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Abstract

Significance: Effective vein visualization is critically important for several clinical procedures,
such as venous blood sampling and intravenous injection. Existing technologies using infrared
device or ultrasound rely on professional equipment and are not suitable for daily medical care.
A regression-based vein visualization method is proposed.

Aim: We visualize veins from conventional RGB images to provide assistance in venipuncture
procedures as well as clinical diagnosis of some venous insufficiency.

Approach: The RGB images taken by digital cameras are first transformed to spectral reflec-
tance images using Wiener estimation. Multiple regression analysis is then applied to derive the
relationship between spectral reflectance and the concentrations of pigments. Monte Carlo sim-
ulation is adopted to get prior information. Finally, vein patterns are visualized from the spatial
distribution of pigments. To minimize the effect of illumination on skin color, light correction
and shading removal operations are performed in advance.

Results: Experimental results from inner forearms of 60 subjects show the effectiveness of the
regression-based method. Subjective and objective evaluations demonstrate that the clarity and
completeness of vein patterns can be improved by light correction and shading removal.

Conclusions: Vein patterns can be successfully visualized from RGB images without any pro-
fessional equipment. The proposed method can assist in venipuncture procedures. It also shows
promising potential to be used in clinical diagnosis and treatment of some venous insufficiency.
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1 Introduction

Venipuncture is one of the most common clinical procedures in everyday life. In general, it is
used for venous blood sampling or intravenous injection. Hands and forearms are the main ven-
ipuncture sites. In clinical treatment, when trying to eliminate varicose veins and spider veins,
clinicians also look for puncture sites to inject a sclerosant medication.! At present, the most
common way to locate veins is still to see with naked eyes or to touch with fingers, which
depends significantly on the clinicians’ experience. For patients with thick fat, narrow veins,
dark skin tone, or excessive body hair, the success rate of vein puncture may be decreased.
Moreover, in some highly contagious disease contexts, such as COVID-19, the clinicians must
wear medical goggles and surgical gloves, which makes the operation more difficult.
Venipuncture failure would increase the suffering of patients both physically and psychologi-
cally. Therefore, an effective vein visualization device is needed. Existing technologies include
infrared/near-infrared imaging, " transillumination imaging,® multispectral imaging,** and ultra-
sound imaging.® The first three technologies mainly use the difference in absorption properties
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between venous blood and other tissues to visualize veins, whereas ultrasound imaging utilizes
soundwaves to detect vein structures and venous blood flow. However, the above technologies
rely on professional equipment that is high cost and not suitable for daily medical care or tele-
medicine. Besides, some equipment needs direct skin contact, which cannot be used in patients
with fragile skin and is not hygienic from a public health perspective. Therefore, it is critical to
propose a simple, effective, and contactless vein visualization technology for daily medical
treatment.

In this paper, we propose a regression-based method to visualize veins from color skin
images taken by conventional digital cameras. No other professional equipment is required.
We start with the analysis of light propagating in skin. Skin is a multilayered, inhomogeneous
tissue. When light enters the skin, it is scattered, reflected, or absorbed. The reflected part is
captured by human eyes or a camera to form the color we see. Based on this, we inverse the
light—tissue interaction and color formation process to obtain skin properties from skin color. In
this way, veins can be visualized from color skin images. We evaluate the proposed method on a
dataset of 60 subjects and demonstrate that it can perform better than the state-of-art methods
both qualitatively and quantitatively. The remainder of this paper is organized as follows.
Section 2 briefly overviews related work in vein visualization. Section 3 discusses the proposed
regression-based method. Section 4 reports the experimental results. Section 5 offers the
conclusion.

2 Related Works

Recently, some technologies for visualizing veins from color skin images have been proposed.
Tang et al.” proposed a vein visualizing method based on image mapping. They extracted infor-
mation from a pair of synchronized color and near-infrared images and used a neural network to
map RGB values to NIR intensities. However, the model is completely learned from a dataset, so
it is only a numerical solution. In addition, when the lighting condition changes, the model may
get unreliable results. Tang et al.® also proposed a vein visualization method based on optics and
skin biophysics. They model skin color formation process based on Kubelka—Munk theory and
then use a neural network to fit the inverse process. Vein patterns are derived from the distri-
butions of the biophysical parameters from the inverse model. It does not rely on synchronized
color and near-infrared images as the training set, but the inverse process is still based on the
neural network approximation. In addition, all the deep learning-based vein visualization
methods™!” encounter the “black box™ problem, which makes it difficult to improve the algo-
rithm theoretically. Watanabe and Tanaka'! visualized veins by emphasizing the saturation of a
color image. The algorithm is only based on image enhancement. For veins that are invisible in
the color skin images, this method shows no result. Song et al.'? proposed a vein visualization
method based on Weiner estimation using smart phone cameras. Reflectance images were recon-
structed from conventional RGB images, and the 620-nm reflectance image was chosen to visu-
alize veins. However, the reflectance images in 620 nm are not clear enough to show vein
patterns because visible light cannot achieve the penetration depth as the near-infrared light.
Thus, a postimage processing method was then employed to enhance contrast. Moreover, their
method requires calibration for each camera device and illumination, which is not practical for
widespread use. Sharma and Hefeeda'® also visualized veins from reconstructed spectral images.
They used deep learning method to map RGB images to hyperspectral images in the range of 820
to 920 nm. Their method achieved good results, but training the model needs hyperspectral
images, which are expensive to obtain.

3 Methodology

In an RGB image, veins are almost invisible to the naked eye because the pixels have very similar
intensity values to those of other skin tissues. However, the biophysical parameters of veins and
generic tissue are significantly different, which makes it possible to uncover vein patterns from
their spatial distribution. This is the key idea of the regression-based method.
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The color of the skin mainly depends on the skin structure and various pigments in the skin.'*
Melanin and hemoglobin are the two main pigments. The properties of environment illumination
and camera are also key factors in the process of color formation. Mathematically, the color
formation process can be expressed as follows:®

[R.G. B] = f(E(4), S(4), Cyn Cp), (1

where E(A) represents the illuminant, S(4) represents the spectral response functions of a cam-
era. Here, C,, and C, are the concentrations of melanin and blood, respectively. The color for-
mation process is a well-posed problem, i.e., given the specific values of biophysical properties,
illuminant, and camera model, the RGB values of a pixel can be uniquely determined. For exam-
ple, Zoller and Kienle'® developed software that can generate the image of a blood vessel in skin
according to specific input parameters. On the contrary, the inverse process f~! is an ill-posed
problem, which is more complicated and can lead to multiple solutions. Therefore, a priori infor-
mation should be imposed on the model to obtain the most possible solution.

The proposed regression-based method first preprocesses the input images to minimize illu-
mination influence and remove shading effects. Diffuse reflectance spectral images are then
reconstructed from the preprocessed images using human skin reflectance database as a priori
information. Finally, the multiple regression analysis is applied to diffuse reflectance spectral
images to derive the spatial distribution of melanin and blood based on Lambert—Beer law.
Monte Carlo (MC) method is adopted in advance to simulate light propagating in skin to get
the diffuse reflectance with varying skin parameters. The spatial distribution of blood can explic-
itly reflect vein patterns because veins contain much higher concentration of blood than other
skin components.

3.1 Color Skin Image Preprocessing

3.1.1 Light correction

As shown in Eq. (1), skin color is easily influenced by illumination variation in color formation
processes. However, in the real world, the illumination conditions are usually unpredictable and
uncontrolled,'® which will bring error to the later estimation of biophysical parameters in
Sec. 3.3.2. Therefore, light correction is critical for widening the practical application of the
vein visualization method.

In this section, an adaptive gamma correction method'” is applied on the color skin images.
The main aim of the method is to calculate the best restoration y* automatically to maximize the
entropy of the transformed image, i.e., after correction, it can be assumed that the image contains
most sufficient information. Unlike natural images that usually have rich color diversity, color
images of skin have very similar RGB values, and color is the most important information in the
biophysical parameters’ estimation process. Therefore, to attenuate the color distortion caused
by uneven light, we calculate y* from the gray-scale image and apply it to each channel of the
RGB images, instead of performing corrections only on the V channel.

The best restoration y* can be computed as'’

: T~ (@)

where u,, is the gray scale of the input image, € denotes the skin area of an image, and N is the
valid number of pixels in Q.
Then, the gamma correction is performed using y* from Eq. (2) on each channel as

R',G',B' =R",G",B". 3)

Figure 1 shows the original images and the images after light correction with corresponding
y* values. The uneven illumination condition is mitigated, and the skin color becomes more
similar to their original state.
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Original images Corrected images

(a) (b)
(c) (d)

Fig. 1 Color skin images before and after light correction. (a) and (c) Two color skin images;
(b) and (d) corresponding light correction results with (b) y+ = 0.694 and (d) y* = 0.758.

3.1.2 Shading removal

Light correction only improves the holistic lighting conditions. However, arm skin has a curved
surface. When illuminated by a directional light, the incident angle varies across the skin, which
will result in shading effect. This section gives a detailed analysis on mechanism of the color
formation process and then propose an algorithm to remove shade from skin.

The color of an RGB image is given as

I(x.y) = / ® S ()E@)r(x. y. Dwy(x, )2, @

where I;(x,y)(i = R, G, B) represents skin image intensity at pixel (x, y) after lighting correc-
tion, S;(1) are the spectral response functions of a camera, E(A) is the illuminant, and
r(x,y, A)represents the diffuse reflectance of skin at pixel (x, y) and wavelength 1. Some papers
consider human skin as a specular + diffuse model (e.g., Ref. 18); however, most of the images in
our dataset have no highlights on skin. Therefore, we consider our skin model as a complete
diffuse surface (i.e., Lambertian surface) and only diffuse reflectance is considered in our study.
w, represents the shading effect caused by curved surface. It equals to the dot product of the
surface normal and the lighting direction and is independent of wavelength.

In computer graphics, it is assumed that the spectral response function can be characterized
by a Dirac delta function S;(1) = S(4,)8(2—4;) with[{®S;(4)dA = S(4;)."” Under this
assumption, the integral representation Eq. (4) can be rewritten into a multiplicative form,

Ii(x’y) :S(’?'i)E()“i)r(x7y’/1i)wd(x’y)’ (5)

where 4; is the wavelength corresponding to the maximum value of spectral response function.
Then, we take the logarithm of Eq. (5) to obtain the additive form. Before taking the logarithm,
I;(x,y) should be scaled to [0,255] to avoid negative intensity:

In [;(x,y) =In S(4;) + In E(4;) +1In r(x,y,4;) +1n wy(x, y). (6)

It can be seen that only the last two terms are dependent on the position of image pixels.
Between the two terms, shading wy(x,y) is usually a low-frequency variable that changes
smoothly over the skin area, whereas reflectance r(x, y, 4;) is a high-frequency variable because
reflectance is dependent on the concentration of pigments that distributes inhomogeneously in
the skin.'® A bilateral filter is a nonlinear filter that can preserve edges and reduce noises in
images. In this study, it was adopted iteratively such that the high-frequency reflectance will
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gradually be smoothed out and the low-frequency illumination and shading effects will remain.
The performance of the bilateral filter relies on the value of the spatial standard deviation ¢, and
intensity standard deviation o,. Inspired by Ref. 18, in our experiment, we choose o; and o, as

o1 = 0.05 x min(R,, R), @)

02 = 0.05 * max(lremajn)s (8)

where R, and R, are the width and height of the image, respectively. I emain is the input image of
the bilateral filter in each iteration. 0.05 was chosen for both the spatial coefficient and intensity
coefficient. Experiment on our 60 subjects indicates that this combination can achieve the best
decomposition results.

After bilateral filtering, the low-frequency component is defined as In(/y,. ;) and the high-
frequency component is defined as In(Z e ;) With In(Zyyse ;) + In(Zgerar ;) = In(Z;). It should be
noted that vein pattern information will finally be extracted from pigment distribution, so it is
embodied in the detail image. Therefore, to eliminate the shading effect, we keep the detail layer
and add the global mean of illuminant layer as a base color to obtain the corrected image, i.e.,

1 .
ln(lcorrect,i(x’ y)) = ln(ldetail.i(xv y)) + N Z ln(Ibase,i(xv y))(l =R,G, B)' ©)
(x,y)EQ

The process of shading removal is shown in Fig. 2.

3.2 Spectral Image Reconstruction

In this section, Wiener estimation was performed to reconstruct the spectral reflectance images
from an RGB image. After shading removal, Eq. (4) can be rewritten as

Li(x,y) = @y / " S.()EM)r(x, v, 2)dA(i = R, G, B), (10)
0

where @, is the constant coefficient and can be fitted into the illuminant term. Equation (10) is
then discretized in the wavelength range of 400 to 700 nm at an interval of 10 nm and rewritten
into vector notation as

I = SEr, (11)

where S is a 3 X 31 matrix and each row represents camera spectral response function of each
channel. E is a 31 x 31 diagonal matrix and represents the spectrum of illuminant. ris a 31 X 1
vector representing the reflectance spectrum of a pixel in an image. I = [R, G, B]” is the cor-
responding color of the pixel.

Base layer

Image after
shading removal

Original image

Bilateral
filter

Detail layer

In(Zy.1,)

Fig. 2 Shading removal process.
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The Wiener estimation of r is given as
r= WL (12)

The Winer estimation matrix W is calculated by minimizing the square error (|r—¥|), where
(-) denotes the ensemble average. W is derived as®

W = (rI") (")~ = (rr")FT (F(rr”)FT) !, (13)

where F = SE. We assume that S and E are known. In this study, D65 illuminant and JAI AD-
080-GE camera are chosen. rr” is the autocorrelation matrix which should be obtained from
prior knowledge. In this study, we use a skin reflectance database®' consisting of 4392 spectral
reflectance as prior knowledge. The database consists of nine body areas of 482 subjects from
three ethnic groups, which are Caucasian, Chinese, and Kurdish. The reflectance is measured
using a Minolta CM-2600d spectrophotometer. We extract reflectance in the range of 400 to
700 nm and calculate the average rr’for the 4392 subjects to get (rr”) in Eq. (13).

Finally, Eq. (12) is performed to each pixel of the preprocessed arm skin image to get the
spectral reflectance images. The result is shown in Fig. 3. The reconstructed diffuse reflectance
spectra of two pixels are shown in Fig. 4. It can be seen that their shapes are consistent with the
diffuse reflectance spectra of human skin. The diffuse reflectance of vein is lower than that of
skin because blood absorbs more light than generic skin, especially in the red wavelength range.

3.3 Vein Patterns Visualization

In this section, the vein patterns are finally visualized from the distribution of blood. As it is
mentioned earlier, estimating biophysical parameters from the spectral reflectance images is an
ill-posed problem, i.e., the analytical model is difficult to find, and there are many possible sol-
utions. In this section, MC simulation is used as the forward model to construct a biophysical
parameters-spectral reflectance dataset as prior information. Then, the relationship between the
absorbance spectrum and pigment concentrations is derived from the dataset based on Lambert—
Beer law.

3.3.1 Forward model for light transport in skin

Before MC simulation, we formulate a general model to describe the skin structure and define
each layer’s optical properties. In this study, we model skin as a three-layer structure, which are
epidermis, dermis, and hypodermis. The optical properties required in MC simulation are

400nm 420nm 460nm

480nm 500nm 520nm 540nm

560nm 580nm 600nm 620nm

640nm 660nm 680nm 700nm

Fig. 3 Spectral reflectance images in the range of 400 to 700 nm at an interval of 20 nm.
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Diffuse reflectance spectra

0.6
(0]
2 05¢
]
©
2
=
© 04r
[0]
7]
=
=
0 03¢}
Vein pixel
—— Skin pixel
0 2 1 1

400 450 500 550 600 650 700
Wavelength (nm)

(a) (b)

Fig. 4 Reconstructed spectral reflectance of two pixels. (a) A skin area marked with a skin pixel
(red square) and a vein pixel (blue square); (b) their diffuse reflectance spectra reconstructed from
Wiener estimation.

absorption coefficient y,(4) (cm™!), scattering coefficient y,(1) (cm™!), anisotropy factor g(1),
refractive index n, and thickness d(cm).

The absorption coefficients y,(4) of the epidermis and the dermis are mainly dependent on
the concentrations of melanin in epidermis and hemoglobin in dermis. We choose yu,(1) pub-
lished by Donner and Jensen®* for epidermis and dermis, and y,(1) published by Atencio et al.>*
for hypodermis. The optical properties in Ref. 22 are for human skin and those in Ref. 23 are for
neonatal forehead skin. The values of y,(4) are also chosen from Refs. 22 and 23. The anisotropy
factor g(4) is chosen from Ref. 24 for epidermis and dermis and Ref. 23 for hypodermis. The
refractive index n is set to be 1.37 for epidermis and dermis and 1.44 for hypodermis.>* The
thickness values d are set to be 0.006,% 0.09,* 0.03 cm,”® respectively. The optical properties
in Refs. 24 and 25 are also for human skin.

To cover the color variation of skin as diverse as possible, reasonably wide ranges of C,, and
C, are chosen, i.e., C,, from 1.3% to 43%° and C,, from 0.1% to 7%. Both of the ranges are
uniformly divided into 50 points and consequently result in 2500 (C,,, C,) ~ r(4) data pairs. The
simulated skin spectral reflectance is shown in Fig. 5. In this study, we utilize a GPU-accelerated

Skin spectral reflectance

Diffuse reflectance (-)

0
400 450 500 550 600 650 700
Wavelength (nm)

Fig. 5 2500 spectral reflectance obtained from MC simulations.
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MC simulation tool CUDAMCML,*’ which can accelerate the simulations by about three orders
of magnitude than running sequentially on a CPU. The calculation time for one spectrum from
400 to 700 nm at the interval of 10 nm is ~11 s, using NVIDIA GeForce GT 710 card.

3.3.2 Inverse model based on multiple regression analysis

Using the forward model and the established dataset in Sec. 3.3.1, we try to find the inverse
model in this section. First, the diffuse reflectance spectrum r(4) is transformed into the absorb-
ance spectrum A(1) by

A(2) = —logio(r(4))- (14)

According to the modified Lambert-Beer law, the absorbance spectrum A(1) can be
expressed as

A(A) = leepiem(’l) + Cobldergob (’1) + Cdbldergdb(/l) + D</1)7 (15)

where C,, C,,, Cy, are the molar concentrations of melanin, oxygenated blood, and deoxygen-
ated blood, respectively, and C, = Cyp, + Cgp. lepi and I, denote the mean path length in
epidermis and dermis, respectively. ¢(1) denotes the molar extinction coefficients of three
pigments.” D(1) indicates the absorbance of other minor components and scattering loss.

Second, we regard absorbance spectrum as response variable and extinction coefficients as
predictor variables and then transform Eq. (15) into a multiple regression model,*®

A(A) = anem(d) + aoneen(4) + aapean(4) + ag, (16)

where a,,, agp,, and ag, are the regression coefficients describing the contributions of each &(4) to
A(4), and are closely related to C,,, C,p,, and Cgp, respectively.?® However, a,, is not only de-
pendent on C,, but also influenced by C,, and Cg4, because although the mean path length in
epidermis /.,; is mainly determined by melanin in epidermis, it is also affected by pigments in the
dermis due to the complexity of light-tissue interaction. This conclusion also applies to the a,
and agy. It indicates that a,,, dgy, agp. @y and Cp,, Cyp. Cyp are interdependent.”® So, another
multiple regression model is used to establish the relationship between C,,, Cy, and a,,, ay,, ay:

Cnh=a-by, a7
Cb =a- b[bv (18)

— 3 3 3 2
a= [lvamv iy, aO»amva[bv a05 A * Ay - Ao, A+ Aibs

2 2 2 2 2
ag, - ag, ag, - amy, dy, * Ao, dg * e, @4 * ) (19)

where ag, = ag, + agp, @ is a 1 X 14 vector containing a,, ag, ao and their third order terms. b,
and by, are 1 X 14 vectors that should be derived in advance based on the dataset from MC using
Egs. (16)—(19). It should be noted that multiple regression analysis is only performed in 500 to
600 nm at interval of 10 nm rather than in 400 to 700 nm because the spectral features of oxy-
hemoglobin and deoxyhemoglobin differ more significantly in this range than in the whole
visible range and thus can lead to a better separation. For the 2500-absorbance spectra derived
from MC simulations, the mean value of the R? statistic is 0.977 & 0.010 in 500 to 600 nm
whereas it is only 0.905 £ 0.069 in 400 to 700 nm.

Once b,, and by, are obtained, we can perform multiple regression analysis Eq. (16) on each
pixel of spectral reflectance images in 500 to 600 nm at the interval of 20 nm and get vector a for
each pixel. Later, we can use Eqgs. (17) and (18) to get the spatial distribution of C,, and Cy,
where vein patterns can be observed.
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4 Experimental Results

To evaluate the proposed regression-based method, we collected synchronized RGB/NIR images
of inner arms from 60 subjects. The subjects are all Chinese. There were not protocols or eli-
gibility criterion to recruit subjects. We invited as many subjects as possible to construct our skin
image database. A JAI AD-080-GE industrial camera was used to capture images. JAI AD-080-
GE camera is a 2-CCD camera providing simultaneous RGB/NIR images. When light enters the
lens, it is separated by a prism into the visible/color part of the spectrum (400 to 700 nm) and the
near-infrared part of the spectrum (750 to 1000 nm). A day light source and an NIR light source
were used to illuminate the skin. During collection, one RGB image and one NIR image were
captured simultaneously from inner arm of each subject. The RGB images are the test images
and the NIR images are ground truth for comparison. D65 is the most commonly used daylight
illuminant and is used in this paper as an illuminant. After collection, the skin area was seg-
mented from the original images based on color. In the remaining section, we first validate the
regression-based method on our dataset. Then, we evaluate the effect of light correction and
shading removal on the regression-based vein visualization method. Three state-of-art methods
are used for comparison, including: Watanabe’s image enhancement method,'! Song’s Wiener
estimation method,'? and Tang’s optical method.® Finally, we test the regression-based method
on the spider vein images.

To objectively evaluate the proposed method, we extracted vein patterns from both the NIR
images and visualized images and compared them pixel-by-pixel. We used the same extraction
process as stated in Refs. 10 and 30. At first, we used a filter bank composed of the real parts of
16 Gabor filters with different scales and orientations to get the location of veins. Then, the
information images of veins were enhanced and binarized to get the final vein patterns. In the
extracted vein patterns, the vein pixels were labeled as 1 and background pixels as 0, which is
shown in Fig. 6. Using the vein patterns extracted from NIR images as ground truth, four metrics
were calculated to measure the algorithm’s performance, which are accuracy, precision, recall,
and F'1 score. Mathematically, they are expressed as

TP + TN
A = , 20
Uy = TP T IN 1 FP 1+ EN 20)

.. TP

Precision = —, 2D

TP + FP

TP
Recall = ———, (22)
TP + FN

F, = 2 x Precision * Recall 23)

Precision + Recall

The confusion matrix in our case is defined as given in Table 1.

4.1 Validation of the Vein Visualization Method

Figure 6 shows four examples of the experimental results. In Fig. 6, the first row shows four color
skin images from our dataset. It should be noted here that the skin boundaries are not exactly
smooth, because some background pixels near the boundary have similar value as the skin pixels,
so they may be easily misclassified as skin during segment. However, the rough boundary has no
impact on vein visualization results, because veins gather in the middle part of arms. The second
and third rows show the vein visualization and extraction results from Fig. 6(a). The second row
shows the corresponding NIR image, the visualization results from the image enhancement
method, the Wiener estimation method, the optical method, and the regression-based method,
respectively. The third row shows the corresponding vein patterns extracted from the second row.
The remainder of Fig. 6 is the vein visualization and extraction results from Figs. 6(b)-6(d). The
objective evaluation of the four examples and the means of all 60 images are given in Table 2.
The image enhancement method is simplest among the four methods, and it visualizes veins only
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Visualized  Binarized Visualized RGB

Binarized

Binarized Visualized Binarized Visualized

NIR Image enhancement ‘Wiener estimation Optical Regression-based

Fig. 6 Vein visualization and extraction results.

by emphasizing saturation of the whole image and then extracting R channel. Therefore, the
visualized results from their method usually contain less noise, which consequently leads to
higher precision, since noises in the visualized images are easily mistaken as small veins in the
extracted vein patterns. On the other hand, the vein lines from the image enhancement method
are relative dim, making the extracted vein patterns less complete and lead to lower recall. [e.g.,
in Fig. 6(b), the binarized vein patterns in the second column are less complete than those in the
first column.] For hairy skin [e.g., Fig. 6(c)], the image enhancement method’s performance is
poor. The recall of the optical method is the highest in all the examples, because the vein patterns
obtained from their method are the most distinct. However, the noises are also heavier in these
images, resulting in low precision. The Wiener estimation method and the proposed method
have a better trade-off between precision and recall. For the 60-arm images in our dataset, the
Wiener estimation method performs better than the proposed method. Therefore, in the next
section, we apply light correction and shading removal on the original skin images to improve
the performance.

Since Wiener estimation is used in both the regression-based method and the Wiener esti-
mation method, to further validate the effectiveness of the regression-based method, we com-
pared the results of the two methods in other skin areas. Figure 7(a) shows the skin image of a left
upper arm. Figure 7(d) shows the skin image of a thigh and there is a highlight above the knee.
These areas contain more fat. Figure 7(g) shows the skin image of a front calf which contains
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Table 1 Confusion matrix.

Vein patterns extracted from
visualized images (Predicted)

Vein Background
Vein patterns extracted from Vein TP FN
NIR images (ground truth)
Background FP TN

Table 2 Objective evaluations of vein visualization methods.

Images Metrics Image enhancement Wiener estimation Optical Regression-based
Fig. 6(a) Accuracy 0.9920 0.9928 0.9916 0.9925
Precision 0.7859 0.7830 0.7056 0.7478
Recall 0.7798 0.8423 0.9345 0.8939
F1 score 0.7828 0.8116 0.8041 0.8143
Fig. 6(b) Accuracy 0.9874 0.9874 0.9850 0.9876
Precision 0.7640 0.7170 0.6034 0.6819
Recall 0.5881 0.6769 0.8670 0.7802
F1 score 0.6646 0.6963 0.7116 0.7277
Fig. 6(c) Accuracy 0.9665 0.9707 0.9711 0.9751
Precision 0.2881 0.3377 0.3554 0.3895
Recall 0.5947 0.6651 0.7644 0.6951
F1 score 0.3881 0.4480 0.4852 0.4992
Fig. 6(d) Accuracy 0.9802 0.9774 0.9723 0.9799
Precision 0.5594 0.5035 0.4385 0.5460
Recall 0.6189 0.7264 0.7628 0.7014
F1 score 0.5877 0.5947 0.5569 0.6140
60 images Accuracy 0.9796 0.9797 0.9778 0.9765
Precision 0.4499 0.4645 0.4307 0.4099
Recall 0.4723 0.5313 0.7102 0.5954
F1 score 0.4502 0.4835 0.5291 0.4752

Note: The highest mean values are shown in bold.

more muscles. Figures 7(b), 7(e), and 7(h) show the results from the Wiener estimation method.
Figures 7(c), 7(f), and 7(i) show the results from the regression-based method. The results from
the Wiener estimation method can hardly show veins or cannot show veins at all, whereas the
regression-based method can produce better visualization results. What is more, the regression-
based method is less sensitive to light variation compared with the Wiener estimation method.
That is because the Wiener estimation method only uses specific wavelength reflectance images,
whereas the regression-based method is based on an accurate optical model. Therefore, the pro-
posed method is robust to different parts of skin.
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Wiener Regression-
RGB Wiener estimation ~ Regression-based RGB estimation based

(h) (i

Fig. 7 Vein visualization results in other skin areas. (a) The skin image of a left upper arm; (d) the
skin image of a thigh; (g) the skin image of a front calf; (b) (e), and (h) the visualization results of the
Wiener estimation method; and (c), (f), and (i) the visualization results of the regression-based
method.

4.2 Evaluation of the Light Correction and Shading Removal Algorithms

In this section, we evaluate the effect of light correction and shading removal on the performance
of the regression-based vein visualization method. First, we compare the vein visualization
results before and after light correction. Figure 8 shows some experimental results. The first
column of Fig. 8 shows three sets of original skin images and the images after light correction.
The second and third columns are the visualized results of the original skin images and the light
corrected images, respectively, with their extracted vein patterns in the row below. The fourth
column is the corresponding NIR images and their extracted vein patterns. The objective evalu-
ation of the three examples and the means of all 60 images are shown in Table 3. It can be seen in
Fig. 8 that in some skin areas, vein patterns are failed to be visualized from the original image
due to the poor lighting condition, whereas from the corrected images, they are clearer. From the
extracted vein patterns, we can see that the noises have been greatly reduced. For example, in
Fig. 8(d), vein patterns are blurred with noises. After light correction, the noises have been
greatly reduced and vein patterns become clearer and more complete as shown in Fig. 8(e).
The objective evaluation also proves that the clarity and completeness of vein patterns are
improved by light correction.

Second, we compare the vein visualization results before and after shading removal. Figure 9
shows some experimental results. The first column of Fig. 9 shows three sets of original skin
images (after light correction) and their shading removed results. The second and third columns
show the visualized results of the original skin images and the shading removed images, respec-
tively, with their extracted vein patterns in the row below. The fourth column shows the cor-
responding NIR images and their extracted vein patterns. The objective evaluation of the
three examples is shown in Table 4. It can be seen in Fig. 9 that after shading removal of the
skin images, the intensities of generic skin become more uniform, making the veins more distinct
from skin. Moreover, the visualized results from the shadow area of skin often contain a lot of
noises, whereas in the shading removed images, the noises are reduced and vein patterns are
clearer [e.g., the bottom left part of skin in Figs. 9(g) and 9(h), the skin near the lower boundary
of arm in Figs. 9(m) and 9(n)]. The four objective evaluation metrics are also improved by shad-
ing removal process.

To get the objective evaluation of the whole algorithm, the mean values and boxplots of the
four metrics are shown in Table 5 and Fig. 10. It should be noted that the results compared now
are obtained using the whole algorithm (including the vein visualization process, the light cor-
rection process, and the shading removal process). The results show that the regression-based
method has the highest accuracy, precision, and F'1 score. However, the recall is lower than that
of the optical method. It indicates that further study is required to enhance vein patterns and
reduce noise.
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. . . (light corrected)
(original) visualized visualized

RGB

Original 1

Light corrected 1

Original 2

Light corrected 2

Original 3

Light corrected 3

Fig. 8 Vein visualization results before and after light correction. (a) The visualized result of origi-
nal image 1; (b) the visualized result of light corrected image 1; (c) the corresponding NIR image;
(d)—(f) the extracted vein patterns from (a)—(c), respectively. (g)—(I) and (m)—(r) Two sets of results
for examples 2 and 3, respectively.

Table 3 Objective evaluation of light correction process.

Images Accuracy Precision Recall F1 score
Original 1 0.9711 0.3329 0.6527 0.4409
Light corrected 1 0.9845 0.5425 0.7093 0.6148
Original 2 0.9613 0.1673 0.6054 0.2622
Light corrected 2 0.9720 0.2293 0.6208 0.3349
Original 3 0.9793 0.1896 0.4327 0.2636
Light corrected 3 0.9931 0.6011 0.5753 0.5879
60 original images 0.9765 0.4099 0.5954 0.4752
60 light corrected images 0.9791 0.4498 0.6178 0.5136

Note: The highest mean values are shown in bold.
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(shading removed)

RGB (original) visualized visualized NIR

Original 1

Shading removed 1

Original 2

Shading removed 2

Original 3

Shading removed 3

Fig. 9 Vein visualization results before and after shading removal. (a) The visualized result of
original image 1 (the image is after light correction); (b) the visualized result of shading removed
image 1; (c) the corresponding NIR image; (d)—(f) the extracted vein patterns from (a)—(c), respec-
tively. (g)-(I) and (m)—(r) Two sets of results for examples 2 and 3, respectively.

Table 4 Objective evaluation of shading removal process.

Images Accuracy Precision Recall F1 score
Original 1 0.9825 0.5555 0.7833 0.6500
Light corrected 1 0.9855 0.6093 0.8394 0.7061
Original 2 0.9720 0.2293 0.6208 0.3349
Light corrected 2 0.9788 0.3092 0.7060 0.4301
Original 3 0.9793 0.4641 0.8041 0.5885
Light corrected 3 0.9831 0.5270 0.8227 0.6424
60 original images 0.9791 0.4498 0.6178 0.5136
60 shading removed images 0.9803 0.4718 0.6532 0.5414

Note: The highest mean values are shown in bold.
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Table 5 Objective evaluation of the whole algorithm (60 images).

Methods Accuracy Precision Recall F1 score
Image enhancement 0.9796 0.4499 0.4723 0.4502
Wiener estimation 0.9797 0.4645 0.5313 0.4835
Optical 0.9778 0.4307 0.7102 0.5291
Regression-based 0.9803 0.4718 0.6532 0.5414

Note: The highest mean values are shown in bold.
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Fig. 10 Boxplots of (a) accuracy, (b) precision, (c) recall, and (d) F1 score of the state-of-art meth-
ods and the regression-based method (60 images). It should be noted that |IE stands for the image
enhancement method, WE stands for the Wiener estimation method, and RB stands for the
regression-based method.

4.3 Application for Spider Vein Treatment

Spider veins are small, damaged veins that appear on the surface of legs or face. They are usually
caused by valves inside some veins having weakened or damaged.’' These veins are named as
“feeder veins.” When the valves inside the feeder veins stop working normally, blood may pool
inside the veins and cause continuous venous hypertension that makes capillaries connected to
the feeder veins become enlarged and bulge. In legs, spider veins are usually the early symptom
of varicose veins. The treatments for spider veins include sclerotherapy, phlebectomy, and laser
treatment. Sclerotherapy involves injecting a medicine called sclerosant to the affected veins,
making them to shrink. Phlebectomy is a minimally invasive surgery to remove some large,
damaged veins, while laser treatment is a noninvasive procedure that uses a focused beam
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RGB Visualized Visualized

(b)

)

Fig. 11 Vein visualization results on spider vein images. (a)-(d) Four pairs of color skin images
and their corresponding vein visualization results.

of light to destroy smaller veins. All the treatments need to find the affected veins first, and they
all need to combine the treatment of the feeder veins with that of the spider veins. Otherwise,
spider veins may reappear after some time although they disappear initially.*?

Unlike spider veins, feeder veins are often beneath the surface and invisible to naked eyes.
If they can be visualized from color images, it will greatly benefit the following treatment. We
applied the regression-based method to some spider vein images collected from the internet,**~°
and the results are shown in Fig. 11. In Fig. 11, we can see that the visualized veins join the
surface spider vein clusters and are larger, which are in accord with the definition of feeder veins.
Therefore, we believe that the proposed regression-based method can successfully visualize
feeder veins from spider vein images and can assist in the treatment of spider veins.

5 Conclusion

We propose a vein visualization method from color images. The proposed method can achieve
clear vein visualization results without any professional equipment. Compared with existing
methods, this approach is more accurate and does not require huge amounts of training data.
Based on the difference in optical properties between venous blood and generic tissue, we derive
biophysical parameters from the spectral reflectance images reconstructed by Wiener estimation.
MC simulation is adopted to get prior information. Vein patterns are visualized from the dis-
tribution of blood. The effect of illumination and body surface on skin color can be minimized
through image preprocessing. Experimental results indicate that the proposed method can visu-
alize veins clearly and correctly. It also shows that the method has the potential to provide the
location of veins in the treatment of spider veins. This method performs on a per-pixel basis; in
the future, we will consider utilizing the structures of veins and combining the neighboring pixels
to improve the visualization results as well as to reduce noise.
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