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ABSTRACT. Significance: Parametric imaging of the attenuation coefficient μOCT using optical
coherence tomography (OCT) is a promising approach for evaluating abnormalities
in tissue. To date, a standardized measure of accuracy and precision of μOCT by the
depth-resolved estimation (DRE) method, as an alternative to least squares fitting,
is missing.

Aim: We present a robust theoretical framework to determine accuracy and preci-
sion of the DRE of μOCT.

Approach: We derive and validate analytical expressions for the accuracy and pre-
cision of μOCT determination by the DRE using simulated OCT signals in absence
and presence of noise. We compare the theoretically achievable precisions of the
DRE method and the least-squares fitting approach.

Results: Our analytical expressions agree with the numerical simulations for high
signal-to-noise ratios and qualitatively describe the dependence on noise otherwise.
A commonly used simplification of the DRE method results in a systematic overesti-
mation of the attenuation coefficient in the order of μ2OCT × Δ, where Δ is the pixel
stepsize. When μOCT · jAFRj ≲ 1.8, μOCT is reconstructed with higher precision by
the depth-resolved method compared to fitting over the length of an axial fitting
range jAFRj.
Conclusions: We derived and validated expressions for the accuracy and precision
of DRE of μOCT. A commonly used simplification of this method is not recommended
as being used for OCT-attenuation reconstruction. We give a rule of thumb providing
guidance in the choice of estimation method.
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1 Introduction
Genesis and progression of disease are accompanied by morphological changes in tissues on
length scales ranging from intracellular organelles to macroscopic tissue structures. These lead
to changes in the spatial distribution of the complex refractive index, which in turn leads to
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changes in the absorption and scattering properties that can be measured using optical tech-
niques. The main hypothesis underlying many applications of biophotonics is that, by measuring
the optical properties, diagnosis or monitoring of tissue disease state or treatment is possible.
Consequently, knowledge of the accuracy and precision of the methods to assess these optical
properties is paramount.

The optical property accessible with optical coherence tomography (OCT) measurements is
the attenuation coefficient, which describes the decay rate of the OCT signal with depth.1,2 It is
commonly extracted by non-linear least squares curve fitting (CF) of a single scattering-based
model to the OCT signal.3 The main cause of imprecision in the determination of the attenuation
coefficient is the inherent random fluctuation of the OCT signal, due to speckle and (shot) noise.
Speckle is the voxel-to-voxel variation of OCT amplitude, caused by the spatial variation of the
refractive index in tissue.4,5 Randomly placed scatterers within the voxels will return scattered
fields with random amplitude and phase, leading to intensity fluctuations at the detector.6 We
have recently derived a simple expression for the minimal attainable precision with which the
attenuation coefficient can be determined using CF based on the so-called Cramér–Rao (CR)
lower bound:7

EQ-TARGET;temp:intralink-;e001;114;544σμOCT;CF ¼
1

jAFRj

ffiffiffiffiffiffiffiffiffi
3cR
MN

r
; (1)

where |AFR| is the length of the axial fitting range (AFR), M is the number of independent data
points in the AFR, and N is the number of A-scans averaged prior to fitting. The constant cR ¼
4ð4 − πÞ∕π originates from the Rayleigh distribution of amplitude values corresponding to fully
developed speckle. The lower bound given by Eq. (1) is expressed in the same units as the attenu-
ation coefficient, e.g.,mm−1 and corresponds to the standard deviation of the normal distribution
of attenuation coefficients that would be obtained by repeating the fitting procedure a large num-
ber of times, each time with a different, random, realization of the speckle pattern. The main
feature of Eq. (1) is that the precision is independent of the attenuation coefficient itself but only
depends on the parameters used in the fitting procedure. In the derivation of Eq. (1), we assumed
that shot noise was negligible. Our results validated this assumption when signals-to-noise ratios
(SNRs) within the AFR exceed 20 dB.7

CF suffers from the drawback, as can be inferred from Eq. (1), that a finite sized AFR is
necessary to achieve sufficient precision, which may preclude measurement of the attenuation
coefficient of thin layers, such as in the retina or the arterial wall, or regions near the basal
membrane.8 In recent years, the depth-resolved estimation (DRE) method has grown popular
as an alternative to CF. Introduced to the OCT field by Vermeer et al.,9 it was inspired by earlier
work on shadow removal in OCT10 and on ultrasound attenuation compensation,11 once again
demonstrating one of many conceptual similarities between both modalities. Practical improve-
ments of the method were introduced by Liu et al.,12 Smith et al.,13 and Dwork et al.14 The
principal allure of the method is the (apparent) pixel-wise determination of the attenuation coef-
ficient, which may circumvent the need for an AFR that extends far into depth.15 However,
assessment of the accuracy and precision of DRE estimation is scarce. The aim of this study
therefore is to determine the accuracy and precision of the DRE of the attenuation coefficient.

2 Theory
Under the assumption of single backscattering from a homogeneous medium with stationary
optical properties, the OCT signal versus depth z is modeled as a single exponential decay com-
bined with the confocal point spread function and sensitivity roll-off:2

EQ-TARGET;temp:intralink-;e002;114;160hidðzÞi2 ¼ αTðz − zfÞ · Hðz − z0Þ · μb;NA expð−2μOCTzÞ þ hζi2; (2)

where α is a conversion factor that includes the detector response, TðzÞ is the confocal point
spread function, Hðz − z0Þ describes the sensitivity roll-off in depth for non-time domain
OCT, μb;NA is the backscattering coefficient within the numerical aperture (NA) of the detection
optics; μOCT is the OCT attenuation coefficient that contains contributions from both scattering
and absorption. In the absence of multiple forward scattering, which we will assume henceforth,
μOCT ¼ μs þ μa is the sum of scattering and absorption coefficients. The backscattering
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coefficient is proportional to the scattering coefficient μs through a phase function and NA de-
pendent factor pNA. The mean squared noise background is given by hζi2. Upon noise subtraction
and following correction for point spread function and roll-off, we arrive at

EQ-TARGET;temp:intralink-;e003;117;700IðzÞ ∝ pNAμs expð−2μOCTzÞ: (3)

We proceed to compute the definite integral IEðzÞ ¼ ∫ E
z Iðz 0Þdz 0 of Eq. (3), which runs from

the depth z up to the end of the available (or used) data range E, to estimate the attenuation
coefficient as (Appendix A):

EQ-TARGET;temp:intralink-;e004;117;637μ̂OCTðzÞ ¼
IðzÞ

2IEðzÞ þ IðEÞ∕μ̂E
: (4)

Compared to the original formulation by Vermeer, Eq. (4) contains a regularization term
IðEÞ∕μ̂E in the denominator to compensate for the finite data range.16 Here, μ̂E ¼ μ̂OCTðEÞ is
an independently obtained estimate for the attenuation coefficient at the end of the data range
E, which may be found, e.g., by CF or from transmission measurements.17 Due to speckle and
noise fluctuations, the OCT signal is itself an inherently fluctuating quantity of which Eq. (2)
represents the average. Inspection of Eq. (4) suggests that these fluctuations will be largely aver-
aged out only in the denominator IðzÞ due to the integration. Indeed, as shown by Fiske et al.,18

the attenuation coefficient retrieved by the DRE follows the same statistical distribution as the
OCT intensity IðzÞ, which is a Rayleigh distribution when the OCT signal is represented on
amplitude basis, or an exponential distribution when the OCT signal is represented on an inten-
sity basis as in this article:

EQ-TARGET;temp:intralink-;e005;117;468pðμ̂OCTÞ ¼
1

hμ̂OCTi
expð−μ̂OCT∕hμ̂OCTÞi: (5)

The mean value hμ̂OCTi can be obtained from a large set of estimations of μ̂OCTðzÞ, in prac-
tice over some spatial range around z and/or from several A-scans at the same position.
Combining Eqs. (3) and (4), we theoretically obtain

EQ-TARGET;temp:intralink-;e006;117;395hμ̂OCTðzÞi ¼ μOCT ×
1

1 −
h
1 − μOCT

μ̂E

i
expð−2μ̂OCTððE − zÞÞ

: (6)

Thus, hμ̂OCTðzÞi → μOCT at a location sufficiently far from E, whereas hμ̂OCTðzÞ → μ̂OCTðEÞi
as z approaches E. Vermeer considered the effect of discretization of IðzÞ, i.e., each datapoint I½i�
corresponds to the integration of Eq. (3) over a finite pixel size Δ around z. The exact, discretized
version of Eq. (4) reads (Appendix B)

EQ-TARGET;temp:intralink-;e007;117;302μ̂OCT½i� ¼
1

2Δ
ln

�
1þ I½i�Pimax

j¼iþ1 I½j� þ C

�
; (7)

where imax ¼ E∕Δ is the pixel index corresponding to the end of the data range. The factor
C ¼ I½imax�∕ðexpð2μ̂EΔÞ − 1Þ is the discretized equivalent of the term IðEÞ∕μ̂E in Eq. (4).

Often, a simplified version of Eq. (7) is used by linearization of the logarithmic and expo-
nential terms [perhaps inspired by the closer visual resemblance to Eq. (4)]

EQ-TARGET;temp:intralink-;e008;117;214μ̂OCT½i� ¼
I½i�

2Δ
Pimax

j¼iþ1 I½j� þ CL
: (8)

Moreover, some authors further omit the (linearized) regularization term
CL ¼ I½imax�∕μ̂OCT½imax� from Eq. (8). Use of these approximations is discouraged as they come
with the penalty of reduced accuracy. The analysis in Appendix B reveals that Eq. (8) system-
atically overestimates the attenuation coefficient in the order of μ2OCT × Δ.

We now seek the precision with which hμ̂OCT½i�i can be estimated with maximum likelihood
(ML) from the Fisher information associated with the data using a CR analysis. Conceptually,
Fisher information measures the amount of information that a dataset provides about the param-
eters of a model for the data. The CR lower bound, the inverse of Fisher information, measures
the highest precision with which the parameters can be estimated using ML methods. In the case
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of CF of OCT intensity (or amplitude) values, the parameter of interest is the attenuation
coefficient. In the present case, somewhat trivially, the parameter of interest is the mean of
the set of μ̂OCT -estimations obtained by Eq. (7), which are distributed according to Eq. (5).
The ML estimator of the mean of an exponential distribution is simply the arithmetic mean
of the estimations. The Fisher information for M independent estimations from an exponential
distribution is Ϝexp ¼ M∕hμ̂OCTi2 so the CR lower bound, expressed as standard deviation

becomes σμOCT;DRE ¼ hμ̂OCTi∕
ffiffiffiffiffi
M

p
. Commonly, A-scans are pre-averaged prior to the applica-

tion of the depth-resolved estimation. This changes the distribution of recovered attenuation
coefficients to an approximately normal distributions when the number of over averages is
N ≳ 30, with mean equal to hμ̂OCTi and variance equal to σ2N ¼ hμ̂OCTi2∕N. The corresponding
Fisher information for the estimated attenuation coefficient based on M independent measure-
ments then becomes Ϝ ¼ MN∕hμ̂OCTi2 and the CR lower bound, expressed as standard deviation
is thus σμOCT;DRE ¼ hμ̂OCTi∕

ffiffiffiffiffiffiffiffi
MN

p
. From a frequentist statistician’s point of view, this quantity

represents the standard deviation of the normal distribution of attenuation coefficient values,
which would be obtained if the DRE analysis were repeated many times. We can use this inter-
pretation to calculate the decrease in precision under the influence of noise. The result of the
lower bound of this analysis, which can be found in Appendix C, is

EQ-TARGET;temp:intralink-;e009;114;522σμ̂OCT;DREðiÞ ¼
hμ̂OCT½i�iffiffiffiffiffiffiffiffi

MN
p ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

SNR½i�2
s

; (9)

where the SNR is defined per pixel as SNR½i� ¼ I½i�∕hζi.
Comparing Eq. (9) to Eq. (1), we see that the precision in the DRE estimation method is

directly proportional to the pixel-wise estimate of the attenuation coefficient, whereas it is in-
dependent of hμ̂OCTi for CF. It also shows that a higher precision can be obtained using DRE
compared to CF, when the AFR becomes smaller than

ffiffiffiffiffiffiffiffi
3cR

p
∕μ̂OCT or roughly two mean

free paths.

3 Methods
To validate the accuracy and precision derived in Eqs. (6) and (9), we performed numerical sim-
ulations based on OCT scans from a homogeneous medium. Details of our simulation procedure
can be found in Ref. 7. Briefly, single A-scans with randomly varying amplitude were generated

based on AsimðziÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 4

4−π · σ
2
AðziÞ · lnðξiÞ

q
, where σ2AðzÞ ¼ cR

4
ðIðzÞ þ hζi2Þ is the amplitude

variance, IðzÞ is given by Eq. (3), and ξi is a uniformly distributed number between 0 and 1
drawn for each pixel. This procedure assures that the amplitudes AsimðzÞ follow a Rayleigh dis-
tribution corresponding to fully developed speckle and the contribution of shot noise.N ¼ 100 of
these A-scans are first squared, then averaged so the resulting averaged intensities at each depth
position are normally distributed. Thereafter, we subtract the mean noise floor hζi.

Each squared, averaged A-scan is processed using Eq. (7) to estimate the attenuation coef-
ficient. To demonstrate the spurious effect of linearization, we also analyzed the data using
Eq. (8) with the regularization term CL omitted. This procedure was repeated 104 times to obtain
a distribution of μ̂OCT½i� estimations at each depth position. Comparing the mean of this distri-
bution to the input attenuation coefficient yields the accuracy of the method, and the precision is
given by the distribution’s standard deviation.

We used comparable simulation parameters as previously7 reported for a direct comparison
between the precisions of least squared fitting and the DRE method used in this article. In the
simulations, pNA was set to unity and an arbitrary scaling factor of 25002 was included.
Simulations were performed both with and without shot noise included. In the latter case, signal
fluctuations are caused only by speckle. In the former case, the mean noise level was fixed at
ζ ¼ 13.5. Values of 2 and 5 mm−1 were used for the attenuation coefficient, which leads to
a maximum SNR expressed in decibels of 60 and 64 dB, respectively. In all simulations, we
used a value of μ̂OCTðEÞ ¼ 5 mm−1 for the estimation of the attenuation coefficient at the end
of the data range E.
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4 Results
Figure 1(a) shows an example of simulated N ¼ 100 times averaged A-scans, including shot
noise, obtained by the procedure outlined in the previous section. The arrow indicates the posi-
tion zc ¼ 1.18 mm, at which the intensity signal hits the noise floor with the condition I½i� ¼ hζi
for the simulation with μOCT ¼ 5 mm−1 as input parameter. For μOCT ¼ 2 mm−1 the intensity
signal does not reach the noise floor.

Figure 1(b) shows a histogram of intensity values at a depth of z ¼ 0.42 mm using μOCT ¼
2 mm−1 obtained from of 104 independent simulations. It shows that the averaged intensities,
obtained by pre-averaging N ¼ 100 A-scans, are indeed to good approximation normally
distributed.

The assessment of the accuracy of the DRE method is shown in Fig. 2, in the absence of shot
noise, and in Fig. 3, in the presence of shot noise for attenuation coefficients of 2 and 5 mm−1.
Both figures show the estimated attenuation coefficients versus depth using Eqs. (7) and (8) with
CL ¼ 0 and the theoretical prediction of Eq. (6). Figure. 3(a) shows the DRE algorithm applied to
a single averaged A-scan and demonstrates the remaining fluctuation in the estimations of μOCT;
even after pre-averaging N ¼ 100 A-scans. The data shown in Fig. 3(b) is averaged over 104

independent simulations and therefore permits closer comparison of theory and simulations. For
the data shown in both figures, a value of μ̂E ¼ 5 mm−1 is used in the regularization term C in
Eq. (7). The results in Fig. 2(b) demonstrate that the estimated attenuation coefficient differs <1%
from the true value up to a depth of 1.98 mm for μOCT ¼ 2 mm−1 and, for μOCT ¼ 5 mm−1,

Fig. 1 (a) Example of simulated, N ¼ 100 times averaged A-scans including shot noise (ζ ¼ 13.5)
with μOCT ¼ 2 and 5 mm−1 using the model in Eq. (3). The backscatter efficiency within the NA pNA

was set to unity. The arrow indicates the position zc ¼ 1.18 mm, where the OCT signal hits the
noise floor. (b) The distribution of intensity values at z ¼ 0.42 mm obtained from 104 independent
simulations for μOCT ¼ 2 mm−1.

Fig. 2 Accuracy of μ̂OCT determination using the DRE method in absence of shot noise (ζ ¼ 0).
Attenuation coefficients of μOCT ¼ 2 and 5 mm−1 were used to simulate N ¼ 100 times averaged
A-scans according to the model of Eq. (3) with pNA set to unity. The number of sample points is
M ¼ 1, as the reconstruction is done per pixel. (a) Data points, show μ̂OCT determined using the
exact, discretized Eq. (7) and using its linearized approximation Eq. (8), CL ¼ 0. Solid lines show
the theoretical prediction of hμ̂OCTi using Eq. (6). The mean per pixel of 104 independent, averaged
A-scans is compared to the theoretical value in (b).
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over the entire depth range. It approaches, in both cases, μ̂E near the end of the available data
range. If, on the other hand, the linearized approximation Eq. (8) with CL omitted is used, the
attenuation coefficient has a fixed offset with respect to the true value and does therefore not stay
within the 1% mark and, furthermore, tends to infinity at the end of the data range.

The more realistic case, when noise is included, is depicted in Fig. 3. Analogously to Fig. 2,
the attenuation coefficients, calculated from one single, averaged A-scan (a) and their means per
pixel (b) from 104 independent estimations is shown. Including noise into the calculation results
into a strong fluctuation of the estimated attenuation coefficient as soon as the signal hits the
noise floor at zC. This trend is expected as a result of using the full depth range for the attenuation
coefficient estimation. The sum term in the denominator of Eqs. (7) and (8) is padded by random
noise values fluctuating around zero after zc (assuming the average noise floor is correctly sub-
tracted). The contribution of noise to the sum term and therefore the effect of including the noise
region into the calculation increases with depth, as is clearly seen more clearly in Fig. 3(b) for
depths larger than zc. However, including the noise area into the calculation does not show
a significant effect the attenuation estimation in the depth region before the signal hits the noise
floor and differs <1% of true attenuation value up to a depth of 1.18 mm for μOCT ¼ 5 mm−1 and,
for μOCT ¼ 2 mm−1, over the entire depth range similar to the results in Fig. 2.

We proceed to compare the standard deviation σμ̂OCT of the distribution of estimated attenu-
ation coefficients at each depth with calculations based on Eq. (9) in Fig. 4(a) (without added shot
nose) and Fig. 4(b) (with shot noise). It is shown in Fig. 4(a) that the results obtained using both
the exact Eq. (7) and the approximation Eq. (8) with CL ¼ 0 are in good agreement with the
predictions of Eq. (9) except very near to the end of the available data range. Since by Eq. (9),
the precision is proportional to the mean estimated attenuation coefficient at each depth [e.g., the
results of Figs. 3(b) and 4(b)], it is found that the precision is slightly higher when Eq. (8) is used
instead of Eq. (7). When shot noise is present [Fig. 4(b)], there is good qualitative agreement
between the simulations and the predictions of Eq. (9) with the largest deviations occurring at
depths where the signal is close to the noise floor.

Finally, we compared our previously reported lower bounds for the CF method7 with the
precision we derived in this article for the DRE method in the presence of shot noise (ζ ¼ 13.5).
Figure 5 shows the numerically obtained CR lower bound (the minimal precision for the CF
approach) in dependence of N for an AFR of 328 μm (M ¼ 41 points, Δ ¼ 8 μm) located well
before zc such that the SNR in the AFR is >20 dB. The black dashed line represents the ana-
lytical CRLB calculated using Eq. (1) and overlaps with the numerically obtained curves, thus
demonstrating the validity of Eq. (1) for low noise levels as well as the independence of the lower
bound on the value of the attenuation coefficient itself. The precision of the DRE method calcu-
lated by Eq. (9) (also using M ¼ 41 points, with end-of-range values μ̂E set to the true value of

Fig. 3 Accuracy of μ̂OCT determination using the DRE method in the presence of shot noise
(ζ ¼ 13.5). Attenuation coefficients of μOCT ¼ 2 and 5 mm−1 were used to simulate N ¼ 100 times
averaged A-scans according to the model of Eq. (3) with pNA set to unity. The number of sample
points is M ¼ 1, as the reconstruction is done per pixel. The arrow indicates the depth position
zc ¼ 1.18 mm where the OCT signal with μOCT ¼ 5 mm−1 hits the noise floor. (a) Data points,
shows μ̂OCT, calculated using the exact, discretized Eq. (7), and using its linearized approximation
Eq. (8), CL ¼ 0. Solid lines show the theoretical prediction of hμ̂OCTi using Eq. (6). The mean per
pixel of 104 independent, averaged A-scans is compared with the theoretical value in (b).
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μOCT.) does show a dependence on the attenuation coefficient. All curves follow a 1∕
ffiffiffiffi
N

p
trend,

whereas σμ̂OCT for the DRE method is smaller than for the CF method. Inspection of Eqs. (1) and
(9) in the low-noise limit quickly reveals that the DRE method outperforms the CF method in
precision, when μOCT · jAFRj ≤ ffiffiffiffiffiffiffiffiffiffiffiffi

3 · cR
p

≈ 1.8.

5 Discussion
Quantification of the attenuation coefficient requires thorough assessment of the accuracy and
precision with which it can be estimated from OCT data. In recent years, the DRE method has
emerged as an attractive alternative to the conventional approach of CF. We have derived expres-
sions for the accuracy and precision of attenuation coefficient determined by the DRE method
and validated those with numerical simulations.

The accuracy of the DRE method is given by Eq. (6). This equation includes a regularization
term that sets the attenuation coefficient μ̂E at the end of the available data range (either at the end
of the A-scan, or the part of the A-scan that is included in the analysis). Omitting the regulari-
zation term essentially sets it value to infinity. This will result in an inaccurate attenuation

Fig. 5 Comparison between the lower bound of the precision of the attenuation coefficient based
on the DRE [Eq. (9)] and CF7 methods. The precision is shown in dependency on the number of
averagesN . Shot noise was included in the calculations (ζ ¼ 13.5). A region of interest from zmin ¼
0.04 mm to zmax ¼ 0.36 mm, with a length of 328 μm and M ¼ 41 sample points (step size
Δ ¼ 8 μm), was used in both methods. The end-of-range values μ̂E used in the DRE method were
set to the true value of the attenuation coefficient μOCT. Note that the curves for the CF method
overlap in this high-SNR limit.

Fig. 4 Precision of μ̂OCT determination using the DREmethod (a) in the absence (ζ ¼ 0). and (b) in
the presence of shot noise (ζ ¼ 13.5). Attenuation coefficients of μOCT ¼ 2 and 5 mm−1 were used
to simulate N ¼ 100 times averaged A-scans according to the model of Eq. (3) with pNA set to
unity. The number of sample points is M ¼ 1, as the reconstruction is done per pixel. The lower
bound on the precision σμ̂OCT;DRE

(solid lines) was obtained from Eq. (9) and compared to the stan-
dard deviation σμ̂OCT

, (data points) obtained using DRE estimation based on the exact, discretized
Eq. (7) and its linearized approximation [Eq. (8), CL ¼ 0]. The arrow in (b) indicates the depth posi-
tion zc ¼ 1.18 mm where the OCT signal with μOCT ¼ 5 mm−1 hits the noise floor.
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estimation at the end of the data range, which can be overcome by choosing a region for attenu-
ation reconstruction, which is far from the end of the data range. However, an accurate estimation
can only be achieved when the attenuation coefficient is estimated using Eq. (7), which properly
takes into account discretization of the OCT signal, as shown in Figs. 2 and 3. The approximate
expression Eq. (8), which is often found in the literature, leads to a consistent overestimation of
the attenuation coefficient in the order μ2OCT × Δ, where Δ is the pixel increment, and for that
reason its use is highly discouraged. Next to inappropriate use of Eq. (8) [rather than Eq. (7)] that
leads to a systemic offset, other factors that may contribute to a loss of accuracy are inadequate
noise subtraction16 or incomplete compensation of the point spread function and roll-off
function.19 Incorrect estimation of μ̂E clearly leads to loss of accuracy at the end of the data range.

The expression for precision [Eq. (9), Appendix C] was derived under the premise that
a number of N A-scans are averaged prior to application of the DRE method. Averaging
results in approximately normally distributed averaged intensity values, which is the underlying
assumption of the derivation in Appendix C. In the absence of noise, this leads to a CR
lower bound on the precision for the estimation of the mean attenuation coefficient as
σ ^μOCT ¼ hμ̂OCTi∕

ffiffiffiffiffiffiffiffi
MN

p
. Contrary to our own advice in the previous paragraph, we continued

to employ the linearized Eq. (8) with the purpose of arriving at a compact expression for the
precision in the presence of noise. As evidenced from the results in Fig. 4(b), the resulting Eq. (9)
is in good qualitative agreement with the simulation data and captures the effect of increasing
SNR on the precision of the estimated attenuation coefficient. The key feature of Eq. (9) is that
the precision depends on the mean estimated attenuation coefficient itself. Therefore, any loss in
accuracy will directly lead to a loss of precision.

The dependence of precision on hμ̂OCTi is also the main difference between the precision
obtained through NLLS CF with two free running parameters, as expressed in Eq. (1), which
depends on the extent of the AFR.7 Comparing both methods (Fig. 5), we see that the DRE
method can obtain a better precision when μOCTjAFRj ≲ 1.8 when the same number of
A-scans (N) is pre-averaged, and the same number of independent data points (M) is included
in the analysis. Both methods thus require spatial support to achieve sufficient precision (the
required level of precision may well depend on the application). In this sense, the term “depth
resolved estimation” is somewhat misleading because in practice information from some spatial
region must be included for the analysis.

5.1 Limitations
Simulations can be performed quickly and at low cost compared to the time and resources
required for phantom experiments. Manufacturing of phantoms with precise control of the scat-
tering properties can be challenging whereas simulations can explore a much wider range of
parameter space beyond what is feasible in experiments. Simulations allow for precise control
and manipulation of individual parameters (or tuning correlation among them), leading to deeper
understanding of the underlying mechanisms. Although we have included only a limited number
of μOCT values and SNRs in the present article, our simulations are straightforwardly extended to
include a wider range of scattering and absorption coefficients; to add point spread function and
sensitivity roll-off [Eq. (2)] and introduce layers with their specific optical properties.

Performance of both the CF and DRE methods depends on the appropriateness of the under-
lying single-exponential decay model of Eq. (3) to describe the light–tissue interaction (assuming
instrumental factors are corrected appropriately). In the this study, both the simulation generating
OCT data and analysis were based on the same Eq. (3). Therefore, the accuracy and precision
derived in this article represent the best values that can be obtained. This best-case scenario may
not be true for experimental data, for instance when a small fraction of multiple scattering occurs.
Multiple scattering models are available20 and can be adapted for CF, leading to the inclusion of
one or more fit parameters describing tissue scattering (e.g., the root mean square scattering angle
or scattering anisotropy). However, adaptation of these models for use in DRE seems challeng-
ing. In practice, even in the presence of multiple scattering, the part of the signal decay caused by
absorption and scattering is often adequately modeled as a single exponential decay, albeit with a
decay constant μOCT ≤ μs þ μa (because multiple scattering causes more light to be detected,
than expected based on the single-scattering model). Thus, the adoption of μOCT allows us
to describe tissue attenuation as measured by OCTas an effective parameter that does not require

Neubrand, van Leeuwen, and Faber: Accuracy and precision of depth-resolved. . .

Journal of Biomedical Optics 066001-8 June 2023 • Vol. 28(6)



an estimate of the relative weight of single and multiple scattering contributions. When applying
the DRE method to multiple layers with varying optical properties, the DRE method generally
fails to extract the correct optical properties, unless for each layer μOCT ∝ μs only (e.g., no
absorption) and pNA is a constant throughout the sample.21 Whether or not these conditions are
met in practice should ultimately be verified by experiments while the level of inaccuracy and
imprecision may be estimated using simulations.

5.2 Clinical Implications
Measurements of the attenuation coefficient complement the structural images that OCT pro-
vides. The main premise is that quantification of μOCT can be used to distinguish different tissue
types (e.g., benign versus malignant). Ideally, with perfect accuracy and precision, the sensitivity
and specificity of such an approach are determined by the degree of biological variation within,
and between the different tissue types. In practice, however, the accuracy and precision will be
finite. The results laid out in this article, as well is in the previous publication7 allow us to deter-
mine to which degree the observed variation in attenuation coefficients is due to the employed
method, and which part can be attributed to biological variation.

6 Conclusion
In this article, we derived and validated the accuracy and precision of the depth resolved esti-
mation method of the attenuation coefficient μOCT in optical coherence tomography. We showed
that a commonly used simplification of the method results in loss of accuracy in the order of
Δ × μ2OCT where Δ is the sampling resolution and is therefore not recommended as being used
for OCT-attenuation reconstruction. Furthermore, we derived an analytical expression for the
precision of μ̂OCT, which proportionally scales with its expectation value and inversely with the
square root of the number of independent sample points included in the analysis. Lastly, we
compared our outcome with the precision obtained using a CF procedure and provided an easy
applicable rule of thumb to determine which method will have a better precision. Our theoretical
framework gives valuable insight regarding accuracy and precision of parametric imaging based
on a depth-resolved reconstruction of the attenuation coefficient and is, given its wide and easy-
to-use applicability, an important advance toward design and improvement of standardized OCT-
experiments, which are, e.g., used for tissue characterization in the clinic.

7 Appendix A
We model the mean OCT signal intensity as function of depth in Eq. (3) using a single expo-
nential decay function, assuming that the confocal point spread function and the sensitivity roll-
off are fully compensated and that a constant mean noise floor is subtracted. We first compute
the integral I∞ðzÞ ¼ −∫ ∞

z Iðz 0Þdz 0 of Eq. (3), which yields

EQ-TARGET;temp:intralink-;e010;117;272I∞ðzÞ ¼
pNAμs
2μOCT

expð−2μOCTzÞ: (10)

Taken together with Eq. (3), we can solve for the attenuation coefficient as

EQ-TARGET;temp:intralink-;e011;117;228μOCTðzÞ ¼
IðzÞ

2I∞ðzÞ
: (11)

In practice, data are only available over a finite range, up to z ¼ E. We compute the definite
integral IEðzÞ ¼ −∫ E

z Iðz 0Þdz 0, which yields

EQ-TARGET;temp:intralink-;e012;117;164IEðzÞ ¼
pNAμs
2μOCT

½expð−2μOCTzÞ − expð−2μOCTEÞ� ¼ I∞ðzÞ −
IðEÞ
2μOCT

: (12)

Solving Eq. (12) for I∞ðzÞ, and substituting the result in Eq. (11) gives

EQ-TARGET;temp:intralink-;e013;117;115μOCT ¼ IðzÞ
2IEðzÞ þ IðEÞ

μOCT

: (13)
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Finally, Eq. (13) can be rearranged to solve for the attenuation coefficient giving the finite-
range equivalent of Eq. (11)

EQ-TARGET;temp:intralink-;e014;114;712μOCTðzÞ ¼
IðzÞ − IðEÞ
2IEðzÞ

: (14)

When z approaches the end of range E, the finite integral in the denominator term goes to
zero; therefore 2IEðzÞ → 0 and the estimation of the attenuation coefficient in Eq. (14) will tend
to infinity. A better strategy is to regularize the depth resolved estimation using an independently
obtained estimate for the value of the attenuation coefficient at the end of the data range,12

μ̂E ¼ μOCTðEÞ. This allows us to rewrite Eq. (13) as an estimator of μOCT:

EQ-TARGET;temp:intralink-;e015;114;618μ̂OCTðzÞ ¼
IðzÞ

2IEðzÞ þ IðEÞ
μ̂E

¼ μOCT

1 −
h
1 − μOCT

μ̂E

i
expð−2μOCTðE − zÞÞ

: (15)

Equation (15) reveals that the estimate μ̂OCTðzÞ approaches the true value μOCT at a z-posi-
tion sufficiently far from the end of range E, whereas μ̂OCTðzÞ approaches the estimate μ̂E as
z approaches E.

8 Appendix B
Vermeer et al.9 considered the effect of discretization of IðzÞ. Each data point I½i� corresponds to
the integration of Eq. (3) over a finite pixel size Δ around z. They show that the discretized
version of Eq. (11) reads

EQ-TARGET;temp:intralink-;e016;114;471μ̂OCT½i� ¼
1

2Δ
ln

�
1þ I½i�P∞

j¼iþ1 I½j�
�
; (16)

where μ̂OCT½i� is now the estimate of the average attenuation coefficient in the i’th pixel.
Considering that data are only available over a finite data range we write

EQ-TARGET;temp:intralink-;e017;114;411μ̂OCT½i� ¼
1

2Δ
ln

�
1þ I½i�Pimax

j¼iþ1 I½j� þ C

�
; (17)

where imax is the pixel index corresponding to the end of range E and C ¼ P∞
j¼imaxþ1 I½j�.

We can use Eq. (16) to obtain an expression for C. We have

μ̂OCT½imax� ¼ 1
2Δ lnð1þ I½imax�P

∞
j¼imaxþ1

I½j�Þ ¼ 1
2Δ lnð1þ I½imax�

C Þ so that C ¼ I½imax�∕ðexpð2μEΔÞ − 1Þ.
Here, μE ¼ μOCT½imax� is an independent estimate of the attenuation coefficient at the end of
the range, as before (Appendix A).

Quite often, approximate forms of Eq. (7) / Eq. (17) are found in literature, which are
obtained by linearization of the logarithmic and exponential terms. Then, factor
C ≈ I½imax�∕2μEΔ and upon expanding the logarithmic term lnð1þ xÞ ¼ x − 1

2
x2 þ : : : :

EQ-TARGET;temp:intralink-;e018;114;264μ̂OCT½i� ¼
I½i�

2Δ
Pimax

j¼iþ1 I½j� þ I½imax �
μE

− Δ
�

I½i�
2Δ

Pimax

j¼iþ1 I½j� þ I½imax�
μE

�
2

þ : : : ; (18)

after which only the first term is retained. Under that same approximation, the second term in
Eq. (18) is approximately equal to μ2OCT × Δ and we conclude that linearization of Eq. (7)/(17)
leads to a systematic overestimation of the attenuation coefficient in the order of μ2OCT × Δ.

9 Appendix C
We seek the precision of the DRE method in the presence of noise. We make use of the fact that
the attenuation coefficient will be approximately normally distributed, and that the precision is
given by the standard deviation σμ̂OCT of that distribution. We use the “simplified” form of the
depth resolved method

EQ-TARGET;temp:intralink-;e019;114;105μ̂OCTðiÞ ¼
IðiÞ

2Δ
�P

M
j¼iþ1 IðjÞ þ C

� : (19)

Neubrand, van Leeuwen, and Faber: Accuracy and precision of depth-resolved. . .

Journal of Biomedical Optics 066001-10 June 2023 • Vol. 28(6)



After pre-averaging N > 30 times, the intensity values are normally distributed. The term
DðiÞ ¼ P

M
j¼iþ1 IðjÞ þ C in the denominator is then the sum of normally distributed random var-

iables plus a constant, which yields a new normal variable with mean mDðiÞ ¼
P

M
j¼iþ1 m IðjÞ þ

C and variance σ2DðiÞ ¼
P

M
j¼iþ1½σ2I ðjÞ þ σ2ς �; that is, the means and variances simply add up.

When the coefficients of variation of either the nominator δI ¼ σI∕m I or the denominator
δD ¼ σD∕mD in the ratio is <1 (in fact, both are), the result is also normally distributed with mean

EQ-TARGET;temp:intralink-;e020;117;658m μ̂OCTðiÞ ¼
m I

2ΔmDðiÞ
≡ hμ̂OCTðiÞi: (20)

The variance is given as

EQ-TARGET;temp:intralink-;e021;117;612σ2μ̂OCTðiÞ ¼
�

m I

2ΔmDðiÞ
�

2

ðδ2I þ δ2DÞ: (21)

Fiske et al.18 showed that the coefficient of variation δD ≪ 1 already, even without pre-
averaging so we neglect that term in Eq. (21). See also Appendix D for further justification.

Thus, upon averaging N > 30 of individual A-scans followed by subtraction of the
mean noise level hςIi [Eq. (2)], the signal IðiÞ is obtained, mean m I ≡ hIðiÞi and variance

σ2I ¼ ðhIðiÞi2N þ hςIi2
N Þ ¼ ðm 2

I
N þ hςIi2

N Þ. These relations indicate that subtracting the mean noise floor
does not remove the fluctuations caused by noise. The required expression for δ2I ¼ σ2I∕m 2

I
(the square of the coefficient of variation CV) is

EQ-TARGET;temp:intralink-;e022;117;485δ2I ðiÞ ¼
1

N

�
1þ hςIi2

m 2
I ðiÞ

�
¼ 1

N

�
1þ 1

SNRðiÞ2
�
; (22)

where the SNR is now defined as SNR ¼ m I∕hςIi. Combining with Eq. (21), assuming M
independent estimations, the precision expressed as standard deviation becomes

EQ-TARGET;temp:intralink-;e023;117;423σμ̂OCTðiÞ ¼
m μ̂OCTðiÞffiffiffiffiffiffiffiffi

MN
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

SNRðiÞ2
s

: (23)

10 Appendix D
Let DðiÞ ¼ P

M
j¼iþ1 IðjÞ þ C be the sum term in the denominator of Eq. (19). It is the sum of

normally distributed random variables plus a constant, which yields a new normal variable with
mean mDðiÞ ¼

P
M
j¼iþ1 m IðjÞ þ C and variance σ2DðiÞ ¼

P
M
j¼iþ1½σ2I ðjÞ þ σ2ς �; that is, the means

and variances simply add up. The square of the coefficient of variation is

EQ-TARGET;temp:intralink-;e024;117;293δ2DðiÞ ¼
σ2DðiÞ

ðmDðiÞÞ2
¼

P
M
j¼iþ1½σ2I ðjÞ þ σ2ς ��P
M
j¼iþ1 m IðjÞ þ C

�
2
¼ 1

N

8<
:
P

M
j¼iþ1½m 2

I ðjÞ þ hςIi2��P
M
j¼iþ1 m IðjÞ þ C

�
2

9=
;: (24)

We will first work out the term without noise, then the term with noise, making use of
the fact that the analysis is based on the exponential decay model so we can write inside the
summations: m IðjÞ ¼ m IðiÞ expð−2μOCTΔ · ðj − iÞÞ.

Let k ¼ j − i, x ¼ e−2μOCTΔ and use the identity:

EQ-TARGET;temp:intralink-;e025;117;193

XM−i

k¼1

xk ¼ x1 − xM−iþ1

1 − x
¼ x

1 − x
ð1 − xM−iÞ: (25)

Then, the mean of DðiÞ follows as
EQ-TARGET;temp:intralink-;e026;117;138

mDðiÞ ¼
XM
j¼iþ1

m IðjÞ þ C ¼
Xj¼M

j¼iþ1

m IðiÞe−2μOCTΔ·ðj−iÞ þ C

⇒
Xk¼M−i

k¼1

m IðiÞe−2μOCTΔ·ðkÞ þ C ¼ m IðiÞ
e−2μOCTΔ

1 − e−2μOCTΔ
ð1 − e−2μOCTΔðM−iÞÞ þ C: (26)
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And the variance as

EQ-TARGET;temp:intralink-;e027;114;724σ2DðiÞ ¼
1

N

XM
j¼iþ1

½m 2
I ðjÞ þ hςIi2� ⇒ σ2DðiÞ ¼

1

N

XM
j¼iþ1

½m IðiÞ2e−4μOCTΔ·ðj−iÞ þ hςIi2� ¼

1

N

�
m IðiÞ2

e−4μOCTΔ

1 − e−4μOCTΔ
ð1 − e−4μOCTΔðM−iÞÞ þ ðM − iÞhςIi2

�
:

(27)

Inserting the expressions for the SNR and regularization term C:

EQ-TARGET;temp:intralink-;e029;114;638δ2DðiÞ ¼
1

N

2
4 e−4μOCTΔ

1−e−4μOCTΔ ð1 − e−4μOCTΔðM−iÞÞ þ ðM−iÞ
SNR2�

e−2μOCTΔ

1−e−2μOCTΔ ð1 − e−2μOCTΔðM−iÞÞ þ e−2μOCTΔðM−iÞ
ðexpð2Δμ̂EÞ−1Þ

�
2

3
5: (29)

To arrive at a more compact, albeit approximate expression we first linearize the exponen-
tials

EQ-TARGET;temp:intralink-;e030;114;563δ2DðiÞ ≈
1

N

2
4 ð1 − 4μOCTΔÞðM − iÞ þ ðM−iÞ

SNR2�
ð1 − 2μOCTΔÞðM − iÞ þ 1−2μOCTΔðM−iÞ

2Δμ̂E

�
2

3
5; (30)

EQ-TARGET;temp:intralink-;e031;114;501δ2DðiÞ ≈
1

N

2
4 ð1 − 4μOCTΔÞðM − iÞ þ ðM−iÞ

SNR2�
ð1 − 2μOCTΔÞðM − iÞ

�
1þ 1

2Δμ̂E

��
2

3
5: (31)

Then assume μOCTΔ ≪ 1 and rearrange to

EQ-TARGET;temp:intralink-;e032;114;455δ2DðiÞ ≈
1

N

�
1þ 1

SNR2

��ð2μ̂EΔÞ2
M − i

�
: (32)

Comparing to Eq. (22), we see that δ2DðiÞ ¼ δ2I ðiÞ × ð2μ̂EΔÞ2∕ðM − iÞ. Since ðμ̂EÞ−1 is in the
order of mm and Δ is in the order of μm, neglecting δ2DðiÞ as is done in Appendix C is justified.
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