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ABSTRACT. Significance: Near-infrared optical imaging methods have shown promise for
monitoring response to neoadjuvant chemotherapy (NAC) for breast cancer, with
endogenous contrast coming from oxy- and deoxyhemoglobin. Spatial frequency
domain imaging (SFDI) could be used to detect this contrast in a low-cost and port-
able format, but it has limited imaging depth. It is possible that local tissue compres-
sion could be used to reduce the effective tumor depth.

Aim: To evaluate the potential of SFDI for therapy response prediction, we aim to
predict how changes to tumor size, stiffness, and hemoglobin concentration would
be reflected in contrast measured by SFDI under tissue compression.

Approach: Finite element analysis of compression on an inclusion-containing soft
material is combined with Monte Carlo simulation to predict the measured optical
contrast.

Results: When the effect of compression on blood volume is not considered, con-
trast gain from compression increases with the size and stiffness of the inclusion and
decreases with the inclusion depth. With a model of reduction of blood volume from
compression, compression reduces imaging contrast, an effect that is greater for
larger inclusions and stiffer inclusions at shallower depths.

Conclusions: This computational modeling study represents a first step toward
tracking tumor changes induced by NAC using SFDI and local compression.
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1 Introduction
Neoadjuvant chemotherapy (NAC) is commonly prescribed for locally advanced breast cancer,
often shrinking the tumor prior to surgery and thereby permitting more breast-conserving sur-
geries or rendering operable some tumors initially too large to be operable. Pathologic complete
response (assessed histologically after surgery) is strongly associated with prognosis, but meth-
ods to predict this response early in the course of therapy are lacking. Structural imaging modal-
ities and clinical palpation can assess changes in tumor size but can fail to distinguish between
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fibrosis and residual disease.1,2 More success in outcome prediction has been demonstrated for
dynamic contrast MRI,3,4 at the disadvantage of high cost (limiting frequent measurement) and
the need for exogenous contrast agents.

Near-infrared (NIR) optical imaging has emerged as a promising method for NAC monitor-
ing due to its relatively low cost, non-invasiveness, and sensitivity to endogenous contrast from
hemoglobin concentrations.4–16 Increased total hemoglobin (tHb) relative to the background is
thought to be related to angiogenesis within the tumor, and changes in vascularization in response
to NAC are shown to occur earlier than structural changes,4,5 including the “oxy-hemoglobin
flare” observed as early as 1 day after the start of NAC.8,11 Over the course of therapy, multiple
groups have reported a decrease in tHb in responding tumors but not in non-responding
tumors10,17,18 or a greater tHb decrease in responding tumors.12,19

Measuring the reaction of the breast to perturbations such as compression has also been used
to provide additional contrast beyond that of baseline optical properties. A transient reduction in
tHb of both tumor and healthy breast has been well documented in response to compression,20–23

with the change in tHb being related to pressure distribution within the breast.24 Carp et al.23

reported a gradual recovery of tHb in normal tissue while displacement is held constant (and
force is reduced due to viscoelastic relaxation) while tHb of the tumor region remains persistently
low. This hemodynamic response has also been demonstrated to normalize in patients who
achieve response to NAC.7

To elicit this type of hemodynamic response as well as to longitudinally track tumor and
background optical properties in a low-cost format, we are pursuing a handheld device for breast
imaging with localized compression based on spatial frequency domain imaging (SFDI), a dif-
fuse optical imaging method that uses structured illumination to quantify tissue absorption and
reduced scattering coefficients.25,26 Because of its ability to quantify optical properties at a low
cost and small form factor, the technique holds the potential for frequent monitoring during
therapy, including in the patient’s home. As a reflectance-based 2D projection imaging method,
SFDI suffers from partial volume effects, with superficial tissue contributing more strongly to the
imaging result than deeper tissue.27 Previously, we showed in polydimethylsiloxane (PDMS)
phantoms that compression can be used to reduce the depth of stiff highly absorbing inclusions
and improve optical contrast measured with SFDI.28

We demonstrated that despite its high sensitivity to superficial tissue, SFDI can be used to
detect tumor-mimicking inclusions at an initial depth comparable to palpable breast lesions and
that localized compression can be used to increase the measured contrast. However, if longi-
tudinal changes in contrast obtained with SFDI and local compression are to have utility as
a biomarker for monitoring NAC, it is necessary to know what changes in imaging contrast
would result from likely changes to tumor structure and function such as size,29,30 stiffness,31,32

and tHb concentration.10,12,17–19 We leverage a combination of mechanical and optical simula-
tions to explore the relationship between these tumor parameters and optical contrast under
compression.

One method for Monte Carlo (MC) simulation of SFDI involves the acquisition of a spatially
resolved simulation of point source illumination (in the spatial domain) and the application of
the discrete Hankel transform to convert it into the spatial frequency domain. By contrast, the
Gardner method avoids the need for discrete transforms and performs the simulation natively in
the spatial frequency domain by calculating a frequency-dependent photon weight.33 Both
methods provide diffuse reflectance over a range of spatial frequencies and are suitable for
homogenous or layered input media. However, neither can generate spatially resolved optical
property maps of a complex 3D geometry.

To simulate the result of SFDI on an embedded highly absorbing inclusion (mimicking
breast tumor), we employed MC to directly simulate the projection of a sinusoidal modulated
light source at three phase shifts. The results are demodulated to obtain 2D diffuse reflectance
maps, which are converted to optical property maps using a two-frequency lookup table (LUT) in
the conventional manner for SFDI. In this method, diffuse reflectance information is limited only
to those spatial frequencies that are simulated individually at three phases each, representing a
considerable simulation run time. In addition, many photons must be launched for each MC
simulation to limit noise in the detected reflectance with too few resulting in error in demodu-
lation of the sinusoidal patterns. For this reason, only a single spatial frequency, 0.1 mm−1, is
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simulated at three phases, from which DC reflectance of 0 mm−1 is also extracted according to
the demodulation equations given in Gioux et al.26 This spatial frequency pair was chosen to be
consistent with that used in our group’s handheld SFD breast imager34 and has been established
to be sufficient for decoupling absorption (μa) and reduced scattering coefficients (μ 0

s).
35

To predict the final imaging result, we must model not only the 2D SFDI reflectance image
that would arise from each input but also the change in tumor shape and depth from compression
and the effect of compression on final optical properties in the tissue input. Finite element analy-
sis (FEA) has been adopted together with image processing techniques to study tumor growth,36

tracking,37 and treatment.38,39 In this study, FEA via ANSYS mechanical is used to predict the
change in tissue geometry resulting from compression. Subsequent spatially resolved MC sim-
ulations are performed, both with and without modeling tissue blanching due to compression.
Tissue blanching is modeled as occurring in all tissue, termed the “full blanching” condition, or
as occurring in the background but not inclusion, the “background blanching” condition, as the
internal stresses within the enclosed environment of tumors may prevent blood volume reduction
from occurring in the same manner as healthy tissue.

2 Methods
The effect of tissue compression on the output of SFDI was examined across various tumor sizes,
depths, and stiffness ratios (SRs). A breast tumor and surrounding healthy tissue were modeled as
a stiff, spherical inclusion embedded in a softer cylindrical matrix, with optical properties based
on typical tumor and healthy breast values. The deformation of this model under compression
was simulated using ANSYS Mechanical, with new optical properties calculated based on the
stress output of the mechanical simulation. MC SFDI simulations were then performed using
Monte Carlo eXtreme (MCX).40 This workflow of mechanical and optical simulations is illus-
trated in Fig. 1(a).

MC simulation is performed four times for each tissue input: one on the original geometry
before compression and three on the compressed geometry corresponding to three models of the
change in tHb concentration with pressure. In the “no blanching” condition, optical properties for
inclusion and background remain equal to pre-compression values. In the “background blanch-
ing” and “full blanching” conditions, new optical properties are calculated on a voxel-by-voxel
basis based on the stress distribution in the model for the background only and for both regions,
respectively. The dependence of tHb on stress experienced is shown in Fig. 1(b). Results of the
MC simulations were compared to the initial inclusion radius, r0, and depth, d0, and to the
mid-compression surface radius of curvature, r, and mid-compression depth, d.

2.1 Mechanical Simulation
For all mechanical simulations, a Young’s modulus of 4 kPa was used for the background
material, based on results reported by Samani et al.41 for healthy breast. In that study, a
Poisson’s ratio value of 0.495 was used in their FEA simulations, and the same value was used
here. To mimic the stiffness contrast of breast tumors to healthy breast,41 the inclusions were
given elastic moduli of 4, 16, 28, and 40 kPa, resulting in SRs of 1, 4, 7, and 10. The mechanical
model consisted of a cylinder of background material of height 60 mm and radius 30 mm with the
spherical inclusion located along the center axis of the cylinder, a variable distance from the top
surface of the cylinder. Inclusion depths simulated were 3, 5, 7, 10, and 15 mm (measured from
cylinder surface to inclusion surface) and inclusion radii simulated were 7.5, 12.5, 15, and
17.5 mm. A fixed boundary condition was applied to the cylinder bottom (opposite of the face
to be imaged). A rigid plate (modeled as structural steel: Young’s modulus of 2 × 108 kPa,
Poisson’s ratio of 0.3, and density of 7850 kg · m−3) was placed on the top surface of the
cylinder (face to be imaged) with a frictional boundary condition with the cylinder and a friction
coefficient of 0.1. This friction coefficient was intended to approximate the friction between the
glass imaging head of the handheld SFDI device and the patient’s skin and was assumed not to
differ greatly from the friction of lubricated glass on glass.42 To reduce the computational load,
symmetry was used to reduce the size of the model, as is common in the field.43 Only a 1/8 slice
was simulated instead of the entire cylinder, with a frictionless support boundary condition
applied to the faces cut through the cylinder. An upward displacement of 12.5 mm was applied
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to the bottom surface of the cylinder. These simulations took between 10 and 35 min each, for
a total computation time of ∼24 h.

2.2 Processing of FEA Output
For all FEA outputs, as well as the undeformed input meshes, the 1/8 slice was mirrored to form a
full cylinder. The boundary surface between the inclusion and background nodes was extracted,
as was the top surface of the background cylinder. The “iso2mesh” MATLAB toolbox was used
to create a labeled volumetric image from these boundaries. The volumetric image had dimen-
sions of 80 × 80 mm for the top face and a depth of 62.5 mm (192 × 192 × 150 voxels).
Background-labeled voxels were extended out to the edges of the rectangular slab regardless
of the outer surface of the FEA cylinder. The inclusion depth was extracted from the volumetric
images for both compressed and uncompressed (UC) tissue inputs as the voxelization of the
image caused depth to vary slightly from the inclusion depth of the FEA mesh. Similarly, the
radius of curvature of the top surface of the inclusion was extracted from the volumetric images.
A cross-section of the image through the center of the inclusion (plane orthogonal to the imaging
surface) was taken, and the boundary pixels were identified with the MATLAB’s “bwbounda-
ries” function. A circle was fit limited to those points located on the upper one-third of the
inclusion.44

Initial (pre-compression) tHb concentrations, tHb, for the main simulations were defined to
be 50.6 μM for tumor voxels and 17.6 μM for background voxels, within the ranges reported by
Grosenick et al.5 Simulations were also performed for tumor tHb of 63.3 μM (a 25% increase)
and background voxels remaining at 17.6 μM, to verify the effect of increasing intrinsic tumor
absorption contrast. The absorption coefficient at 805 nm (close to the isosbestic point) was

Fig. 1 (a) Summary of simulations performed. (b) Following mechanical simulations, tHb concen-
trations are adjusted on a voxel-by-voxel basis based on hydrostatic stress experienced by the
model. The three models for the dependence of hemoglobin concentration on stress are illustrated
here. In the “no blanching” model, tHb is held constant in both the inclusion and background
regions. In the “background blanching” model, tHb of inclusion remains constant while tHb of the
background region decreases linearly before plateauing at 20 mmHg. In the “full blanching”model,
both inclusion and background regions experience a decrease in tHb with experienced pressure.
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calculated for each based on the extinction spectrum of hemoglobin45 and assuming 75% tissue
oxygen saturation. Though other chromophores are present in the tissue, including water, col-
lagen, and lipid, their contribution in this region of NIR is small,46,47 and only light absorption for
tHb was considered. The resulting μa was 0.0329 cm−1 for background, 0.0948 cm−1 for tumor,
and 0.1185 cm−1 for tumors with increased tHb. For all simulations, μ 0

s was defined to be
10.37 cm−1 for tumor voxels and 8.72 cm−1 for background voxels.5 MC simulations of UC
models were run using the specified baseline values for inclusion and background voxels.
MC simulations were also run on all compressed geometries maintaining these initial optical
properties for tumor and background voxels, with these results deemed the “no blanching” con-
dition. The purpose of this condition was to model the effect of compression on change in optical
contrast that arises from the change of shape and depth of a highly absorbing inclusion.

MC simulations were then run for the two tissue blanching conditions, in which the change
in tHb concentration of the tissue is modeled based on the spatially varying stress experienced by
the tissue input. FEA output stress was also converted to a volumetric image of the same dimen-
sions as the tissue input. Hydrostatic stress was obtained by averaging the three normal stresses at
each node. Hydrostatic stress at the center of each voxel was interpolated via MATLAB’s “scat-
teredinterpolant” function. Because the stress was undefined outside the cylinder boundary,
stress located ∼1.5 mm inside the cylinder boundary was extrapolated outward to the edge of
the volumetric image. Stress in the bottom 15 mm of the image was defined to be zero. As these
voxels are far from the surface to be imaged, they contribute minimally to the diffuse reflectance.
Hydrostatic stress values were converted to mmHg for ease of comparison with typical pressure
in blood vessels.

A piecewise function was defined to model tissue blanching in response to pressure. Blood
volume in the venous compartment (including veins and venules) was assumed to comprise
76.2% of systemic blood volume and to contain a maximum blood pressure of 20 mmHg.48

For pressures between 0 and 20 mmHg, blood volume in the venous compartment was modeled
to decrease linearly. Above 20 mmHg, the venous compartment was considered fully collapsed
due to the lower pressure within veins,48 and thus, no further decrease in blood volume occurred
after 20 mmHg. For pressures below zero, the venous compartment maintains its original vol-
ume. As the compression pressures studied were below arterial pressure, no effect on the arteries
was modeled.

Mid-compression tHb was calculated on a voxel-by-voxel basis using the function defined
above and the corresponding hydrostatic stress matrix, and μa at 805 nm (close to the isosbestic
point) was calculated based on the extinction spectrum of hemoglobin.45 For the “background
blanching” condition, new μa was calculated only for background voxels with the inclusion
voxel optical properties remaining at pre-compression values. In the “full blanching condition,
new μa was calculated for all voxels (both inclusion and background). The effect of compression
on μ 0

s was not modeled.

2.3 Implementation of Monte Carlo Simulations
For each input, three MC simulations were performed corresponding to three evenly spaced
phase shifts of the spatially modulated light pattern, with all other simulation parameters held
constant. Outputs from the three simulations were demodulated on a pixel-by-pixel basis in a
fashion similar to conventional SFDI and consistent with our group’s handheld SFD breast
imager. In our in vivo imaging of breast hemodynamics, projection of only one spatial frequency,
from which reflectance at 0 mm−1 is also extracted, allows fast image acquisition and fast
processing of results. Likewise, simulation of one non-zero spatial frequency provides the same
benefit here, while allowing the most consistency of methods with our in vivo SFDI results. The
pair of 0 and 0.1 mm−1 was chosen for both as it has been established to be sufficient for decou-
pling μa and μ 0

s.
35 Although lower spatial frequencies have been shown to provide higher sen-

sitivity to deeper tissue,27 lower frequencies do not allow for as efficient separation of μa and μ 0
s

when paired with 0 mm−1.35

The sinusoidal spatially modulated source was defined using the MCX source type “fourier”
with spatial frequency fx ¼ 0.1 mm−1 and phase shifts of 0, 2π∕3, and 4π∕3. Cyclic boundary
conditions (photons exiting from one face renter from the opposite face) were used for the
side faces to mimic an infinitely tiled medium. Default boundary conditions were used for the
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remaining two, with photons counted as diffuse reflectance when escaping through the source-
incident face and lost when exiting through the opposite face. With a total depth of 60 mm,
a negligible amount of photons are lost through the bottom surface. A refractive index, n, of
1.4 was used for background and inclusion material as this is a commonly used estimate for
biological tissue.49,50 A refractive index value of 1 was used for the region outside the sample,
representing air. For the anisotropy factor, g, a value of 0.8 was used, within the range of values
reported in the literature.27,51,52

The raw output flux at each pixel of the tissue/air interface ðx; yÞ was demodulated to yield
2D maps of AC and DC flux. Equations of demodulation are given as:

EQ-TARGET;temp:intralink-;e001;114;628φDC ¼ ðφ1 þφ2 þφ3Þ∕3; (1)

EQ-TARGET;temp:intralink-;e002;114;593φAC ¼
ffiffiffi
2

p

3
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðφ1 − φ2Þ2 þðφ2 − φ3Þ2 þðφ3 − φ2Þ2

q
; (2)

where φ1, φ2, and φ3 are the raw output flux of the three source phase shifts. This demodulation
is performed in the same manner as the demodulation of intensities I1, I2, and I3 in conventional
SFDI processing.53 The distinction is that those intensities are of arbitrary units and must be
compared with intensities obtained from a calibration phantom to obtain Rd, whereas these sim-
ulation outputs represented photon flux with units of 1

mm2·s, and for that reason, they are denoted φ
rather than I. φDC and φAC were then multiplied by timestep and area of the source-incident
surface to produce unitless diffuse reflectances, Rd;DCðx; yÞ and Rd;ACðx; yÞ. Each pixel value
of the diffuse reflectance maps is within zero and one and represents the fraction of light that
is diffusely reflected at that location.

An MC LUT was generated by running simulations at three phases of the sinusoidal light
input with fx ¼ 0.1 mm−1 for every combination of μa from 0.01 to 0.28 cm−1 (increments of
0.01 cm−1) and μ 0

s from 4.0 to 20 cm−1 (increments of 1.0 cm−1). For the LUT simulations, a
homogenous slab of 24 × 24 × 150 voxels (10 × 10 × 62.5 mm) was used. A “cyclic” boundary
condition was defined for the four edge faces such that when a photon escaped from one side, it
would re-enter the slab from the opposite face. This boundary condition allowed the simulation
to mimic an infinitely wide slab with a relatively short computational time. A “total absorption”
boundary condition was used for the bottom face as it was determined that a negligible number
of photons reached the bottom surface of the slab. For each pair of optical properties,
1 × 107 photons were launched for each of the three source phases. Rd;DC and Rd;AC were aver-
aged across the entire image and stored for each optical property combination. This quantity of
photons launche was determined to be sufficient from visual inspection of the isolines of the
resulting LUT, which were observed to be smooth.

MC simulations of the compressed and UC tissue geometries differed from the LUT sim-
ulations only in the tissue input and the number of photons launched. 1.4 × 108 photons were
simulated per phase. More than an order of magnitude greater number of photons was used due
to the larger tissue input and because spatial maps of optical properties were to be calculated,
necessitating a lower signal-to-noise ratio than the LUT simulations in which Rd;DC and
Rd;AC were averaged over the image. The tissue input definition was 192 × 192 × 150 voxels

(80 × 80 × 62.5 mm) and had continuously varying optical properties as determined above.
All MC simulations of the UC tissue input as well as the “no blanching” and “full blanching”
conditions took ∼33 h to complete. Simulations for the “background blanching” condition were
performed later with higher computational power and required ∼2 h, collectively. Spatially vary-
ing optical properties were calculated from diffuse reflectance pixel-by-pixel using the LUT
created above and MATLAB’s “scatteredinterpolant” function, yielding μaðx; yÞ and μ 0

sðx; yÞ.

2.4 Processing of MCX Output
Optical contrast was quantified by subtracting the baseline value from the μa map and summing
the resulting pixel values over the area formed by projecting the inclusion boundary onto the
surface. Though this sum would result in units of cm−1, optical contrast was instead treated as
having arbitrary units. For all conditions, the baseline μa value was extracted from the final
μa map by averaging all pixels located at the image margins, at least 45 mm from the inclusion
epicenter, at which location the inclusion contributes minimally to the result. This region of
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interest (ROI) was determined empirically by comparing the image margins of the UC simulation
with the highest contrast and a case with no detectable contrast (the smallest inclusion at the
deepest depth), and the image margins were found not to differ.

Though contrast calculated with the above method was used for most analyses, the tumor/
normal (T/N) ratio was also calculated as this is a common measure in breast cancer optical
imaging. In addition, a threshold of 5% difference from baseline (T/N ratio below 0.95 or above
1.05) was used to determine which results were considered detectable, as this level agreed with
a visual inspection of the μa maps.

3 Results

3.1 Results without Change in tHb (“No Blanching” Condition)
MC-derived μa maps of UC geometry show the expected trends with depth and radius: larger
and shallower inclusions having the highest contrast over the background. These maps are shown
in Fig. 2, with the highest contrast in μa evident in the upper left corner (r0 ¼ 17.5 mm,
d0 ¼ 3 mm). Moving to the right (corresponding to greater inclusion depth) or down (corre-
sponding to smaller inclusion radius) in Fig. 2 both yield lower levels of contrast in μa. All
figures refer to the results using 50.6 μM tHb for tumor and 17.6 μM tHb for healthy breast.

When optical contrast is computed by baseline subtraction and summation of μa over the
area, these relationships can be quantified. When depth is held constant, contrast is found to have
a linear relationship with inclusion radius, shown in Fig. 3(a). Equations of best fit of the form
C ¼ a · r0 þ b are obtained for these linear relationships, where C represents contrast and
r0 represents the initial radius. Coefficients are given in Table 1.

When the radius is held constant, contrast is found to have an exponential relationship with
inclusion depth, shown in Fig. 3(b). Equations of best fit of the form C ¼ a · eb·d0 are obtained
for these exponential relationships, where C represents contrast and d0 represents initial depth.
Coefficients are given in Table 2.

Fig. 2 Summary of MC simulation results for UC tissue input. Each square corresponds to the μa
output for the inclusion radius, r 0, and depth, d0, indicated. Dotted circles represent the projection
of the inclusion outline onto the imaging surface.
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Fig. 3 Relationship of simulation output contrast to initial inclusion radius, r 0, and depth, d0.
(a) When depth is held constant, contrast is found to increase linearly with increasing radius.
(b) When the inclusion radius is held constant, contrast is found to decrease exponentially with
increasing depth. Plot colors adapted from Ref. 54.

Table 1 Summary of the relationship between contrast and initial
radius when depth is held constant.

Initial depth (d0) (mm) a b

2.9 0.407 −0.598

4.6 0.267 −0.110

6.7 0.178 0.183

9.6 0.099 0.433

14.6 0.037 0.581

Equations of best fit are of the form C ¼ a · r 0 þ b.

Table 2 Summary of the relationship between contrast and initial
depth when the radius is held constant.

Initial radius (r 0) (mm) a b

7.5 3.11 −0.099

12.5 6.53 −0.142

15 8.50 −0.158

17.5 10.1 −0.162

Equations of best fit are of the form C ¼ a · eb·d0 .

Robbins et al.: Monte Carlo simulation of spatial frequency domain imaging. . .

Journal of Biomedical Optics 096001-8 September 2024 • Vol. 29(9)



This exponential decrease with depth is consistent with previous findings for PDMS phan-
toms with stiff, highly absorbing inclusions.28

The effect of compression in all cases is to decrease the final depth compared to the initial
depth (d < d0) and to increase the top surface radius of curvature compared to the initial radius
(r > r0). Thus, when the optical properties of the inclusion and background are held constant
with compression, optical contrast is gained from compression in all but two cases. The two cases
that did not experience an increase in contrast consisted of the smallest and deepest inclusions
with negligible contrast (T/N ratio between 1.0 and 1.05) both before and after compression.
A representative example of the effect of compression on the initial geometry and the resulting
change in MC-derived μa is shown in Fig. 4. The effect of compression on the inclusion
depth and radius of curvature is shown in the cross-sections of Fig. 4(a), and the resulting
simulated μa maps are shown in Fig. 4(b), with increased contrast evident for the compressed
simulation. In this example, the initial radius was 17.5 mm, and the initial depth was 6.67 mm,
with SR ¼ 2. After compression, the radius of curvature increased to 21.6 mm, and depth
decreased to 4.58 mm. Background voxels were μa ¼ 0.0329 cm−1, and inclusion voxels were
μa ¼ 0.0948 cm−1

Just as contrast before compression bore a strong relationship to r0 and d0, contrast during
compression is strongly related to final geometric parameters, r and d. Though the value of these
properties during compression is not expected to be known in a potential clinical application of
this work, it is of interest to quantify how the values of r and d affect optical contrast in this study
to characterize the effect of compression-induced changes in shape and depth on optical contrast.
Because r and d do not occur at discrete intervals as r0 and d0 do, all points were plotted on a
set of 3D axes (with contrast on the z-axis) instead of examining the relationship when each

Fig. 4 Compression increases the inclusion radius of curvature and decreases depth, resulting in
increased contrast. (a) Illustration of the effect of compression on input geometry. The black and
white striped area indicates the phantom height reduction from compression. (b) Results of MC
simulations on UC and compressed conditions. Dotted lines mark the outline of the inclusion
projected onto the phantom surface.
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parameter is held constant. When contrast is plotted as a function of r and d, all points are found
to lie within the same surface in 3D space, as shown in Fig. 5.

The equation

EQ-TARGET;temp:intralink-;e003;114;429z ¼ ðc1 þ c2yÞ · ec3x þ c4; (3)

describing this surface, was obtained via least squares fitting (MATLAB’s “fit” function), where
y is the radius, x is the depth, z is the contrast, and c1, c2, c3, and c4 are constants obtained by
the fit. This form was chosen to account for the previously observed linear relationship with
radius when depth is held constant and the exponential relationship with depth when radius is
held constant. The equation of the best-fit surface was z ¼ ð0.802þ 3.694rÞ · e−0.2259d0.8871.
This surface describes a high degree of variance in contrast, with R2 ¼ 0.992. This goodness of
fit is also apparent from the visual inspection of Fig. 5. Thus, the SR is not necessary for the
prediction of final contrast if the final depth and radius of curvature are known. This result also
demonstrates that the top surface radius of curvature is a sufficient description of the shape and
size of a deformed spherical inclusion. For this type of imaging, a flattened ellipsoidal inclusion
mimics a larger spherical inclusion as only the top surface contributes significantly to optical
contrast.

We have demonstrated that final contrast is determined only from final geometry parameters
r and d. However, in a potential clinical application of this work, mid-compression r and d are
not expected to be known, though it is of interest to predict contrast change (difference between
final and initial contrast) as a function of the input parameters r0, d0, and SR. All simulation cases
in the “no blanching” condition exhibited an increase in contrast induced by compression, with
the exception of two cases of small and deep inclusions, which exhibited negligibly low contrast
values both before and during compression. These results are visualized below in Sec. 3.3 along
with the two tissue blanching conditions.

When simulations are repeated with tHb concentration in the tumor voxels increased from
50.6 to 63.3 μM tHb, the same trends as above are found. The initial radius still exerts the most
influence on contrast change, followed by initial depth and a weak influence from the SR. When
the 63.3 μM simulations are compared directly with the 50.6 μM simulations, those with greater
hemoglobin concentration in the tumor voxels experience greater contrast gain from compres-
sion, other variables being equal (not shown). This finding is consistent with the intuition that, as
tumor voxels are brought close to the surface via compression, more highly absorbing tumor
voxels will cause a greater gain in imaging contrast.

Fig. 5 Relationship of the final radius of curvature, r , final depth, d , and contrast for the solid phan-
tom condition. Green squares indicate simulations of the 20 UC geometries (r ¼ r 0 and d ¼ d0),
and black circles represent the 80 compressed simulations (20 inputs at 4 SR values).
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3.2 Results with Change in tHb (“Background Blanching” and “Full Blanching”
Conditions)

In simulating tissue blanching with compression, the same compressed geometry is used as in
the “no blanching” condition, with final optical properties calculated from hydrostatic stress
according to the relation described in “processing of FEA output” above. Again, all figures refer
to the results using 50.6 μM tHb for tumor and 17.6 μM tHb for healthy breast. Representative
examples of the effect of compression in the “background blanching” and “full blanching” con-
dition and the resulting changes to the MC-derived μa contrast are shown in Fig. 6. Inclusion r0,
d0, and SR are the same as in Fig. 4. Figure 6(a) shows the effect of compression on both the
inclusion geometry cross-section and the optical property distribution of the inclusion and
background.

In the solid phantom condition, optical contrast was found to be dependent on the final
geometry alone. Although the SR in that condition influenced the shape change of the inclusion
with compression (and thus influenced r and d), its value was not independently associated with
final optical contrast. Conversely, in the “tissue blanching” condition, the SR strongly influenced
optical contrast through its action on tHb reduction, and r and d alone described a comparatively
small portion of the variance in contrast. As was done for the solid phantom condition, a surface
of best fit of the form given in Eq. (3) was fit for the prediction of contrast from r and d. The
equation of the best-fit surface was z ¼ ð0.160 − 1.738rÞ · e−0.1815d − 1.722. This surface was a
poor fit, failing to describe much of the variation in contrast, with R2 ¼ 0.182.

In the “background blanching” condition, compression has the effect not only to flatten the
inclusion and decrease depth but also to reduce μa of the background, particularly the region of
background directly above the inclusion. Although reduction in depth and flattening of the inclu-
sion would act to increase optical contrast, the reduction in μa above the inclusion acts to
decrease optical contrast. Figure 6(b) shows the combined influence of these factors on the sim-
ulation μa results, showing a decrease in optical contrast with compression. In the “full blanch-
ing” condition, the same reduction of μa above the inclusion occurs, and the inclusion itself also
experiences a reduction in μa. These factors result in a reduction of contrast with compression
that is more pronounced than that of the “background blanching” condition.

Fig. 6 Summary of the two tissue blanching models, in which compression decreases μa of the
inclusion, resulting in a reduction of optical contrast for some conditions. (a) Illustration of the effect
of compression on the input model with simulated tissue blanching. Color represents simulation
input μa. The black and white striped area indicates the phantom height reduction from compres-
sion. (b) Results of MC simulations on UC and compressed conditions. Dotted lines mark the
outline of the inclusion projected onto the phantom surface.
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3.3 Compression-Induced Contrast Change for all Conditions
In the “no blanching” condition, the vast majority of simulations experienced an increase in
optical contrast from compression, across all sizes, depths, and SRs. In the two tissue blanching
conditions, some simulations exhibited a decrease in contrast induced by compression, as dem-
onstrated by the examples in Fig. 6. For simulations experiencing a compression-induced
decrease in contrast, some maintained positive, though reduced, contrast values mid-compres-
sion, whereas others exhibited negative contrast values mid compression, where μa above the
inclusion was lower than the background value. The percentage of simulations exhibiting con-
trast increase, contrast decrease that remained positive compression, and negative mid-compres-
sion contrast is reported in Table 3.

Optical contrast before and during compression are illustrated for the two extremes of stiff-
ness ratio, SR ¼ 1 and SR ¼ 10, in Fig. 7. For comparison with other work, these values of
contrast have also been converted to the T/N ratio using the projection of the inclusion boundary
onto the surface as the “tumor” ROI and image margins greater than 45 mm from inclusion
epicenter as the “normal” ROI. For UC simulations, the T/N values range from ∼1 to 1.2
(0% to 20% increase in μa) and after compression values range from ∼0.9 to 1.3 (10% decrease
to 30% increase) depending on the blanching model used.

This reduction in contrast that occurs at high SRs is explained by the greatest hydrostatic
stress (and thus greatest tHb reduction) occurring in the region directly above the inclusion, in
which the soft background material is squeezed between the stiff inclusion and the compression
plate. A greater reduction in tHb over the inclusion than in the surrounding areas serves to offset
the contrast from the high tHb content of the inclusion itself. In the “full blanching” conditions,
there can also be significant tHb reduction of the inclusion top surface as well, contributing to
negative contrast in the compressed state.

Table 3 Percentage of simulations falling into three categories
based on the effect of compression on the contrast value.

SR
Contrast increased

with compression (%)
Contrast reduced,

remained positive (%)
Contrast became
negative (%)

“No blanching” condition

1 95 5 0

4 100 0 0

7 100 0 0

10 95 5 0

“Background blanching” model

1 80 15 5

4 30 40 30

7 30 30 40

10 20 35 35

“Full blanching” model

1 65 30 5

4 0 40 60

7 0 30 70

10 0 25 75

Results are separated into sub-tables for each of the three blanching models.
For each table row, n ¼ 20 (five inclusion depths and four inclusion sizes).
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To assess how the initial simulation parameters of SR, depth (d0), and radius (r0) affect the
contrast change with compression, Pearson correlations were calculated for three variables and
the difference between final and initial contrast for the three blanching models. These values are
reported in Table 4. In the “no blanching” condition, the initial radius exerts the most effect on
contrast change, with large inclusions gaining the most contrast from compression, followed by
initial inclusion depth, with shallow inclusions gaining the most contrast from compression. In
the “background blanching”model, SR and depth are negatively correlated with contrast change,
that is, shallow inclusions with low stiffness are associated with a gain of contrast, whereas stiffer
and deeper inclusions are associated with a reduction in contrast. In these cases, though inclu-
sions are brought closer to the surface and blanching does not occur in the inclusion itself, the
effect is outweighed by the blanching of the background material above the inclusion. Due to
the high sensitivity of SFDI to superficial tissue, this blanching above the inclusion results in a
decrease in contrast with compression for stiff and deep inclusions. When considering size in
the “background blanching” condition, a large inclusion radius results in a wider range of
outcomes in contrast change, whereas small radius inclusions experienced only small contrast
changes, be they positive or negative. Finally, in the “full blanching” model, stiffness, as well as
the inclusion radius, is again negatively correlated with change in contrast, with larger inclusions
experiencing the most contrast reduction from compression. However, it was noted that, as for
the “full blanching” condition, the correlation of radius with contrast change is reversed when
only SR ¼ 1 is considered, that is, for SR ¼ 1, larger inclusions experienced a more positive
change in contrast, whereas for all other SR, large inclusions experienced a more negative change

Fig. 7 Measured contrast for uncompressed (UC) and compressed (C) cases, shown for the two
extremes: SR ¼ 1 and SR ¼ 10. Initial inclusion depth is indicated by color, and inclusion radius is
indicated by marker size. Plot colors adapted from Ref. 54.

Table 4 Pearson correlation of initial simulation properties of SR, inclusion depth, and inclusion
radius on contrast change from compression.

“No blanching” condition
“Background blanching”

model “Full blanching” model

Correlation p-value Correlation p-value Correlation p-value

SR 0.11 0.35 −0.61 <0.001 −0.68 <0.001

Depth (d0) −0.53 <0.001 −0.50 <0.001 −0.01 0.91

Radius (r 0) 0.74 <0.001 −0.12 0.30 −0.42 <0.001

Correlations with p-value < 0.05 are indicated in bold.
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in contrast. It can be said for both “background blanching” and “full blanching” models that a
larger radius is associated with a higher magnitude of contrast change, the sign of which is
determined by SR and, to a lesser extent, depth.

When simulations are repeated with tHb concentration in the tumor voxels increased from
50.6 to 63.3 μM tHb for the “full blanching” condition, the trends in contrast change are found to
be the same as those in Fig. 7, with SR exerting the greatest effect on contrast change. When the
63.3 μM simulations are compared directly with the 50.6 μM simulations, the increase in tumor
tHb appears to have little effect on the trend in contrast change from compression in the “full
blanching” model (not shown).

4 Discussion
In the “no blanching” condition, we examine the effect of inclusion size and depth on optical
contrast. We confirm that, with optical properties of the inclusion and background held consis-
tent, contrast is determined primarily on the final depth and shape of the inclusion top edge. This
indicates that, for this measure of optical contrast, a compressed ellipsoidal inclusion is effec-
tively indistinguishable from a spherical inclusion of radius equal to the ellipsoid top surface
radius of curvature. In characterizing change in contrast based on initial parameters, the most
gain in contrast was found for large inclusions and for initially shallow inclusions. The high
contrast gain for large inclusions is explained by the idea that, for a given depth reduction,
a larger mass of inclusion voxels is brought closer to the surface, resulting in a larger gain.
Though deep inclusions experienced a greater absolute reduction in depth than initially shallow
inclusions, these depth changes amounted to smaller contrast gains than shallow inclusions due
to the exponential relationship between depth and contrast. When tHb content within the tumor is
increased, the expected responses of greater baseline contrast and greater increase of contrast are
observed. The relationship with stiffness is more complex, as stiff inclusions experienced a
greater depth reduction than softer inclusions but had less tendency for the top surface to deform
and become flatter. These two tendencies worked to counteract each other, and the SR exerted
very little effect on contrast change.

Though these results represent a greatly simplified model, we may still consider these find-
ings in terms of expected trends in a tumor during response to NAC, and we can predict that a
tumor that becomes smaller would exhibit lower initial contrast and lower contrast gain from
compression than prior to therapy, and a reduction in tumor tHb would exhibit the same effect.
A reduction in tumor stiffness is not expected to have a large effect on initial contrast or contrast
gain, except in cases in which the tumor is still quite large and quite deep, which might result in a
smaller contrast gain. Thus, we can hypothesize that lower initial contrast and reduced contrast
gain from compression could indicate a combination of tumor shrinkage and tHb reduction
without being inconsistent with loss of tumor stiffness.

When a change in tHb in response to compression is modeled in the “background blanching”
and “full blanching” conditions, the final geometry (depth and radius of curvature) is not suffi-
cient for the predication of compressed contrast due to the strong effect of SR on ΔtHb. The
relationship between initial inclusion properties and contrast change with compression is also
more complex, with the SR exhibiting the greatest effect in both blanching models. The soft
material superficial to stiff inclusions experienced significant hydrostatic stress, and thus a reduc-
tion of tHb, in this volume region. Due to the high sensitivity to superficial tissue of SFDI, this
region of reduced tHb resulted in lower contrast between inclusion and background regions than
seen before compression. Although this reduction in contrast from compression is a potential
concern for clinical use of this imaging method, it is also possible that the information can
be gleaned from this effect to its dependence on tumor size and stiffness.

Although SR ¼ 1 experiences a small positive contrast gain from compression, all other SRs
experience a reduction in contrast, with a higher magnitude associated with higher stiffness. This
reduction is also more pronounced in the “full blanching” condition as the surface of the inclu-
sion also undergoes a reduction in tHb. After the SR, the initial inclusion depth shows the greatest
correlation with contrast change in the “background blanching” model, with deep inclusions
experiencing the most contrast reduction. In the “full blanching” condition, large inclusions
experience more contrast reduction for SR values above one. More sophisticated mechanical
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modeling as well as in vivo imaging of breast tumors under compression using SFDI will be
necessary to validate these trends. An increase in baseline tHb concentration within the tumor
was not observed to have a significant effect on contrast gain in the “full blanching” condition.

Limitations of this study include the very low compression pressure used. The reaction force
to the applied displacement was ∼0.5 N, compared with an applied force of ∼17 N by Sajjadi
et al.7 That study involved whole-breast compression with a larger contact area than that used
here, but any reasonable estimate of contact area yields a significantly higher pressure than that
used here. Stronger compression likely would have induced a larger change in lesion depth, as
well as different behavior in tissue blanching. For stiff inclusions (SR > 1), the highest stresses
were always experienced directly above the inclusion, and thus, the highest reduction in tHb
happened in this location. The surrounding background material experienced lower stresses and
thus a lower reduction in tHb. Negative contrast in many cases arose from the fact that blanching
of the background surface occurred primarily above the inclusion with only small changes in tHb
occurring further from the inclusion. This localized blanching of the surface served to offset the
high tHb concentration of the inclusion, resulting in near-zero or negative final contrast. As we
modeled tissue blanching to plateau at 20 mmHg, we would expect greater compression pressure
to increase the area of the background that is experiencing the maximum tHb reduction. Higher
pressure would result in maximal blanching of much of the background material surface, rather
than only the region on top of the inclusion. With optical properties of the background surface
closer to uniform in x and y, the high tHb content of the inclusion may still produce a positive
contrast under these conditions.

At least one study reports a decrease in breast tissue μ 0
s resulting from compression,55 but the

effect of tissue compression on scattering properties is generally not well characterized in the
literature. This work assumed that μ 0

s remains constant during compression, and further research
is needed to account for possible changes in scattering during compression.

Although this simplified model accounts for spatially varying ΔtHb induced by compres-
sion, the effect on time-varying hemodynamic changes is not covered by this work, nor are any
changes in tissue oxygen saturation in response to compression. The effect of applied pressure on
breast hemodynamics has been modeled in a simulation study by Nioka et al.,56 and further
research in this area would be very useful. Utilizing diffuse optical tomography, differential
changes in tissue oxygen saturation, as well as the time-course of changes in tHb, have been
demonstrated between tumor and healthy breast in response to compression.7,23 A greater
decrease of oxygen saturation was observed in the tumor, and as the pressure decreased due
to viscoelastic relaxation (with displacement held constant), a persistent reduced tHb level was
observed in the tumor in contrast to a gradual recovery of tHb in the normal tissue. This differ-
ential response was shown to normalize in patients responding to NAC.7

In addition, the viscoelastic character of breast tissue was not modeled. The tissue was mod-
eled as a solid material with hydrostatic stress being used to determine tissue blanching; however,
tissue consists of a solid porous structure containing interstitial fluid, and future work should
directly consider the effect of applied pressure of interstitial fluid pressure.57

Compression-induced hemodynamics represent a complex interplay between blood inflow
and outflow and local metabolic oxygen demand. Differential hemodynamic responses likely
arise from mechanical differences;5,41,58 increased metabolic activity within the tumor;4,59 abnor-
malities in the vascular network, including disorganized and tortuous blood vessels;60,61 and
increased interstitial fluid pressure within the tumor.62,63 Though not directly comparable with
compression-induced changes, hemodynamic changes in response to breath-holding have also
been shown to differ between tumor and healthy breast,64 and normalization of these differences
can be used for NAC response prediction,6 further highlighting the value of tracking time-varying
changes in hemoglobin concentrations for breast cancer therapy monitoring. A more complex
dynamic model would be needed to predict how these hemodynamics will be evident in SFDI.

5 Conclusion
In this work, combined mechanical and optical simulations were used to show how attributes of a
breast tumor-mimicking inclusion influenced measured contrast with SFDI and tissue compres-
sion. The two tissue blanching models used in this study predicted that compression of a stiff
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tumor would result in a reduction of contrast between tumor and normal tissue due to squeezing the
healthy tissue superficial to the tumor, an effect of higher magnitude for large and very stiff tumors.
By contrast, the “no blanching” model predicted that contrast will be gained from compression
across all inclusion parameters, though this model is of limited applicability to in vivo imaging.
Though no definitive conclusion may be reached at this time and much additional research is
needed, this work represents a first step toward the potential to use SFDI with local tissue com-
pression for tracking changes in breast tumors such as reduction in size and reduction in stiffness.
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