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Abstract. A combined diffuse speckle contrast analysis (DSCA)–near-infrared spectroscopy (NIRS) system is
proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue.
The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD
camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for
NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the
system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed.
Shorter exposure times (<1 ms) show a higher drop (between 50% and 66%) and recovery of 1∕K 2

S values after
occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic
changes. For four subjects, the 1∕K 2

S values dropped to an average of 82.1� 4.0% during the occlusion period
and the average recovery of 1∕K 2

S values after occlusion was 109.1� 0.8%. There was also an approximately
equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion
(maxRHb¼0.0085�0.0024mM∕DPF, minOHb¼−0.0057�0.0044mM∕DPF). The sensitivity of the system
makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.2.027001]
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1 Introduction
Many methods have been used to simultaneously measure blood
flow and blood oxygenation changes. Dual-wavelength laser
speckle contrast imaging (DW-LSCI) has shown to provide
superficial blood oxygenation and flow changes, including using
an optical chopper and a transistor-transistor logic modulated
camera to monitor cerebral ischemia,1 and a color camera to
obtain blood oxygenation information.2 Synchronized DW-
LSCI was introduced with two coregistered, synchronized cam-
eras to achieve faster acquisition rate, and has been applied to
monitor blood flow and oxygenation changes in a stroke
mouse model3 and a nerve-stimulation rat model.4

In order to acquire deep tissue blood flow and oxygenation
measurements, combined diffuse correlation spectroscopy (DCS)
and near-infrared spectroscopy (NIRS) systems have been used.
Combined DCS–NIRS systems were used to monitor the cer-
ebral hemodynamics of neonates with congenital heart defects,5

stroke patients,6 and critically brain-injured adults.7 Contact and
noncontact dual-wavelength DCS systems have also been

validated8–10 and used in such applications as monitoring muscle
hemodynamics during electrical stimulation,11 head and neck
tumors during radiation therapy,12 cerebral ischemia,13 and
muscle revascularization.14 However, DCS can be costly because
it requires a correlator board to calculate the intensity autocorre-
lation function.9,15

Diffuse speckle contrast analysis (DSCA) allows for deep
tissue blood flow measurements and utilizes a point-source illu-
mination, like DCS, but with the pixel analysis of speckle con-
trast, like laser speckle contrast analysis (LASCA).16 DCS,
LASCA, and DSCA are all based on the temporal autocorrela-
tion function,17 but DSCA has advantages in its expansion into
imaging and tomography due to its nature of multiple source and
detector without much modifications.18,19

Spatial DSCA observes the speckle contrast (Ks), defined
as20,21

EQ-TARGET;temp:intralink-;e001;326;151Ks ¼
σs
hIi (1)

for diffused photons from a continuous wave (CW) source with
a long temporal coherence length, where σs is the spatial
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standard deviation and hIi represents the mean intensity. It has
been demonstrated that 1∕K2

S is linearly proportional to blood
flow measurements within the physiologically relevant flow
range.16,20 The range of the linearity may be affected by such fac-
tors as the camera exposure time22 and the number of pixels cov-
ering one speckle.23

Because DSCA uses near-infrared light to obtain deep tissue
blood flow, CW NIRS measurements can be made with another
laser source, to observe intensity fluctuations from two wave-
lengths. CW NIRS relates to optical density (OD), or the log-
arithmic ratio of baseline intensity and transient intensity values,
to concentration changes of oxyhemoglobin (OHb) and deoxy-
hemoglobin (RHb) from two wavelengths24,25

EQ-TARGET;temp:intralink-;e002;63;609

�
ΔRHb
ΔOHb

�
¼ 1

d · DPF

�
ελ2RHb ελ1OHb
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�−1�ΔODλ1

ΔODλ2

�
; (2)

where d is the source–detector separation, DPF is the differential
path length factor, ε is the extinction coefficient, and ΔOD is
equivalent to OD (transient)—OD (baseline).

In this study, we propose an expansion of the DSCA system
by modulating between two laser sources to acquire NIRS
measurements. The mean intensity value of the speckle contrast
calculation window was used as transient intensity value to cal-
culate the NIRS data. The proposed DSCA–NIRS system
requires just two different analysis methods of the speckle image
to simultaneously observe deep tissue blood flow and blood
oxygenation changes.

2 System Development
Figure 1 shows the schematic of the combined DSCA–NIRS
system. A 1 × 2 optical switch (SW 1 × 2, Sercalo, Switzerland)
was used to alternate between two CW laser sources (temporal
coherence >10 m) for 785 and 852 nm wavelengths (DL785-
100-SO/DL852-100-SO, ∼100 mW, CrystaLaser Technology).
The optical switch was synchronized with the detecting CCD
camera (CoolSNAP MYO CCD Camera, Photometrics) by trig-
ger pulses generated by a data acquisition board (NI USB-6229
BNC, National Instruments). The operation of the CCD camera
limited the optical switch operation to a temporal frequency of
2 Hz. The power emitted to the sample was approximately
8 mW for 785 nm and 10 mW for 852 nm. A 1 × 4 fiber splitter
(1 × 4 PLC fiber splitter, Fiberpia, Republic of Korea) was used
to reduce the source’s power for safe use and one fiber propa-
gated light into the sample. All the fibers were multimode fibers

with a core diameter of 62.5 μm. The detecting CCD camera was
fixed with a biconvex lens (LB-1811-B, f ¼ 35 mm, Thorlabs
Inc.) to focus the image. A magnification of 1∶3 allowed for
an imaging width of 26 mm from the sample surface.

An in-house built LabVIEW Program (LabVIEW™ 2012,
National Instruments) started the trigger signal to synchronize
the optical switch and camera, acquire the image, and also con-
trolled the exposure time, region of interest window, and gain.
Speckle contrast and OD calculations were done in a MATLAB
R2010b (MathWorks Inc., Natick, Massachusetts). The experi-
ments were run with a 15-mm source–detector separation and
processed with a 49 × 49 window to increase the signal-to-
noise ratio.26

3 Phantom Preparation
A flow phantom (μa ¼ 0.065 mm−1, μ 0

s ¼ 1.015 mm−1 for
650 nm) was constructed similar to previous reports.15,16,20 A
silicone (Sylgard 184 silicone elastomer kit, Dow Corning)
was mixed with India ink drops (Pro Art) and TiO2 powder
(Junsei Chemical Co., Japan) for the desired optical properties.
A transparent tube with an inner diameter of 1∕16 0 0 was placed
at a depth of 7.5 mm and filled with transparent beads to ran-
domize the flow.15,16,20 A single syringe pump (Harvard
Apparatus) flowed 0.06% diluted15,16,20 intravenous fat emul-
sion (Lipision 20%, JW Pharm., Republic of Korea) into the
tube at flow rates from 0.02 to 0.14 mL∕s. Assuming that capil-
lary velocity is approximately 1 mm∕s,17 the phantom flow rates
cover the physiologically relevant velocities.

4 Results
Figure 2 shows the average 1∕K2

S value for the flow rates in
increments of 0.02 mL∕s for 30 s. Exposure times of 0.5, 1,
and 3 ms were tested to show the linear relationship between
flow detection and camera exposure time.22 Figure 2 shows that
the 1∕K2

S value response becomes more linear with a shorter
exposure time. The inlet graph also indicates a difference in
1∕K2

S values for 3 ms exposure, within a closer range. These

Fig. 1 Schematic of combined DSCA–NIRS system that alternates
between the wavelengths of 785 and 852 nm to produce changes
in OD and speckle contrast.

Fig. 2 Average 1∕K 2
S values (with standard error) for various flow

rates at the exposure of 0.5 ms (blue triangle), 1 ms (red circle),
and 3 ms (black square) for flow phantom test. The inlet graph
shows a closer view of 3 ms exposure phantom results.
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phantom flow results agree with LASCA findings,27 which show
that the sensitivity is lost to faster flow rates with longer expo-
sure time, but for slower flow rates, which are more relevant to
the approximate physiological range,17 there is larger difference
in 1∕K2

S values for all exposure times.
An arm occlusion protocol was also tested with the system,

reviewed and approved by Gwangju Institute of Science and
Technology’s Institutional Review Board (IRB 20140319-
HR-10-01-02). The lens tube of the camera was placed on the
forearm of the subjects and arterial occlusion was applied with
an arm cuff inflated to 220 mm Hg of pressure on the bicep.
Total hemoglobin (THb), as shown in Figs. 3–5, is the summa-
tion of OHb and RHb and is proportional to blood volume.28

The calculated values were filtered with a moving aver-
age (window size ¼ 5).

Despite showing a more linear response at 0.5 ms exposure,
we were unable to obtain consistent NIRS response at shorter
exposure times (0.5 and 1 ms) for the arm occlusion protocol.
Figure 3 shows an example of the issues—taken from one sub-
ject, for obtaining NIRS signal during arterial occlusion. This
includes an underestimation of blood oxygenation changes at
0.5 ms and an unstable NIRS signal at 1 ms exposure time.

However, the NIRS results were highly inconsistent between
subjects and trials. There is an approximately 50% drop in
1∕K2

S values for 1-ms exposure and 66% drop at 0.5-ms expo-
sure. Both 0.5- and 1-ms exposure times show a recovery of
approximately 150% of baseline 1∕K2

S values. The drop and
recovery are similar to spatial DSCA.16

In contrast, 3 ms exposure gave us consistent blood oxy-
genation changes from four subjects for NIRS and measured
1∕K2

S changes during arterial occlusion. Figure 4 shows the
average arterial occlusion oxygenation and flow changes from
four subjects (male, ages 24 to 25 years old). Since the speckle
contrast values were different between subjects, the 1∕K2

S

values were converted to percentage changes and then aver-
aged to display. During arterial occlusion, we observed an
approximate equivalent rise of RHb (maximum concentration
change of 0.0085� 0.0024 mM∕DPF) and fall of OHb (mini-
mum concentration change of −0.0057� 0.0044 mM∕DPF),
which follow trends similar to other studies.29 For 3 ms expo-
sure, the 1∕K2

S values dropped to an average of 82.1� 4.0%

compared to baseline values, during the occlusion period,
which is similar to that reported in temporal DSCA,20 and
the average recovery of 1∕K2

S values after occlusion was

Fig. 3 Relative OHb (solid red line), RHb (dotted blue line), THb (thick green line) concentration changes
(left column) and 1∕K 2

S values (right column) for 785 nm (thick black line) and 852 nm (purple line) for
arterial occlusion for in one subject at (a) 0.5 ms exposure and (b) 1 ms exposure.
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109.1� 0.8%, much less than the value from shorter expo-
sure times.

For one subject, venous occlusion was ran to observe blood
oxygenation and blood flow for different occlusion types
(Fig. 5). Venous occlusion was achieved with 50 mmHg of pres-
sure. In contrast to arterial occlusion, venous occlusion showed
a rise of just OHb during occlusion, with a slight drop in blood
flow.30 These results show the sensitivity of our system to differ-
entiate between arterial and venous occlusion in terms of both
blood oxygenation and blood flow measurements.

Figures 3–5 report 1∕K2
S values from both wavelengths, 785

and 852 nm. There is not a large difference in measured 1∕K2
S

values between the two wavelengths. This finding gives us a
confidence that alternating wavelengths for NIRS calculations
does not affect DSCA calculations.

5 Discussion and Conclusion
The proposed combined DSCA–NIRS system shows the
capability to simultaneously measure qualitative blood flow and
blood oxygenation by modulating between two laser sources
and performing DSCA and NIRS analysis on light intensity
fluctuations. However, the system still has limitations like
the underestimation of blood flow drop (approximately 20%
decrease from baseline) during the arterial occlusion compared
to DCS results (50% or more of blood flow drop).8,9,15,16

Therefore, the proposed combined DSCA–NIRS system may
not suitable for quantitative measurements, yet is still applicable
for investigating hemodynamic trends for physiological changes.
The detector geometry (i.e., β in DCS theory16,20) and camera’s
exposure time22 needs to be optimized in order to increase the
sensitivity of the system.

Sensitive blood flow response with shorter exposure times
and consistent blood oxygenation response at longer exposure
times may be an inherent tradeoff for a combined DSCA–NIRS
system. Whereas NIRS calculations depend on adequate mean
intensity at the detector, DSCA requires sufficient speckle con-
trast to improve the sensitivity to flow rates. One solution to this
tradeoff may be a multiexposure technique as it has already
shown to offer quantitative information of the blood flow
change31 and may be more sensitive in its NIRS measurements.
Moreover, the current system must be validated by the concur-
rent measurements with validated techniques such as DCS to
investigate the underestimation of blood flow change during
the occlusion protocol and phantom experiments.8,9,15,16,20
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Fig. 4 (a) Relative OHb (solid red line), RHb (dotted blue line), THb
(thick green line) concentration changes and (b) percentage change
of 1∕K 2

S values for 785 nm (thick black line) and 852 nm (purple line)
averaged from four subjects at 3 ms exposure, with standard error
included for each graph. The occlusion period is marked by a gray
bar in each of the graphs.

Fig. 5 Relative OHb (solid red line), RHb (dotted blue line), THb (thick
green line) concentration changes (left axis) and 1∕K 2

S values for
785 nm (thick black line) and 852 nm (purple line) (right axis) for
venous occlusion for one subject at 3 ms exposure time. The occlu-
sion period is marked by a gray bar.
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