital images have defined pixel sizes, many of the concepts
presented here will hold true only in a statistical sense. Smaller
images are more likely to differ from statistical norms due to
smaller sample size. Autocorrelation has been performed on
image subsets down to 16 × 16 pixel size, however, this is not
recommended. On the other hand, the region analyzed should be
homogeneous. Edges (e.g., cell borders) will tend to dominate
the Fourier transform and hence the autocorrelation. Thus,
larger image regions minimize statistical deviations, with the
caveat that the region should be homogeneous.

Lastly, for laser-based imaging techniques, if the image pixel
size is greater than the laser beam waist, sampling will serve as a
form of low-pass filtering. If the pixel size is less than the laser
beam waist, then the laser itself will serve as the primary filter.
Previous work has used the laser beam waist as an independent
validation of the fitting process19; however, to do so the detector
must oversample the field of view relative to the laser beam
waist.

5 Autocorrelation of Example Image Classes

5.1 Monochrome Field

Amonochrome field image iðx; yÞ is equal to a constant k for all
x and y. The power spectrum of a flat field is equal to the sum of
the image at the origin and zero elsewhere (akin to the Dirac
delta function). The inverse Fourier transform of this power
spectrum is equal to zero, so the normalized autocorrelation will
be a flat field. A monochrome image, m, superimposed on an
information containing image, i, will not affect the autocorrela-
tion of IðgiþmÞ. That is, gðiþmÞ ¼ gii þ gmm þ 2 � gim ¼ gii,
as gmm ¼ 0 and gim ¼ 0.

5.2 White Noise

White noise is spatially random, which gives it an even power
spectrum across all frequencies (i.e., F½Gii� ¼ constant). White
describes the spatial correlation of intensity, whereas the inten-
sity distribution of any given pixel can vary (e.g., Gaussian or
Poisson). Many types of noise can be modeled as white, includ-
ing background thermal noise (which is commonly modeled as
Gaussian white noise.) An image comprised of white noise, by
definition, has a flat power spectrum with a variance from the
mean proportional to the intensity profile of the noise squared. A
flat power spectrum will give a normalized autocorrelation equal
to the Dirac delta function. In theory, therefore, ideal white noise
will have an autocorrelation equal to zero everywhere but the
origin. The value at the origin is equal to the normalized power
spectrum squared. A value of 1 corresponds to “salt and pepper”
noise; for Gaussian white noise the value will be the mean
amplitude of the noise squared. (See Fig. 1.)

When white noise is added to an information containing
image, the autocorrelation of the resulting image should theo-
retically be unchanged. The autocorrelation of the informa-
tion-containing image plus that of the white noise (equal to zero
except at the origin), plus the convolution of the noise with the
image (which should be similar to zero if the noise and the
image are dissimilar) all sum to just the autocorrelation of
the information-containing image: gðiþmÞ ¼ gii þ gmmþ
2 � gim ¼ gii, as gmm ¼ 0 except at the origin and gim ¼ 0
as noise and the information containing image should be
uncorrelated.
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In practice, however, adding random noise to an image will
blur the resulting autocorrelation. The values gmm and gim are
equal to zero only in a statistical sense: gmm has mean of 0
and a standard deviation related to the noise distribution. The
correlation between the noise and the information containing
image, gim, should be close to zero for most image classes,
though this depends on the information containing image. For
these reasons it is important to acquire images with the best
signal to noise ratio possible, and to omit the autocorrelation
data at the origin from the Gaussian fits.

It should be noted that using low-pass filtering to reduce
noise for autocorrelation analysis will adversely affect autocor-
relation fidelity. Theoretically, the autocorrelation of white noise
should be confined to the origin; however, low-pass filtering will
artificially broaden gmm, the autocorrelation of the noise, which
thus affects the curve fitting process. Lastly, it should be noted
that for images of white noise, limited image size will increase
the chance that the calculated autocorrelation will deviate from
statistical norms (due to limited sample size). The mathematical
framework described thus far deals with a representative image
obeying statistical norms. Statistical chance may generate
images which vary from the expected described above with
likelihood inversely proportional to image size, once again
highlighting the importance of acquiring appropriately large
images.

5.3 Gaussian Function

Gaussian functions are commonly used as low-pass filters or
to model the point spread function of a laser. A 2-D Gaussian
function centered at the origin with deviations in the x and y
directions of σx and σy is defined by the equation fðx; yÞ ¼
expð−x2∕σx2 − y2∕σy2Þ. The autocorrelation of this function
is another Gaussian: GffðdÞ ¼ π∕ð2σxσyÞ � expð−x2∕2σx2−
y2∕σy2Þ, with smaller standard deviations and a different ampli-
tude (Fig. 2). Since the integral of Gff over the whole real plane
is π � jσxσyj, the normalized autocorrelation gff ¼ 1∕
ð2σx2σy2Þ � expð−x2∕2σx2 − y2∕σy2Þ − 1. Note that this nor-
malized autocorrelation is equal to 1∕ð2σx2σy2Þ at the origin,
and is equal to -1when x or y approach infinity.

5.4 Randomly Dispersed and Randomly Oriented
Fibers

This image will be comprised of randomly dispersed narrow
fibers (n fibers per unit area) of length L (and width of 1
pixel), all aligned randomly. To start, we will assume that the
image is comprised of perfectly dark background pixels with
evenly bright fibers. The probability of any pixel being part
of fiber is therefore Piðx; yÞ ¼ n � L. Given that the first pixel
is part of a fiber, the probability that a second pixel at ðxþ a;
yþ bÞ will also be part of the fiber is equal to the probability

Fig. 1 Autocorrelation of Gaussian white noise. Frame (a) shows the original image and (b) its autocorrelation. The autocorrelation is very close to zero
except at the origin.

Fig. 2 Autocorrelation of Gaussian functions. Frame (a) shows the original image and (b) shows its autocorrelation. While similar, some distortion can
be seen in the autocorrelation. Note the scale on the original image goes from an intensity value of 0 to 255, and the autocorrelation from −0.5 to 0.5.
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that the fiber lies in direction ða; bÞ times the probability that if
the fiber lies in the same direction, ðxþ a; yþ bÞ will not
exceed the fiber’s length L. Piðxþ a; yþ bÞ therefore is
equal to ðL − dÞ � 1∕2πd or 1 − 1∕2Ld. For digital images,
which are discretized, where the number of points d pixels
away from a center point is better modeled as 2þ 2π � d (as
opposed to 2πd). Piðxa; ybÞ therefore becomes 1∕ð1þ πdÞ.
The image intensity is nL which therefore gives the following
predicted autocorrelation for digital images,

giiðx; yÞ ¼ 1

nLþ nLπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p (7)

(See Fig. 3). If the center pixel ½gð0; 0Þ� of this function is
omitted, the Gaussian function fit will be underestimated, and
underestimated more severely the more the peripheral regions
of the autocorrelation are emphasized.

For a laser-based image, assuming no noise, the autocorrela-
tion will equal gii of the information-containing image con-
volved with that of the optical system, which we will model as
a Gaussian with deviation w0.The solution, while closed form, is
not simple. We can state, however, that the autocorrelation of an
information containing image convolved with a Gaussian beam
has an autocorrelation which is not strictly Gaussian as the
falloff in the central regions will be faster, and in the outlying
regions slower. The peak of this function will equal nL∕w0

2,
however, as the falloff is faster than Gaussian, the fit will under-
estimate this value. If using ICS to analyze images of fibers,
changes in number density and length will both affect the result,
and gð0; 0Þ will underestimate particle number.

6 Anisotropic Images

6.1 Horizontal Lines of Random Intensity

The next image to be considered is anisotropic (i.e., image prop-
erties depend on orientation) characterized by parallel lines with
random intensity. Note that this image is equivalent to a line of
white noise, expanded horizontally to fill the image size. This
anisotropic image will have an anisotropic autocorrelation: the
central line of the autocorrelation, which evaluates the concor-
dance of any two pixels on the horizontal line, will be maximal
while the rest of the image will be zero. If we assume that this
image of streaks is binary (i.e., it has been thresholded such that
any pixel has a value of either 0 or 1), the value of the normal-
ized autocorrelation along the horizontal axis will be 1. If we
allow the value of the streaks to vary, the value along the
horizontal axis will equal the mean of the normalized image
intensity probability density function (since the probability that
a first pixel will be bright is equal to Pn, and the probability that
a pixel next to it will be bright is 1). If an image of horizontal
white streaks is acquired with an optical system with a Gaussian
point spread function, the resulting autocorrelation will have a
Gaussian profile along the y-axis (horizontal axis) with devia-
tion equal to that of the optical point spread function.

6.2 Aligned White Fibers

Autocorrelation is sensitive to alignment, as demonstrated in the
horizontal lines of random intensity. To start, assume all fibers
are equally bright, 1 pixel wide, have a length of L and a density
of n fibers per area, and aligned horizontally. Unlike the pre-
vious case, the fibers in this image have a finite length of L.
The probability of a first point being part of a fiber is equal
to n � L, and the probability of a second point at a horizontal
distance x away being part of the same fiber is equal to
ðL − xÞ∕L. Note that if the direction of interest is not parallel
to the horizontal the probability of that point also being part
of a fiber is akin to the white noise scenario, e.g., equal to 0.
The mean value of the image is n � L, so after normalization
the following equation is obtained

giiðx; yÞ ¼
�
L − x∕nL2; x ≤ L; y ¼ 0

0; x > L or y ≠ 0
: (8)

We can see that if we were to model this function with a 2-D
Gaussian function, the standard deviation in the minor axis will
approach zero, whereas in the major axis it will be proportional
to L as noted in previous work that used simulations (Fig. 4).18

It is important to note that for images acquired with a real
optical system, the deviation on the minor axis is bounded by
that of the point spread function of the system. As such, report-
ing the ratio of the major and minor axis standard deviation
(elipticity20 or skew5) may be misleading. If the autocorrelation
of the true image i has uneven deviations (sx and sy) and is con-
volved with a radially symmetric Gaussian PSF with deviation
w, the resulting function will have uneven distributions equal to

gii � gpsf psf ¼ e
− x2

sx2
− y2

sy2 � e−
ðx2þy2Þ

w2 ¼ e
− sxwx2

sx2þw2
−sywy2

sy2 : (9)

Comparing deviation of the major and minor axes will give

sx
sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sy2 þ w2

sx2 þ w2
:

s

Fig. 3 Autocorrelation of randomly dispersed fibers. Frame (a) shows
the test image and (b) its autocorrelation. Note the non-Gaussian profile
of this image: the falloff is faster than Gaussian.

Fig. 4 Autocorrelation of aligned fibers. Frame (a) shows whitely distrib-
uted aligned fibers and frame (b) its autocorrelation. Note that the
horizontal axis contains the only nonzero elements.
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If w is small relative to sy and sx, ellipticity will be accurate, but
if not, elipticity will not relate linearly to the ratio of sx and sy.

7 Curve Fitting
All ICS analysis uses nonlinear optimization to fit a 2-D
Gaussian to the autocorrelation function, with wide variation
in the method and equation used for fitting. Having described
predicted image autocorrelations for several image classes, we
can analytically describe some aspects of the curve fitting pro-
cess and offer some recommendations. A full description of
methods for Gaussian curve fitting is beyond the scope of
this work (Refs. 21 and 22); nonetheless, we can provide a
review of the strengths and weaknesses of previously published
methods.

When ICS was first introduced in 1993, nonlinear optimiza-
tion was time consuming and complicated, necessitating a
reductionist approach. As a result, the autocorrelation was fit
to 1-D Gaussian functions along the two axes only. More mod-
ern work crops the information-containing regions of the auto-
correlation function and then fits the entire region to a 2-D
Gaussian function. Cropping varies in different publications,
ranging from the central 16 × 16 pixels to three times the
laser beam width.23 Likewise, several different Gaussian func-
tions have been used, ranging from simple models which
assume the same standard deviation in both x and y (see Ref. 1)
to more complicated models which allow different deviations
on the major and minor axes.20 Despite these advances, accurate
curve fitting remains tricky, given that several image classes
have non-Gaussian autocorrelations.

7.1 Cropping

Cropping speeds curve fitting and rejects regions with low
signal to noise ratio. As processing power increases and user-
friendly curve fitting packages become more widely dispersed,
cropping for speed becomes less important. However, rejecting
regions with low signal to noise remains a fundamental reason to
consider cropping. If the autocorrelation of an image is Gaussian
with some noise, the central regions with higher values will
have higher signal to noise ratio. Likewise, points further
from the center of the autocorrelation have a smaller signal
to noise ratio, but there are more of these points which
provides an intrinsic weighting of these points. Cropping
reduces this intrinsic bias, which explains its widespread
adoption.

For laser based images with Gaussian autocorrelations domi-
nated by the laser point spread function, cropping to three times
the radius of the point spread function will provide an image
containing the useable data while rejecting the regions with
low signal to noise.23 However, most interesting images have
structures larger than the laser point spread function in them
(at least if the laser was correctly selected), which will lead to
images with broader autocorrelations. Cropping at three times
the beam waist will weight the fit to shorter standard deviations.
For images that have non-Gaussian autocorrelations, such as the
randomly oriented fibers case discussed above, the amplitude
of the Gaussian will be higher for more severe cropping.
Alternatives to cropping followed by fitting include maximum
likelihood estimation fitting21,22 and weighted least squares
optimization.

7.2 Gaussian Model

Early work was most interested in the amplitude alone of the
function, and thus a simple equation assuming radial symmetry
was used. More recent work, investigating either alignment or
cross correlation, have used more complicated formulations of
the Gaussian. A particularly attractive Gaussian form is,

g ¼ Aeaðx−x0Þ2þbðx−x0Þðy−y0Þþcðy−y0Þ2 þ g0: (10)

This form copes with both center-misalignment and oriented
images, but necessitates a seven parameter fit, which may be
unwieldy. However, if the autocorrelation is known to be
well-centered, x0 and y0 can be set a priori, which reduces
the parameter space by two.

7.3 Data Omission for Noise Reduction

As white noise exclusively affects the origin of the autocorrela-
tion, the origin is normally omitted from the fit, as is the data
from any known artifacts. If an image of a dark field is taken, the
quantity and distribution of noise can be analyzed. Therefore it
is good practice to acquire a blank image (picture of nothing) to
determine system noise, and to use the autocorrelation of this
image to inform artifact rejection.

Note that optimization of Eq. (10) is guaranteed to not be
convex, which makes fitting difficult (as −90 deg∼270 deg,
for example). One can either rely on constraints to minimize
the parameter space to create a convex subspace, or work on
creating good initial conditions to aid convergence. Empirically,
good initial conditions are needed for efficient, correct optimiza-
tion. Theoretically ideal initial conditions have been the subject
of previous work.24

8 Conclusions
Autocorrelation offers a tool to analyze image structure in a
user-independent manner and has proven useful in analysis
of several macromolecule systems. Given the variation in
image preprocessing and autocorrelation analysis, we felt it
necessary to describe the effects of several common
processes and offer recommendations for greater uniformity
and accuracy.
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