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Abstract. We present an algorithm for risk prediction of road surface grip where skidding and sliding occur as
main road surface problems. Prediction is done by defining a fine texture classification of the properties of road
aggregate. In an experimental setup, data acquisition is performed with a supervised mobile vehicle scanning
system, using a vehicle equipped with a camera and temperature sensor during movement along an arterial
road. Image processing is performed by testing four texture feature extraction methods: Gabor filters, wavelet
transform, gray level co-occurence matrix, and edge histogram descriptor, among which the Gabor transform
shows the best results. The extraction of texture feature vectors follows by statistical algorithms for measuring
feature vector similarity and reference vector selection, leading to image texture classification. The algorithm
itself is upgraded by incorporating simultaneous surface temperature measurements in order to create and
validate the final fine surface texture classification. The roads are classified and segmented into high-,
medium-, and low-risk roads according to skid danger, enabling the creation of a map of high-risk zones. We
validate our risk prediction algorithm by referring to crash rate data from the Road Traffic Safety Agency of Serbia
database. This algorithm enables the location and mapping of high-risk zones and can be used as a support
for autonomous driving and navigation. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.28.3
.033034]
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1 Introduction
Texture is one of the most relevant features for surface
characterization. It can be defined as a repeated pattern of
information or arrangement of the structure with regular
and/or irregular intervals.1 In a general sense, texture refers
to surface characteristics described by size, shape, density,
arrangement, and proportion of its elementary parts.2 For the
purpose of road assessment, road surface texture is the result
of various types of asphalt and/or concrete mixtures.3,4

Accordingly, commonly used methods for surface texture
analysis, based on sophisticated contact or contactless sur-
face scanning techniques such as two-dimensional (2-D) and
three-dimensional (3-D) laser profilometer, line scan sensors,
and other sensor devices, are recommended by related
standards.5,6

However, the texture of a particular surface can also be
analyzed and evaluated by processing an image captured
from the surface or from a part of the surface. Texture feature
extraction applied to the captured images is an important step
in various image processing applications, e.g., remote sens-
ing and diagnostics, biomedical imaging, image classifica-
tion and retrieval, and industrial quality and production
control.7 Image processing techniques can be used for image
texture characterization and classification. Numerous meth-
ods are used for image texture feature extraction, including
transform-based, statistics-based, structure-based, or model-

based. These methods are frequently used in research work
for pattern recognition techniques, image retrieval, and
image classification.2

As the main attribute of a surface, texture is commonly
referred to road safety issues. It is used as a descriptor for
the overall evaluation and classification8 of road conditions.
Road surface texture differs according to the various asphalt
and/or concrete mixtures that are used as the top layer of the
road surface, traffic density, surface age, weather conditions,
etc. As a surface descriptor, its evaluation is very important
for predicting and estimating the values of other relevant
safety parameters such as skid resistance and friction coef-
ficients, tire rolling resistance, and quantification values of
the tire-road interaction.9,10

In addition to imaging and computer vision diagnostics,
other relevant sensing techniques are used for the estimation
and assessment of road conditions, e.g., air and surface tem-
perature, global positioning system (GPS) locating and speed
estimation, vibration, humidity, and luminescence.

Temperature measurement is usually performed at the
same time as other sensing procedures.

Road assessment procedures are usually based on visual
inspections provided by the observers (operators) who vis-
ually examine imaging data. Visually recognized surface
changes are archived. The operators note the GPS positions
on which they have visually noticed the changes. Subjective
perception, based on the observer’s visual inspection, is usu-
ally used for the classification of particular road segments.
This is imprecise and time-consuming and largely depends
on the observer’s capabilities.3,4 Therefore, the development
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of automated road inspection methods is of high importance.
They are significant for the faster and more precise classi-
fication of the overall road assessment and risk mapping
process.

Road surface data acquisition can be provided using
sophisticated equipment mounted on special, sophisticated
vehicles moving along the road infrastructure. In this paper,
an algorithm for road risk prediction, concerning skid dan-
ger, is presented. It is based on the minute classification of
road surface texture using a mobile vehicle scanning system,
which gathers images from a camera mounted on a moving
vehicle. Surface temperature acquisition was also measured.

The benefit of the proposed algorithm is that it can be
used in situations when there is a lot of disturbance caused
by the movement of the camera along very uneven surfaces.
An additional advantage of this method in comparison with
others is that when there is a lot of disturbance, it can classify
changes in the surface texture of very fine aggregate shapes
and not only obvious changes such as cracks, potholes, and
patches. The disturbances identified are caused by the speed
of the vehicle relative to the recorded area, surface illumina-
tion (shadows), and/or by the vibrations transmitted to the
vehicle and then to the camera during driving.

The data acquisition was carried out in daylight, at a con-
stant vehicle speed. Frames were extracted from the video.
Following this, regions of interest were cropped from each
frame. These regions are processed with methods for texture
feature extraction. Output feature vectors are compared with
different similarity measures. The texture surface was iden-
tified into several classes by combining the measurement
results. Surface temperature measurements obtained from the
same moving vehicle equipped with a camera can act as a
texture category validator, e.g., as a misclassifier for texture
categories that do not represent the actual surface texture.

2 Related Research
This study presents the use of a mobile camera as a very use-
ful technique for analyzing road surface texture when there
is not necessarily obvious visible damage such as cracks,
potholes, and patches, through analyzing the surface textures
of the shapes of the aggregate. Road surface classification,
especially supported by temperature validation, has not been
explored in this way before.

The available literature on the automated detection of road
surface distresses by the visual inspection of images and
video data defines two concepts in surface image processing:
single imaging and video imaging.11

Single imaging uses a static camera and can identify fine
texture. The static image is analyzed more frequently than
video imaging, because the changes in texture are more
easily distinguishable and analysis of these features can
determine the quality of the surface. On the other hand, the
most up-to-date research literature suggests that video imag-
ing analysis is only able to detect obvious surface distresses
such as potholes, cracks, and patches.

A camera-equipped vehicle is a relatively new concept in
road inspection. Vehicles are usually equipped with a line-
scan camera and laser illumination, and a visual-based
acquisition system is used to store the digital images that will
be processed further to identify road distresses.3 However,
the methods based on 2-D video imaging have been focused
mostly on crack, pothole, and patch detection. A method for

the detection and assessment of potholes, cracks, and patches
of Indian highways by collecting data with video cameras
from which images were extracted was analyzed using vari-
ous image processing techniques supported by heuristically
derived decision logic.12 This resulted in the classification of
four different frame categories: frames with potholes, frames
with cracks, frames with patches, and frames without any
critical distress. The use of computer-vision techniques in
the detection and analysis of cracks in concrete surfaces were
captured and analyzed using high-quality images to build
crack classification in bridge deck concrete material.13

Noncrack features that are usually mistakenly reported as
crack features, such as joints, sealed cracks, and white paint,
are specifically detected and masked, as shown in Ref. 14.
Crack detection was also performed by the use of low-cost
screening systems, because they can detect significant
texture changes in the crack area.15,16 Pothole detection was
performed using image segmenting into defective and non-
defective regions using histogram shape-based thresh-
olding.17 The video images from parking cameras mounted
on vehicles were used to develop methods for patch
detection.18 Dash cameras (also called black-box cameras)
were used to develop methods for detecting defects such
as potholes, patching, shoving, raveling, and all types of
cracking, by calculating the entropy of each gray-scale frame
taken from the videos.19 The same types of cameras were
used for the detection of potholes.20

Texture image processing is frequently based on the vari-
ous methods used for texture feature extraction and enables
assessment of the feature vectors. Analysis of the similarities
between feature vectors is often performed, as in our study,
using statistical data to characterize image textures using
simplified descriptors.21

In this study, four methods were examined and applied
for processing dynamically captured video frames relating
to image texture feature extraction. The methods we used
were the Gabor transform, often referred to as the Gabor
filter bank or Gabor function;22,23 the wavelet transform; the
co-occurrence matrix; and the edge histogram descriptor.
Depending on the stochastic nature of the road surfaces,
these feature extraction approaches should provide adequate
preprocessing for road surface texture classification.
Methods based on multiresolution/multichannel analysis
such as the Gabor transform and wavelet transform have
been introduced as pyramid structured transforms for texture
analysis by Mallat,24 and later on, by Ma and Manjunath.21

Wavelet tools were later developed to obtain more invariant
image processing, especially for the purpose of texture detec-
tion, classification, and segmentation.25

Researchers fully describe the use of Gabor filters with
various scale,26 orientation, and kernel size,23,27 for the pur-
pose of texture segmentation and characterization.28

The Gabor filter bank or Gabor transform, applied to a
texture image, is a very useful tool as it has optimal locali-
zation properties in both the spatial and frequency domains.
Gabor filters provide the means for better spatial localization,
but their usefulness is limited in practice because there is
usually no single-filter resolution where one can localize a
spatial structure in natural textures. These methods involve
transforming original images using filters and calculating the
energy of the transformed images. We use a mask a so-called
“convolution kernel”27 that represents the filter. Put simply,
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this is a 2-D array (since 2-D images are involved here) of
pixels, in which each pixel is assigned a value. In our study,
the 2-D form of Gabor wavelet was used, which consists of
a planer sinusoid multiplied by a 2-D Gaussian.29 The Gabor
wavelet used in 2-D extracts local features from an image, as
described in Ref. 30.

The gray level co-occurrence texture matrix (GLCM) is a
common method for texture feature extraction based on
interpixel distance and orientation.7 The GLCM method
is a way of extracting second-order (involving two-pixel
comparison analysis) statistical texture features. This is a
very useful method for particular texture feature ex-
traction.28,31 The first step is to determine the co-occurring
probabilities of all pairwise combinations of quantified gray
levels in the fixed-size spatial window, given two parame-
ters: interpixel distance and orientation. The algorithm
implemented in this work is based on the description given
by several authors.32–34 The exact equations for frequent
types of features, i.e., entropy, energy, contrast, correlation,
and local homogeneity extracted from the GLCMs, are pre-
sented in Ref. 34.

The edge histogram texture descriptor resembles the color
layout descriptor in its principle of capturing the spatial
distribution of edges.35 The distribution of edges is a good
texture signature that is useful for image processing even
when the underlying texture is not homogeneous. The edge
histogram method using five filters is proposed in the
MPEG-7 standard.35

The implementation of wavelet transform texture charac-
terization was introduced and explained in detail.32,33 The
implementation was performed by obtaining the variances
of the high-frequency sub-bands of the wavelet transform
of each grid region.

Temperature is used as an important parameter in road
surface quality assessment, as well as for the prediction of
possible defects such as cracks and holes, and other param-
eters such as skid resistance, slipperiness levels, and friction
coefficient.36 The skid resistance of all surfaces consisting of
various asphalt and concrete mixtures decreases as the sur-
face temperature increases.37 Therefore, in road assessment
and categorization programs, surface temperature is usually
measured from moving vehicles, most often simultaneously
with the use of other sensors or devices for the diagnostics of
the road infrastructure.3

There is little published scientific investigation into road
risk prediction. Most studies use crash rates as the main input
data for determining risk levels. An interesting algorithm is
proposed in a paper38 based on SVM algorithm and image
segmentation processing technology, where the authors pro-
pose a method of video image processing technology for
road surface state recognition (e.g., if the surface is wet
or dry, or if there is snow, or ice on the road). However, there
is a lack of investigation into risk prediction.

No studies have identified and described fine road surface
texture changes obtained by a moving vehicle camera; they
have only described obvious road surface changes, such as
cracks, potholes, patches, or the simple presence of water,
snow, ice, or other materials covering road surfaces.

3 Methodology
The research in this study was performed as shown in
Fig. 1.

3.1 Experimental Setup
For the purpose of experimental analysis, a specific vehicle
was equipped with a video camera, to enable video data
acquisition. The monitoring and image capturing of the road
surface was performed along a section of an arterial road with a
camera recording video frames mounted on a vehicle moving,
at a speed of 60 km∕h. The camera was mounted on the back
of the vehicle, above the offside wheel, oriented downward,
in order to best capture the actual road surface conditions. The
most discrepancies of the road surface texture are present in the
wheel paths, not in the area between wheel paths.

The temperature of the road surface was also analyzed to
validate the image texture processing algorithm. This was
done by mounting a temperature sensor under the front
bumper of the vehicle so that surface temperature data could
be collected at the same time as recording the video frames.
The measured values of temperature were averaged at a
distance of 50 m, which is a common procedure in road
assessment programs.3,4 Each frame was referenced to GPS
coordinates.

Each average temperature record was also referenced to
GPS coordinates. This provided information about the pre-
cise position of the recorded frame or area of the measured
temperature. There is, therefore, a correlation between the
spatial distribution of frames and temperature measurements
along the entire section of road used.

3.2 Texture Characterization
3.2.1 Texture feature extraction

In our research, for image texture analysis, we used the
Gabor and wavelet transforms (as a wavelet-based and co-
occurence matrix and edge histograms) for statistically based
feature extraction methods. This enabled the computation of
the feature vectors obtained from the captured frames.

Gabor function can be described as an image texture dis-
criminator and is sensitive to different frequencies and scale
information. These capabilities were of interest to us for our
research. Gabor transform is a procedure that uses specific
filters (functions) to apply to images in a similar way to con-
ventional filters. A Gabor filter can be viewed as a sinusoidal
plane of a particular frequency and orientation, modulated
by a Gaussian envelope. A 2-D Gabor function gðx; yÞ and
its Fourier transform Gðu; vÞ should be written as described
in Ref. 21:

EQ-TARGET;temp:intralink-;e001;326;258gðx; yÞ ¼
�

1

2πσxσy

�
exp

�
−
1

2

�
x2

σ2x
þ y2

σ2y

�
þ 2πjWx

�
; (1)

where j ¼ ffiffiffiffiffiffi
−1

p
and W is the frequency of the modulated

sinusoid

EQ-TARGET;temp:intralink-;e002;326;189Gðu; vÞ ¼ exp

�
−
1

2

�ðu −WÞ2
σ2u

þ v2

σ2v

��
; (2)

where σu ¼ 1∕2πσx and σv ¼ 1∕2πσy.
If we assume that gðx; yÞ is the mother wavelet, then

Gabor function is formed as follows (a self-similar filter dic-
tionary can be obtained by various transforms, i.e., dilatations
and rotations of gðx; yÞ through the generating function):

EQ-TARGET;temp:intralink-;e003;326;89gmnðx; yÞ ¼ a−mGðx 0; y 0Þ; (3)
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where a > 1; m; n ¼ integer and,

EQ-TARGET;temp:intralink-;e004;63;325x 0 ¼ a−mðx cos θ þ y sin θÞ; (4)

EQ-TARGET;temp:intralink-;e005;63;283y 0 ¼ a−mð−x sin θ þ y cos θÞ; (5)

where θ ¼ 2π∕K, and K is the total number of orientations,
and a ¼ ðUh∕UlÞ− 1

S−1. The values of Ul and Uh represent the
respective lower and upper center frequencies of interest.

Here S is the user-defined number of scales of analysis in
the multiscale pyramid image decomposition. This results in
the following equations for computing the filter parameters σu
and σv, which enable the values of σx and σy to be computed:

EQ-TARGET;temp:intralink-;e006;63;194σu ¼
ða − 1ÞUh

ðaþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p ; (6)

EQ-TARGET;temp:intralink-;e007;63;140σv¼ tan

�
π

2k

��
Uh−2 ln

�
σ2u
Uh

���
2 ln2−

2 ln22σ2u
U2

h

�−1
2

; (7)

where W ¼ a−mUl, and m ¼ 0;1; 2; : : : ; S − 1. Eliminating
the filter response sensitivity to absolute intensity values, the
real components of the 2-D Gabor filters are biased by adding
a constant to make them zero mean.

Let Iðx; yÞ be the term of a particular image. Then its
Gabor transform for representing a feature is given by

EQ-TARGET;temp:intralink-;e008;326;314Wmnðx;yÞ ¼
Z

Iðx1; y1Þg�mn½ðx− x1Þ; ðy− y1Þ�dx1 dy1: (8)

Operator * indicates the complex conjugate, and x1, y1
are the parameters of the convolution kernel. In this case,
we assumed that local texture regions are spatially homo-
geneous, since the road surface texture tends to be homo-
geneous. By moving the convolution kernel by sliding a
window over an image pixel by pixel, a convolution opera-
tion is conducted, producing a filtered image with new pixel
level intensity responses as the new output. The mean μmn
and standard deviation σmn of the magnitude of the transform
coefficients are used to represent the region of interest to
determine texture classification:

EQ-TARGET;temp:intralink-;e009;326;162μmn ¼
ZZ

jWmnðx; yÞjdx dy; (9)

and

EQ-TARGET;temp:intralink-;e010;326;112σmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZ

ðjWmnðx; yÞj − μmnÞ2dx dy
s

: (10)

Fig. 1 Theoretical foundation illustration of algorithm for road risk mapping based on mobile vehicle data
acquisition.
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The feature vector can be extracted using the mean μmn
and standard deviation σmn as feature components. In our
study, the Gabor transform was based on a set of five
scales, S ¼ f0; 1; 2; 3; 4g, and six orientations, K ¼
f0; 1; 2; 3; 4; 5g, (in our case, six orientations refer to the
angles of 0 deg, 30 deg, 60 deg, 90 deg, 120 deg, and 150 deg,
respectively), which create a bank of 30 filters. In addition,
a convolution kernel of a size 21 × 21 pixels is applied.
When all filtering parameters are taken into account, the
feature vector is described by

EQ-TARGET;temp:intralink-;e011;63;642X ¼ ðμ0_0; σ0_0; μ0_1;σ0_1; : : : μs_kσs_k; : : : μ4_5σ4_5Þ: (11)

The feature vector dimension is determined by five scales
(S), six orientations (K), and two feature components
ðμmn; σmnÞ, which makes 60 coordinates.

In this paper, the radial GLCM was used for feature
extraction. Various types of features were extracted from
256 grayscale frames: entropy, energy, contrast, correlation,
and local homogeneity (inverse difference moment). In this
case, we used 24 directions chosen from the referent pixel,
with each orientation representing a different pixel distance.
Twenty-four different GLCM were formed, from which the
above-mentioned features were extrapolated.

This means that the resulting feature vector was extracted
from 24 GLC matrices, including four types of features. The
feature vector has 24 × 4 ¼ 96 coordinates.

For the edge histogram, a scale invariant nonhomogene-
ous texture descriptor, five filters were applied. It identifies
the spatial distribution of five types of edges in five direc-
tions: vertical, horizontal, 45 deg, 135 deg, and nondirec-
tional. The feature extraction was based on dividing the
image into 16 (4 × 4) blocks, then applying five filters to
each region in the five directions described. A 5-bin histo-
gram for each block was generated.

The edge histogram was formulated by interlinking the
results of the region edge histograms. The corresponding
extracted feature vector has 16 × 5 ¼ 80 coordinates.

The wavelet transform was applied based on Haar wave-
lets. Discrete wavelet features of the image were extracted
and analyzed as presented in Ref. 24. The implementation
was performed by obtaining the variances of the high-fre-
quency sub-bands of the wavelet transform of each grid
region. The frame was divided to 4 × 4 ¼ 16 grid regions,
and the four-level Haar wavelet transform was applied to
obtain the variances of the high-frequency sub-band (in our
case 12 sub-bands), of each region. The resulting feature vec-
tor has 4 × 4 × 12 ¼ 192 coordinates.

3.2.2 Measurement of feature vector similarities

For the purposes of texture characterization, it was necessary
to apply certain similarity measurements of the feature vec-
tors obtained by the methods specified by the texture feature
extraction. The feature vectors obtained were compared fur-
ther. Three measurements of similarity between the feature
vectors were calculated. The measurements applied were the
Euclidean distance (d), the correlation (R), and the normal-
ized mean difference (D) between the average and median
values. The combination of these three measures is giving
us the more precise classification result since we are analyz-
ing fine texture, and each measurement describes the feature
vectors’ similarity, but in a different way. The Euclidean

distance gives a cumulative measurement of the vector com-
ponents’ difference. The correlation describes the similarity
between the patterns that create the components of the indi-
vidual feature vectors. The normalized mean difference
describes the distribution of the component values for
differences between mean and median values. On the basis
of these measurements, further classification of the texture
could be carried out using statistical algorithms.

To determine the similarity between feature vectors, it was
necessary to define a reference value, that is, a reference vec-
tor in relation to which the similarity of all other vector fea-
tures could be measured. The method of determining the
reference vector is given at the end of this section.

Similarity measurements of feature vectors that are
applied in this paper are:

1. Euclidean distance (d)

Distance between the feature vector of each frame and the
reference vector. This measurement indicates the proximity
of points in the hyper space, but it cannot identify the simi-
larities in the structure of the components of the vector.

Let Xj be the feature vector of the current frame:

EQ-TARGET;temp:intralink-;sec3.2.2;326;504Xj ¼ ðXj1: : : Xjk: : : XjNÞ;

where j ¼ 1; : : : ; F, and Xjk represents the k’th coordinate
of the feature vector, N is the number of the feature vector
coordinates, and F represents the total number of analyzed
frames.

The Euclidean distance d between the feature vectors can
be expressed as follows:

EQ-TARGET;temp:intralink-;e012;326;406dj;REF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðXji − XREF;iÞ2
vuut ; (12)

where j ¼ 1; : : : ; F, and Xji is the coordinate of the feature
vector of the current frame, and XREF;i is the coordinate of
the reference feature vector. For the purpose of experimental
analysis, a reference vector was estimated. The feature vector
to which the highest Euclidean distance corresponded was
selected as a reference. The measurements were imple-
mented for further analysis according to the reference.

2. Correlation (R)

As a measurement of correlation, the Pearson correlation
coefficient was calculated, which adequately described the
similarity of the reference and feature vectors of other vectors
to their component structure.

Pearson correlation coefficient R was calculated using the
following equation:

EQ-TARGET;temp:intralink-;e013;326;177Rj;REF ¼ abs

8>>>><
>>>>:

P
i XjiXREF −

ð
P

XjiÞðXREFÞ
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

i X
2
ji −

ð
P

i
XjiÞ2

N

�s �P
X2
REF −

ðXREFÞ2
N

�
9>>>>=
>>>>;
;

(13)

where i ¼ 1; : : : ; N and j ¼ 1; : : : ; R.
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3. Normalized mean difference (D)

Comparing the differences between the mean and the
median, given in Eq. (14). This enabled the components
of the feature vector to be distinguished by the distribution
of the feature vector components.

Normalized mean values difference (D) is calculated as
follows:

EQ-TARGET;temp:intralink-;e014;63;667Dj ¼
abs½meanðXjÞ −medianðXjÞ�

½medianðXjÞ�
; (14)

EQ-TARGET;temp:intralink-;e015;63;610Dj;REF ¼ Dj −DREF; (15)

where i ¼ 1; : : : ; N and j ¼ 1; : : : ; R and the mean and
median represent the standard statistical measurements of the
central tendency for the set of data. In our case, the set of
feature vectors related to all the frames was analyzed.

4. Defining reference feature vector

Defining the reference feature vector involves the selec-
tion of one feature vector in relation to which similarity is
measured. One way of choosing this is to find a feature vec-
tor that is the furthest away from all other vectors, i.e., the
vector that has the largest Euclidean distance from all other
vectors. It is presented as follows:
EQ-TARGET;temp:intralink-;sec3.2.2;63;460

Sj ¼
X
k

dj;k k ¼ 1: : : R;

XREF ¼ ðXjjSj ¼ maxfS1; : : : ; SRgÞ:

3.2.3 Classification of feature vectors

After extracting the feature vectors of texture, all three mea-
surements (d, R, and D) were calculated for each individual
feature vector relative to the reference vector. The values
obtained were combined and presented in 3-D space.
Based on mean-shift clustering,39 numerical values of thresh-
olds between certain clusters of points can be obtained, rep-
resenting candidates for texture classifications. Certain areas
of surfaces can form cluster points that further represent dif-
ferent texture classes.

3.3 Temperature data acquisition
As mentioned earlier, the measurement of road surface tem-
perature from a moving vehicle is a common technique,3,4

for the purpose of analyzing the effect of temperature on
other parameters in road assessment programs.

The surface temperature was measured remotely, using an
infrared sensor placed under the vehicle bumper.

The temperature was measured every 50 m and an average
calculated. Measuring this way complies with road safety
recommendations.40

Significant fluctuations in the temperature of asphalt or
concrete do not usually occur during daylight, in constant
sunny weather conditions (i.e., no rain, snow or ice on the
road, and no obvious high wind speeds near the road
surface).

In our study, surface temperature measurements were
performed to validate texture classes.

Significant temperature changes were observed, where
the road was in shade. This provided information for class
validation and for final surface texture classification.

4 Results and Discussion
The moving camera produced 11,300 frames taken in day-
light conditions. Each frame was cropped to a region of inter-
est, i.e., the area relating to the width of the rear offside
wheel. Furthermore, we converted each color frame into a
gray scale and normalized the cropped frames by pixel inten-
sity. This minimized some of the irrelevant properties of the
surface aggregates.

The texture feature extraction was performed using the
methods mentioned above: Gabor transform, co-occurrence
transform, edge histogram descriptor, and the Haar wavelet
transform. The 3-D coordinate system is defined by three
metrics, d, R, and D. 3-D frame feature distributions for all
of the methods mentioned are presented in Fig. 2.

The texture feature vectors of the captured frames
obtained by the Gabor transform were statistically processed
by the aforementioned algorithms. The texture feature vec-
tors of the corresponding frames are represented by the
points, spatially distributed in the 3-D diagram, presented in
Fig. 2(a). The spatial points distribution that represents the
texture feature vectors of the corresponding frames, extracted
by the other three methods, are shown in Figs. 2(b)–2(d),
respectively.

Application of the other three feature extraction methods
such as co-occurrence matrix, edge histogram descriptor,
and wavelet transform is not suitable for detecting separate
clear clusters of road surface texture images, obtained by
moving camera. Since the Gabor transform showed different
variations of the points found in 3-D space, it was selected in
the proposed methodology for differentiation between the
frames, and further on for clusterization, Fig. 3.

Since the already known methodologies for the automatic
process of clusterization cannot effectively lead to road clas-
sification for our needs, we applied a complex procedure of
automatic clusterization and, further on, classification, which
were implemented through two phases.

In phase 1, we modified mean shift clustering algorithm,39

where the bar is used as kernel. The whole surface of the
graphics in Fig. 3 was fragmented into vertical bars, widths
of 0.01 values of correlation (R). Within each bar, the total
Euclidean distance between all points within that bar was
measured. Thus the histogram of the values of these sums
of Euclidean distances was formed. The minimal value in
the histogram determines the position of line 1 in Fig. 3.
Thus we separated a set of dispersed points on the left side
of line 1 as a separate cluster, further on class 4. All other
points are positioned on the right side of line 1 [Fig. 4(a)].

In phase 2, we observed only the points on the right side
of line 1 and collected the total number of points within the
vertical bars. The surface of the graphics, on the right side
of line 1, was fragmented into vertical bars, widths of 0.005
values of correlation (R).

Thus a new histogram is formed, shown in Fig. 4(b).
Detection of the interval with the highest density of points

within which are the boundaries of the clusters forms line 2
and line 3, in Fig. 3.

The threshold for detection of interval of interest is
defined as half the maximum value of histogram (max ∕2).
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The position of this threshold is shown in Fig. 4(b). All bars
whose number of points exceed the defined threshold are the
interval of interest. Within this correlation interval, the actual
position of lines 2 and 3 are determined. Line 2 is determined
by passing through a mean value of a minimum three points
in the detected correlation interval. Line 3 is determined by
passing through the mean value of 3 of the maximum points
in the correlation interval.

Threshold values of correlation (R) are as follows: first
class up to 0.8092, second class up to 0.8136, and third class
up to 0.8925. Fourth class is over 0.8925.

We tested an automated system, which enabled us to
define clear boundaries between group of points that corre-
spond to the defined classes of risk, and by doing so, we
identified four separate clusters. These clusters were candi-
dates for image texture classes. For the purpose of surface

Fig. 3 The 2-D frame classification representation according to the Gabor transform-based texture
feature extraction with defined class areas separated by threshold values (vertical dash lines).

(a) (b)

(c) (d)

Fig. 2 3-D presentation of frame distributions based on texture feature vector extraction according to the
texture analysis using: (a) Gabor transform, (b) co-occurrence transform, (c) edge histogram, and
(d) DWT transform.
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texture classification, we had to integrate image texture clas-
sification into surface texture classification. This enabled us
to distinguish four classes of image texture in Fig. 3

In Fig. 5, four-class frame classification results based on
the Gabor transform is illustrated. Here obvious diversity of
frames belonging to class 4 is seen.

Samples gathered as the choice of representative frames
that represents each class, including class 4, after final clas-
sification, are presented in Fig. 6.

It can clearly be seen in Fig. 6 that the images from class 4
show road surfaces obscured by static shade, as from trees.
Analysis of the image texture reveals that class 4 does not

Fig. 4 Automatization of threshold setting for cluster recognition from Fig. 3 data: (a) the histogram deter-
mining the position of the line 1 and (b) the histogram determining the position of line 2 and line 3.

Fig. 5 Four-class texture classification, per frame, based on the Gabor transform.
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represent the actual road texture surface. This is confirmed
in the measurement of the surface temperature taken at the
same time from the moving vehicle.

Surface temperature measurements related to image frames
in class 4, reveal feature vectors distorted by static shadows
from, e.g., tree branches and power pylons. Therefore, the sec-
ond part of the experimental analysis of the road surface is
the comparison between the averaged value of R, calculated
on the sequence of the frames, and the collected temperature
values.

The temperature of the road surface was measured and
averaged at an interval of 50 m from the moving vehicle.3,4

The time interval within which the temperature was averaged
was the same time interval within which the sequence of
frames was collected. The mean value of R in this group
of frames was compared to the mean value of the temperature
within the same time interval.

We introduced a temperature measurement for the pur-
pose of improving the surface texture classification. Since
both the temperature and video data are referenced by GPS
coordinates, it was possible to spatially compare these two
data sets. This made it possible to compare the correlation
between the group of frames with the temperature averaged
at 50 m.

A comparison of the average value of R and the average
temperature is shown in Fig. 7. The total correlation coeffi-
cient value between these two curves is R ¼ 0.5651, which
indicates a medium degree of correlation between the curves.
Nevertheless, it is obvious that significant peaks of low-
temperature values and class correlation values correlate in
counter-phase, which correspond to the dissipation of road
surface temperature and image texture changes.

We excluded class 4, shown in Fig. 6. Peaks in Fig. 7
confirm that class 4 of image texture obviously does not

represent the actual surface texture, since these are the areas
of static shades, caused mostly by tree brunches, electricity
power pylons, etc. We must emphasize that the changes in
surface texture do not lead to temperature changes.36 Our
proposed methodology for using image processing from a
moving camera to characterize road surface texture can,
therefore, be confirmed as correct.

This means that road surface can be actually classified
into three classes of road by its surface texture.

5 Road Risk Prediction Using Fine Texture
Classification

It is well-established that vehicle road accidents and crashes
occur more frequently when humidity is high and road sur-
faces are slippery, e.g., when there is rain or snow on the
roads. We have used our new algorithm for classifying roads
according to fine surface texture, to establish different road
risk categories for roads in Serbia.

The texture classes differ according to their uniformity.
If the texture is uniform and has uniform granularity distri-
bution, this is positive and means it is safe for driving and is
not slick in itself. The road friction is satisfactory enough and
the road will not be very slippery.

If the texture of the road is not uniform, then it means
that it is defective, too polished, or too slick in itself. Such
sections of road are extremely dangerous, irrespective of the
effects of weather or other incidental phenomena.

In our classification, as shown in Fig. 3, it is obvious that
class 1 and class 2 are fairly uniform in texture, and that
class 3 and class 4 are not.

(Class 4 looks very dispersed because of the effects
of the static shadows, and as we said, it represents a
misclassification.)

Fig. 6 Representative samples of classified frames. Classes 1 to 3 are validated and represent road
surface texture. Class 4 is a misclassification and can be rejected.
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Class 1 shows the most uniformity. This means that the
granularity of its texture is well preserved. It represents
a nondangerous road surface and does not tend to be
slippery.

Class 2 reveals so-called “bleeding,” i.e., a loss of texture
in certain places, which means that it can be dangerous
in sections, but not all over. Class 2 is, therefore, a
borderline surface category which can be slick in some
parts. For such road surfaces, we propose further
analysis using neural networks for detecting the exact
location of dangerous spots. Another option would
be using the Internet of Vehicles (IoV) network. This
category of surface represented only 7% of the
observed road.

Class 3 is the most polished and slick surface and is more
critical in terms of road risk than class 2. Class 3 rep-
resents a dangerous, potentially slippery, and slick
road.

According to these classifications, a map of the area can
be highlighted to illustrate three classes of roads [Fig. 8(a)]:

1. High-risk, potentially slippery when wet, especially
dangerous roads (class 3).

2. Medium-risk, borderline (class 2).
3. Low-risk, nonslippery roads (class 1).

In parts of the road where high-risk surfaces are detected,
drivers should continue to take precautions and prepare for
slick roads and very dangerous driving conditions.

We compared our road mapping—based on road risk pre-
diction using fine texture classification—with existing traffic
accident statistics from the same section of road. We used the
“integrated database on security facilities of the Serbian
roads” for years 2015, 2016, and 2017, provided by the
Road Traffic Safety Agency of the Republic of Serbia, as
presented in Ref. 41.

In Fig. 8(b), we present a map of actual traffic accidents
that occurred in 2015, 2016, and 201741 on the same section
of road used in our research, i.e., from Usce town to Brvenik
town, in central Serbia. All measurements were conducted
referencing GPS coordinates.

The dots in Fig. 8(b) show the points where traffic acci-
dents occurred that were caused by skidding or slippery sur-
face conditions (dark spots represent major traffic accidents
and light spots represent minor traffic accidents). All traffic
accidents, shown in Fig. 8(b), were obtained by the police
department, municipality of Kraljevo, Raska, and Novi
Pazar, and they refer to years 2015, 2016, and 2017. Our
moving vehicle collected data from the same part of the road.
Data filtering concerning the previous traffic accidents in
Fig. 8(b) was performed through the filter “slippery carriage-
way due to weather conditions.”

Fig. 7 Comparison of the average value of R and average temperature.
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By comparing the information represented in Figs. 8(a)
and 8(b), we formulated our proposed risk map, by distin-
guishing roads into three classes: high, medium, or low risk,
incorporating data relating to actual traffic accidents caused
by slippery roads. We can conclude that the road segments
that we have defined as high-risk zones [Fig. 8(a)] corre-
spond entirely with the locations where traffic accidents
actually occurred in years 2015, 2016, and 2017 [Fig. 8(b)].
Among 98 traffic accidents, only 1 had occurred in the sec-
tion of the road we classified as “low risk,” two accidents had
occurred in the section of the road we classified as “medium
risk,” and the 95 accidents had occurred in the section of the
road we classified as “high risk.” This confirmed the validity
of our risk prediction algorithm.

Improving road safety, especially on medium risk roads,
can be done by providing connection technologies into the
global intelligent transport network based on the communi-
cation system called IoV.42 Vehicles in IoV can communicate
with each other to determine and share the risk status of
roads and enable drivers to adapt and react in real time. It
is, therefore, a valuable addition to established risk zone
mapping.

We suggest that our algorithm can also be implemented as
a supportive tool for road risk prediction for autonomous
driving decision making.43

The development of autonomous driving cars is recog-
nized as one of the most challenging areas of automation
ever undertaken. Highly detailed road mapping and road risk
prediction must be developed and maintained to avoid acci-
dents and crashes with autonomously driven cars. The issue
does not only concern the engineering and technology for
developing the vehicles themselves, but increasingly of con-
cern is the question of how to prepare and maintain the roads
for self-driving cars. We suggest that our algorithm can be
used to support autonomous driving and navigation through
its capability to locate and map high-risk road zones and
predict dangerous driving conditions.

6 Conclusions
In this study, we have presented a risk prediction algorithm,
based on road surface texture classification, using image
texture processing, and a mobile vehicle scanning system.
The algorithm enables the prediction of danger levels when
driving on slippery and slick roads. Our aim is to produce a

Fig. 8 (a) Proposed road mapping, according to road risk prediction and (b) map of real traffic accidents,
according to the integrated database on security facilities of roads in the Republic of Serbia, for years
2015, 2016, and 2017.
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highlighted road map classified according to the predicted
risk of slippery road surfaces.

The road map of any area can be categorized according
to skid risk, highlighting three classes of road: high risk
(especially dangerous, slippery roads), medium risk, and
low risk (nonslippery roads). In sections of the road where
a high level of risk is detected, drivers should take precau-
tions and prepare for slick roads and very dangerous driving
conditions.

Surface texture analysis was performed by image process-
ing of the video frames. The algorithm itself was upgraded
with the correlation analysis based on the surface tempera-
ture data set obtained at the same time as the video frames,
from the same moving vehicle.

Video frames were used as input images. A preprocessing
technique, based on cropping frames to a suitable size, and
gray level normalization, was performed. We then applied
four methods of texture feature extraction: Gabor trans-
form, co-occurrence matrix, edge histogram descriptor, and
wavelet transform. The Gabor transform was the most effec-
tive. The other three methods were not suitable for texture
classification of the frames captured by a moving camera that
we used.

Three different measurements were used to compare the
image frames for the purpose of texture characterization:
Euclidean distance, Pearson correlation coefficient, and nor-
malized mean value differences. The Pearson correlation was
the most effective. Analysis of the correlation and the nor-
malized difference of the mean values per particular frame,
and compared to the reference frame, enabled us to classify
the road surface into three categories.

We proved that it is possible to analyze the texture of
dynamically captured images, despite the interference
caused by the moving vehicle. We also proved that simulta-
neous acquisition of images and temperature data, referenced
on the same measurement points by GPS coordinates, can
validate surface texture classes and contribute to classifica-
tion management. Of great significance was our comparison
of our proposed road risk map based on our algorithm, with
the actual database of traffic accidents caused by slippery
roads. This confirmed that the high-risk zones that we iden-
tified with our algorithm corresponded to where accidents
had actually occurred on the same sections of road. We were,
therefore, able to conclude that we have identified a method
for road risk prediction that can be used for navigation as
well as an input and support mechanism for autonomous
driving decision making.
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