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ABSTRACT. Significance: Optical tweezers (OTs) have emerged as an essential technique for
manipulating nanoscopic particulates and biological specimens with sub-micron pre-
cision and have revolutionized various fields, including biology and colloidal physics.
However, traditional optical trapping techniques often rely on moderate- to high-
power continuous wave (CW) lasers, which can introduce unwanted thermal effects
and photodamage to delicate samples. An innovative alternative has emerged
through the utilization of femtosecond (fs) lasers at ultra-low average powers on the
order of tens of microwatt. Unexpectedly overlooked until now, this method enables
the direct trapping and manipulation of cells without relying on functionalized
spheres.

Aim: We aim to compare the trap stiffness of CW and fs lasers in an unexplored
average power regime (sub-1 mW) on cells within the intermediate-size regime.

Approach: A CW or fs laser is used to trap cells in an inverted microscope setup.
We trap five different pathogenic bacteria with different morphologies to compare
trap stiffness.

Results: We find that fs laser-assisted selective holding with ultra-low power
(FLASH-UP) exhibits five times greater trap stiffness than CW-based OTs and can
trap at lower intensities. Furthermore, we demonstrate that FLASH-UP does not
impact cell motility.

Conclusions: FLASH-UP displays higher trap stiffness at average powers below
1 mW and does not impact cell functionality. These results pave the way for ultra-
low-power trapping of cells for applications in sorting, bio-sensing, in vivo cell
manipulation, and single-cell analysis.
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1 Introduction
Optical tweezers (OTs), originally conceptualized by Arthur Ashkin in the 1970s,1–3 remain a
valuable, non-invasive tool for cellular manipulation ranging from individual to populations of
cells in aqueous environments.4–6 Specifically, OT has been used for cell sorting,7 live cell pat-
terning,8 single-cell optoporation and transfection,9 and characterizing the mechanical properties
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of cells in different growth media,10 collagen,11 and DNA.12 OT is a result of balancing the
electromagnetic gradient and scattering forces in a trap, a phenomenon that is a consequence
of light’s radiation pressure. The net force acting on a particle caught in an optical trap is
on the order of piconewtons, which is on the same scale as forces produced by the naturally
occurring mechanoenzymes in biology.4,13,14 A typical OT setup is constructed from an inverted,
laser-scanning optical microscope, whereby a single-wavelength, continuous wave (CW) laser
source delivering powers in the range of 5 to 100 mW (corresponding to intensities of ∼22 to
77.5 MW∕cm2) for strong, diffraction-limited focusing is employed.15–18 For specific applica-
tions for biological manipulation, optical wavelengths in the near-infrared regime and intensities
on the order of MW∕cm2 are used.4,6,19

The laser-induced heating resulting from light absorption in the cell cytosol causes thermal
damage to the trapped biological specimens and the generation of toxic reactive oxygen
species.14,20,21 Researchers have explored various methods to mitigate this issue such as reducing
the total heat generated by trapping at T ¼ 0°C,22,23 minimizing the duration that trapped cells are
exposed to the laser,14,21 and relying on indirect trapping methods that involve tweezing dielectric
particles that are tethered to the biological species of interest.10,24,25 Nonetheless, these alternate
methods limit the ability to directly interrogate cell–cell interactions. In the specific case of
trapping bacteria, it has been shown that the local heating results in adverse effects that impact
their propagation, motility, and expression of stress-response genes, even when exposed to the
minimal threshold intensities required for trapping.20,26 Importantly, these traditional cases of OT
for biological manipulation use CW lasers. An alternative approach has stemmed from the use of
ultrafast, femtosecond (fs)-pulsed lasers operating at megahertz (MHz) repetition rates, in which
the high peak powers and short pulse durations result in nanojoule pulse energies that are less
deleterious to cells.27,28

In the Rayleigh regime (for particles of diameter d < wavelength of light λ), fs-OT indirectly
trapped DNA by being tethered to a micron-sized dielectric particle.27 The merits of employing
fs-OTover one that is CW have been exemplified for this regime in which fs-OT trapped particles
with average powers an order of magnitude lower than that required for CW. Due to the particle
size, there is an increase in thermal diffusion, which is offset by the ultra-high peak powers of
pulsed lasers with the generation of transient forces.29,30 In the Lorenz–Mie (d ≈ λ) and Mie
(d > λ) regimes, fs-OT directly trapped bacteria such as Escherichia coli, eukaryotic cells such
as Phaffia rhodozyma, and red blood cells. However, the power densities used to trap these cells
led to cell membrane dysfunction and the formation of damaged white spots after being trapped
for 1 to 15 min.26,28,31 Interestingly, investigations into trap efficiency for particles in the inter-
mediate regime have yielded conflicting results between CW and fs sources. Agate et al.32 con-
cluded that stiffness is determined by average power rather than peak power. However, Singh
et al.33 presented contrasting findings, demonstrating a notable distinction in extrapolated corner
frequencies, with pulsed lasers exhibiting superior performance over the CW source. Notably,
these investigations were conducted using input laser powers on the order of 5 to 100 mW.
However, there has been limited exploration of OT efficiency at average powers sub-1 mW for
particles existing within the Lorenz–Mie regime, a domain highly pertinent to cellular studies.

In this work, we demonstrate fs laser-assisted selective holding with ultra-low power
(FLASH-UP) to achieve optical tweezing of dielectrics using average powers deep in the micro-
watt for objects in the Lorenz–Mie regime. This technique is readily applicable to the OT com-
munity as the standard OT setup is used with the substitution of the CW source for an fs pulsed
source. We apply FLASH-UP to pathogenic bacterial cells with pili, including Staphylococcus
aureus, Bacillus paranthracis, Vibrio cholerae, and Staphylococcus epidermidis. Last, we
tweeze Pseudomonas aeruginosa, an infectious bacteria species with a single polar flagellum
moving with a speed of 50 μm∕s that often causes pneumonia or leads to bacteremia. We find
that FLASH-UP demonstrates a trap stiffness 5× greater than CW-OT for dielectric spheres and
can trap at power densities half that of CW. To a first approximation, the use of an ultrafast source
introduces a transient force component that works in concert with the traditional gradient force to
achieve stable optical trapping. The implications of these results will allow for the characteri-
zation of bacteria on a single-cell level, offering insights into mechanistic clues hidden in bulk
measurements and a stronger understanding of pathogenic mechanisms.34
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2 Theory
The modeling of fs OT in the Lorenz–Mie regime is the subject of work that we are currently
pursuing and will be reported elsewhere. Nonetheless, valuable insights can be obtained from
examining the effects of the Rayleigh model. The time-varying electric field E of a Gaussian
beam propagating along the z-axis and polarized along x̂ is expressed as35
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where w0 is the beam waist at z ¼ 0 and ρ, k ¼ 2π
λ , ω0, t, and τ are the radial coordinate, wave

number, carrier frequency, time, and pulse duration, respectively. The resultant Lorenzian
force Fp arising from spatial inhomogeneous field distributions acting on a Rayleigh particle is
given as

EQ-TARGET;temp:intralink-;e002;117;562Fpðρ; z; tÞ ¼ ½pðρ; z; tÞ · ∇Eðρ; z; tÞ� þ ½∂tpðρ; z; tÞ� × Bðρ; z; tÞ ¼ Fgrad þFt; (2)

where p ¼ αE and B are the dipole moment and corresponding magnetic flux, respectively. Here,
α ¼ 4πn2mε0r3½m2−1

m2 þ 2
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ticle, and ratio of the refractive indices of particle np to medium nm, respectively. The forces
generated is thus decomposed into
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where ðp̃; z̃; t̃Þ ¼ ðρ∕w0; z∕w0; t∕τÞ and Iðρ; z; tÞ are the normalized temporal-spatial coordinates

and intensity of the electric field, respectively, and ξ ¼ 2αIðρ;z;tÞ
nmε0cw0

. Thus, the use of an ultrafast

optical pulse introduces an auxiliary force term given in Eq. (5), which would otherwise be zero
when using a traditional CW source. We observe that the temporal force depends inversely on
the pulse duration (Fig. 1).

Last, the scattering force, which pushes the particle along the axial direction, is given by
Fscat ¼ ẑ σnm

c Iðρ; z; tÞ. Here, σ ¼ 8π
3
ðkrÞ4r2½ m2−1

m2 þ 2
� is the particle cross-section.

3 Experimental Setup
As a proof-of-concept demonstration, we first employ a conventional single-beam OT experi-
mental setup, shown in Fig. 2(a), and compare the trap stiffness on 1-μm diameter silica micro-
spheres using a 120-fs-pulsed with a repetition rate of 80 MHz (Spectra-Physics, InSight X3,
Milpitas, California, United States) or a CW (Newport, LQC905-85E, Irvine, California, United
States) laser source operating at a central wavelength of 905 nm, which can be accessed by a flip
mirror. We employ a customized Olympus IX83 inverted microscope.

The laser source is spatially filtered and expanded to produce a TEM00 Gaussian intensity
profile. It passes through the linear polarizer and neutral density (ND) filter for power adjustment
at the sample plane. The laser is directed onto a 2D galvanometer that controls the position of
the laser. The laser is guided into the microscope by a beam splitter (OCT-21020-BX3TRF) and
focused to a spot size of ∼425 nm by a 40X/1.3 numerical aperture (NA) oil immersion objective
lens (Olympus, Tokyo, Japan). A coverslip is positioned just before the beam splitter to divert
∼2% of the laser beam onto a power meter that has been precisely calibrated to determine
the average power at the sample stage. The condenser lens (Nikon, Tokyo, Japan) collects the
forward scattered light and redirects it into the beam splitter such that the light can be focused
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into the quadrant photodiode (QPD; Thorlabs, PD80A, Newton, New Jersey, United States) by a
lens. The x and y voltage outputs from the QPD are recorded using an oscilloscope (PicoScope,
3203D, Tyler, Texas, United States) from which the trap stiffness, κ, is extrapolated via the power
spectrum method found in Eq. (S2) in the Supplementary Material. Visualization of the sample is
enabled by a 150-W halogen fiber optical light source (AmScope, HL150-AY, Irvine, California,
United States), and time-lapse sequences are imaged with an scientific complementary metal-
oxide sensor (sCMOS) (Hamamatsu, C15440-20UP, Hamamatsu, Japan). Line profiles of both
lasers are compared and displayed in Figs. 2(b) and 2(c) at z ¼ 0 μm, demonstrating negligible
differences.

Fig. 2 (a) CW or pulsed laser source is employed for optical trapping of particles. L, lens; M, mirror;
FM, flip mirror; DM, dichroic mirror; PH, pinhole; LP, linear polarizer; ND, neutral density; SL, scan-
ning lens; TL, tube lens; BS, beam splitter; PBS, polarizing beam splitter; BP, bandpass filter;
QPD, quadrant photodiode. (b) Horizontal and (c) vertical line profiles of pulsed and CW lasers.

Fig. 1 Concept art highlighting optical trapping using CW and FLASH-UP. Conventional CW (left)
and fs (right) lasers optically trapping cells in an aqueous environment. A cell after being trapped
with the CW laser has undergone potential deformations and/or damaged secreted adhesion
proteins adversely affecting cell motility, whereas a cell trapped by FLASH-UP retains its motility
functions and experiences a stronger optical force.
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4 Results

4.1 Observation of Ultra-Low-Power Optical Trapping of Dielectric Spheres
Output voltages are recorded from a QPD when a particle is trapped. Minimal trapping thresholds
Ithr and trapping efficiencies Q ¼ Fc∕nP, where F, c, n, and P are the force exerted on the
particle, speed of light, particle refractive index, and average power, respectively, are determined
for a range of average intensities from 1.41 mW∕μm2 (P ¼ 80 μW) to 17.67 mW∕μm2

(P ¼ 1 mW). Figure 3(a) depicts a trapped microsphere (magenta frame) with the fs laser source
at time t ¼ 0 s. When the trap is turned off at t ¼ 20.87 s, the particle is released from the trap
and is no longer within the trapping plane (green). However, when the laser is reactivated at
t ¼ 21.37 s, the particle returns to its initial trapped position (magenta) and remains trapped for
the remainder of the experiment (t ¼ 35 s). The corresponding voltage displacement collected by
the QPD is shown in Fig. 3(b). The particle is confined to a harmonic potential well [Fig. 3(c)],
and the κ is rendered by fitting the power spectrum to a single-sided Lorenzian [Fig. 3(d)].

Figure 3(e) depicts the trap stiffness of FLASH-UP (red) and CW (blue) lasers for the micro-
spheres (Video 1). The experiment is conducted on three different particles, and values are given
as mean ± standard deviation (SD). The values of Ithr for FLASH-UP and CW lasers are 1.41
and 3.51 mW∕μm2, respectively. Trap stiffness κ ranges from 0.30 to 2.82 pN∕μm for pulsed
and 0.25 to 0.55 pN∕μm for CW. To quantitatively evaluate the trap strength, we apply a fit
(slope ¼ η) that matches well with experimental data. We find that FLASH-UP not only has
η ¼ 0.14 pN · μm · mW−1, whereas CW has η ¼ 0.025 pN · μm · mW−1, but also stably traps
a single particle at a lower intensity threshold.

4.2 Trapping Bacterial Cells
To investigate the use of FLASH-UP for biological applications, we perform OT experiments
on bacterial cells. We select four differently shaped pathogenic bacteria, namely, S. aureus
(spherical), B. paranthracis (rod), V. cholerae (jellybean), and S. epidermidis (elliptical).
The morphological characterization of each cell is given in Fig. S1 in the Supplementary
Material. The average aspect ratios and areas of S. aureus are 1.21 and 0.40 μm2, B. paranthracis

Fig. 3 (a) Time-lapse sequence of a silica microsphere in (magenta) and out (green) of a trap when
the laser is on/off (Video 1). The dotted circles represent the laser position. (b) Corresponding
voltage output versus time relating to particle position. (c) 1D position histogram of particles within
the trap. (d) Fitting of single-sided Lorenzian to extrapolate the corner frequency. (e) Trap stiffness
dependence on input intensity for pulsed (d) and CW (blue) lasers. Data is presented as mean
values ± SD of the mean. Scale bars, 5 μm. (Video 1, MP4, 156 KB [URL: https://doi.org/10.1117/1
.JBO.29.8.086501.s1]).
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are 3.01 and 2.04 μm2, V. cholerae are 2.28 and 1.10 μm2, and S. epidermidis are 1.26 and
0.37 μm2, respectively.

Trap stiffnesses are determined as described in the Sec. 4.1. Figures 4(a)–4(d) display the trap
stiffness of each cell type for both pulsed (red) and CW (blue) lasers. The insets of each graph are
scanning electron microscopy (SEM) images obtained for each bacteria type. We find that
FLASH-UP demonstrates a stronger trap stiffness for each cell type compared with using a
CW source. The Ithr for each cell is shown in Fig. 4(e). Moreover, the η shown in Fig. 4(f) depicts
that the trap stiffness using FLASH-UP consistently exhibits a higher stiffness than CW regardless
of bacteria type. Interestingly, this intensity may go down even lower depending on the trapping
media used due to differences in refractive indices and thermal properties, changing the trapping
conditions.35,36 In Fig. S2 in the Supplementary Material, we measured the trap stiffness of silica
microspheres in deionized (DI) water and 1× phosphate buffer saline (PBS) of both laser sources.
We observed that the trap stiffness of the dielectrics for both lasers in 1× PBS was lower than in
DI water at intensities above 1.76 mW∕μm2 for FLASH-UP and 7.06 mW∕μm2 for CW.

To understand the effects of the lasers on cell motility, we conduct an experiment whereby
S. aureus cells are trapped by either laser for 90 s at intensities of 8.83 mW∕μm2. Subsequently,
the laser is turned off (effectively turning off the trap), and time-lapse image sequences are captured
at a time resolution of 5 μswith the cell position over 60 s being assessed using ImageJ (Fig. 6 in the
Appendix). Interestingly, we note that S. aureus cells are immobilized after they were briefly trapped
by the CW laser (blue; Video 2). However, this is not observed with FLASH-UP (red; Video 3). As a
control, we also plot the Brownian motion of a cell that was not trapped (gray; Video 4). It is evident
that there is minimal movement of the cell once it is released from the trap by the CW laser source as
the SD of the cell position is 2× lower than FLASH-UP and the control.

Figure 5(a) depicts the trap stiffness of P. aeruginosa for FLASH-UP (red) and CW (blue)
lasers. Morphology characterization is given in Fig. S1 in the Supplementary Material, and the
average aspect ratio and area are 2.30 and 0.64 μm2, respectively. The Ithr for trapping these cells
are 1.76 mW∕μm2 and 7.06 mW∕μm2 for the pulsed and CW sources, respectively. FLASH-UP
also exhibits a stiffer trap for all intensities compared with the CW.

After the cell is trapped with either laser, we turn off the trap and track the cell position
similarly demonstrated in Fig. 6 in the Appendix. We then plot the trajectory of the cells along
the x-y plane with respect to time (denoted from magenta to teal) for 5 s for pulsed (top) and
CW (bottom) sources in Fig. 5(b). It is observed that the cell has a longer trajectory after being
released from FLASH-UP (Video 5). However, the swimmer cell remains immobilized within
the trap region after it has been released from the CW source (Video 6). Using ImageJ, the

Fig. 4 Comparing trap stiffness (mean ± SD) for pulsed (red) and CW (blue) lasers based on inten-
sity for (a) S. aureus, (b) B. paranthracis, (c) S. epidermidis, and (d) V. cholerae. (e) Threshold
intensities required for trapping each cell. (f) Trap efficiencies for each cell. Scale bars, 5 μm.
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displacement of the cell from the trap position is calculated yielding 4.4 μm for pulsed and
1.35 μm for CW. Moreover, the cell after being trapped by FLASH-UP is nearly 2 mm longer
than the CW. Figures 5(c) and 5(d) represent a time-lapse sequence of the cells after they have
been trapped for 5 s by the pulsed and CW lasers, respectively.

5 Discussion and Conclusion
We experimentally demonstrate for the first time that, under specific conditions, OT using FLASH-
UP significantly outperforms conventional OT (by a five-fold improvement in trap stiffness),
thereby enabling the direct manipulation of cells with ultra-low average power OT. Importantly,
although conventional OT using a CW source has been around for more than 50 years and trapping
with a pulsed source for at least 30 years, we found a regime that has heretofore been overlooked by
researchers in the field: the specific intersection of ultra-low average powers on the order of tens of
microwatts (corresponding to intensities as low as 1.4 mW∕μm2) and particles in the Lorenz–Mie
(intermediate) regime, a regime that is relevant for cells, yields incredibly stiff traps.

A careful review of the OT literature reveals that there are apparently conflicting conclusions
regarding the advantages of pulsed versus CW OT. Upon inspection, one will find that a sig-
nificant reason for the apparent conflict is that the conditions of comparison for the OT experi-
ments are often not the same. Quite often, researchers explore OT in the few milliwatts to
hundreds of milliwatt power regimes, and for some, the focus is on Rayleigh particles, whereas

Fig. 5 (a) Comparing trap stiffness (mean ±. SD) of pulsed (red) and CW (blue) based on intensity
for P. aeruginosa. (b) Cell trajectory with respect to time after being trapped for 5 s. Time-lapse
sequence of a cell once the trap is turned off for (c) pulsed (Video 5) and (d) CW (Video 6). Scale
bars, 1 μm. (Video 5, MP4, 76 KB [URL: https://doi.org/10.1117/1.JBO.29.8.086501.s5]; Video 6,
MP4, 76 KB [URL: https://doi.org/10.1117/1.JBO.29.8.086501.s6]).
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for others, it is on much larger Mie particles. This is important as the OT energy landscape is
influenced by many experimental parameters, including power, particle size, type, and material.
Thus, under specific conditions, the distinction between pulsed and CW has been inconclusive, and
for other conditions, one will find that one type of OT outperforms the other. In our case, we are
exploring a region that has not been explored and is significant because of its particular utility to
biophysics. Although the underlying mechanism is still an area of investigation (and we attribute it
to a transient force), our experimental results are incontrovertible. One may posit that the enhance-
ment in trap stiffness for FLASH-UP stems from the nonlinear effects of trapping. This assertion
might be applicable when trapping metallic nanoparticles under high average power conditions,
typically on the order of hundreds of milliwatts. These particles have demonstrated their ability to
function as local antennas, augmenting light–matter interaction. Consequently, they facilitate the
emergence of specific nonlinear effects such as the amplification of the imaginary component of
χð3Þ.37,38 Nevertheless, our investigation operates within a regime in which nonlinear effects are not
anticipated below a specific fluence threshold, especially for dielectric particles and bacteria.

Our work is extremely significant as we show unambiguously the direct (i.e., without the use
of functionalized spheres as a handle) optical trapping of cells without any observable deleterious
effects on cell motility, in contrast to using a CW laser with the same intensity and wavelength as
the control experiment. This paves the way for enhanced cell retention over extended durations,
opening avenues for investigating dynamic biological processes such as gene expression and
protein localization during cell division. This capability extends to seamlessly transporting cells
across diverse channels with varying compositions and conducting diagnostic mechanical testing
at the cellular level. Specifically, leveraging the potential of FLASH-UP for ultra-low-power
trapping of bacteria holds promise for the in-depth exploration of microbial adhesion, bacterial
surface colonization, and the formation of biofilms. Employing OT allows for the precise
manipulation of bacterial spacing, facilitating a comprehensive understanding of how cell density
influences cell-to-cell signaling. Furthermore, aligning bacteria with each other provides valu-
able insights into their preferred growth directions. FLASH-UP potentially could be used not
only to deepen comprehension of biofilm formation, a common occurrence on medical implants,
surgical fixations, and vascular replacements, but also to advance our knowledge in manipulating
cellular behavior for biomedical applications.

6 Appendix
Cells were trapped with either laser for 90s at intensities of 8.83 mW∕μm2. After the trap was
turned off, cell positions were assessed over 60s. We note that the cell after being released with
the CW laser was immobilized, which was otherwise not seen in the control and FLASH-UP.

Fig. 6 After cells have been released from the traps by CW (blue; Video 2), and pulsed (red;
Video 3), the positions of the cells are tracked after the trap has been turned off. Control (grey;
Video 4) is represented as the Brownian motion of a cell when it has not been exposed to any
lasers. (Video 2, MP4, 152 KB [URL: https://doi.org/10.1117/1.JBO.29.8.086501.s2]; Video 3,
MP4, 315 KB [URL: https://doi.org/10.1117/1.JBO.29.8.086501.s3]; Video 4, MP4, 86 KB
[URL: https://doi.org/10.1117/1.JBO.29.8.086501.s4]).
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