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Abstract. In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen
to the top in numerous areas, namely computer vision (CV), speech recognition, and natural
language processing. Whereas remote sensing (RS) possesses a number of unique challenges,
primarily related to sensors and applications, inevitably RS draws from many of the same
theories as CV, e.g., statistics, fusion, and machine learning, to name a few. This means that
the RS community should not only be aware of advancements such as DL, but also be leading
researchers in this area. Herein, we provide the most comprehensive survey of state-of-the-art
RS DL research. We also review recent new developments in the DL field that can be used in DL
for RS. Namely, we focus on theories, tools, and challenges for the RS community. Specifically,
we focus on unsolved challenges and opportunities as they relate to (i) inadequate data sets,
(ii) human-understandable solutions for modeling physical phenomena, (iii) big data, (iv) non-
traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral,
spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of
DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL. © The Authors.
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1 Introduction

In recent years, deep learning (DL) has led to leaps, versus incremental gain, in fields such as
computer vision (CV), speech recognition, and natural language processing, to name a few.
The irony is that DL, a surrogate for neural networks (NNs), is an age-old branch of artificial
intelligence that has been resurrected due to factors such as algorithmic advancements, high-
performance computing, and big data. The idea of DL is simple: the machine learns the features
and is usually very good at decision making (classification) versus a human manually designing
the system. The RS field draws from core theories such as physics, statistics, fusion, and machine
learning, to name a few. Therefore, the RS community should be aware of and at the leading edge
of advancements such as DL. The aim of this paper is to provide resources with respect to theory,
tools, and challenges for the RS community. Specifically, we focus on unsolved challenges and
opportunities as they relate to (i) inadequate data sets, (ii) human-understandable solutions for
modeling physical phenomena, (iii) big data, (iv) nontraditional heterogeneous data sources,
(v) DL architectures and learning algorithms for spectral, spatial, and temporal data, (vi) transfer
learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry,
and (ix) training and optimizing the DL.
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Herein, RS is a technological challenge where objects or scenes are analyzed by remote
means. This definition includes the traditional remote sensing (RS) areas, such as satellite-
based and aerial imaging. However, RS also includes nontraditional areas, such as unmanned
aerial vehicles (UAVs), crowdsourcing (phone imagery, tweets, etc.), and advanced driver-as-
sistance systems (ADAS). These types of RS offer different types of data and have different
processing needs, and thus also come with new challenges to algorithms that analyze the
data. The contributions of this paper are as follows:

1. Thorough list of challenges and open problems in DL RS. We focus on unsolved chal-
lenges and opportunities as they relate to (i) inadequate data sets, (ii) human-understand-
able solutions for modeling physical phenomena, (iii) big data, (iv) nontraditional
heterogeneous data sources, (v) DL architectures and learning algorithms for spectral,
spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical under-
standing of DL systems, (viii) high barriers to entry, and (ix) training and optimizing
the DL. These observations are based on surveying RS DL and feature learning (FL)
literature, as well as numerous RS survey papers. This topic is the majority of our
paper and is discussed in Sec. 4.

2. Thorough literature survey. Herein, we review 205 RS application papers and 57 survey
papers in RS and DL. In addition, many relevant DL papers are cited. Our work extends
the previous DL survey papers1–3 to be more comprehensive. We also cluster DL
approaches into different application areas and provide detailed discussions of many
relevant papers in these areas in Sec. 3.

3. Detailed discussions of modifying DL architectures to tackle RS problems.We highlight
approaches in DL for RS, including new architectures, tools, and DL components that
current RS researchers have implemented in DL. This is discussed in Sec. 4.5.

4. Overview of DL. For RS researchers not familiar with DL, Sec. 2 provides a high-level
overview of DL and lists many good references for interested readers to pursue.

5. DL tool list. Tools are a major enabler of DL, and we review the more popular DL tools.
We also list pros and cons of several of the most popular toolsets and provide a table sum-
marizing the tools, with references and links (refer to Table 1). For more details, see
Sec. 2.3.5.

6. Online summaries of RS data sets and DL RS papers reviewed. First, an extensive online
table with details about each DL RS paper we reviewed: sensor modalities, a compilation
of the data sets used, a summary of the main contribution, and references. Second,
a data set summary for all the DL RS papers analyzed in this paper is provided online.
It contains the data set name, a description, a URL (if one is available), and a list of
references. Since the literature review for this paper was so extensive, these tables
are too large to put in the main paper but are provided online for the readers’ benefit.
These tables are located at http://cs-chan.com/source/FADL/Online_Paper_Summary_
Table.pdf, and http://cs-chan.com/source/FADL/Online_Dataset_Summary_Table.pdf.

This paper is organized as follows. Section 2 discusses related work in CV. This section
contrasts deep and “shallow” learning, and summarizes DL architectures. The main reasons
for success of DL are also discussed in this section. Section 3 provides an overview of DL
in RS, highlighting DL approaches in many disparate areas of RS. Section 4 discusses the unique
challenges and open issues in applying DL to RS. Conclusions and recommendations are listed
in Sec. 5.

2 Related Work in CV

CV is a field of study that aims to achieve visual understanding through computer analysis of
imagery. Traditional (aka, classical) approaches are sometimes referred to as “shallow” nowa-
days because there are typically only a few processing stages, e.g., image denoising or enhance-
ment followed by feature extraction then classification, that connect the raw data to our final
decisions. Examples of “shallow learners” include support vector machines (SVMs), Gaussian
mixtures models, hidden Markov models, and conditional random fields. In contrast, DL usually

Ball, Anderson, and Chan: Comprehensive survey of deep learning in remote sensing: theories. . .

Journal of Applied Remote Sensing 042609-2 Oct–Dec 2017 • Vol. 11(4)

http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf
http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf
http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf
http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf
http://cs-chan.com/source/FADL/Online_Dataset_Summary_Table.pdf


has many layers—the exact demarcation between “shallow” and “deep” learning is not a set
number (akin to multi- and hyperspectral signals)—which allows a rich variety of complex,
nonlinear, and hierarchical features to be learned from the data. The following sections contrast
deep and shallow learning, discuss DL approaches and DL enablers, and finally discuss DL
success in domains outside RS. Overall, the challenge of human-engineered solutions is the
manual or experimental discovery of which feature(s) and classifier satisfy the task at hand.
The challenge of DL is to define the appropriate network topology and subsequently optimizing
its hyperparameters.

2.1 Traditional Feature Learning Methods

Traditional methods of feature extraction involve hand-coded transforms that extract information
based on spatial, spectral, textural, morphological, and other cues. Examples are discussed in
detail in the following references; we do not give extensive algorithmic details herein.

Cheng et al.1 discuss traditional hand-crafted features such as the histogram of ordered gra-
dients (HOG), which is a feature of the scale-invariant feature transform (SIFT), color histo-
grams, local binary patterns (LBP), etc. They also discuss unsupervised FL methods, such
as k-means clustering and sparse coding. Other good survey papers discuss hyperspectral
image (HSI) feature analysis,4 kernel-based methods,5 statistical learning methods in HSI,6 spec-
tral distance functions,7 pedestrian detection,8 multiclassifier systems,9 spectral–spatial classifi-
cation,10 change detection,11,12 machine learning in RS,13 manifold learning,14 endmember
extraction,15 and spectral unmixing.16–20

Traditional FL methods can work quite well, but (1) they require a high level of expertise and
very specific domain knowledge to create the hand-crafted features, (2) sometimes the proposed
solutions are fragile, that is, they work well with the data being analyzed but do not perform well
on data, (3) sophisticated methods may be required to properly handle irregular or complicated
decision surfaces, and (4) shallow systems that learn hierarchical features can become very
complex.

In contrast, DL approaches (1) learn from the data itself, which means the expertise
for feature engineering is replaced (partially or completely) by the DL, (2) DL has state-
of-the-art results in many domains (and these results are usually significantly better then shal-
low approaches), and (3) DL in some instances can outperform humans and human-coded
features.

However, there are also considerations when adopting DL approaches: (1) many DL systems
have a large number of parameters, and require a significant amount of training data; (2) choosing
the optimal architecture and training it optimally are still open questions in the DL community;
(3) there is still a steep learning curve if one wants to really understand the math and opera-
tions of the DL systems; (4) it is hard to comprehend what is going on “under the hood” of
DL systems, (5) adapting very successful DL architectures to fit RS imagery analysis can be
challenging.

2.2 DL Approaches

To date, the autoencoder (AE), convolutional neural network (CNN), deep belief networks
(DBNs), and recurrent NN (RNN) have been the four mainstream DL architectures. Of
these architectures, the CNN is the most popular and most published to date. The deconvolu-
tional NN (DeconvNet)21,22 is a relative newcomer to the DL community. The following sections
discuss each of these architectures at a high level. Many references are provided for the interested
reader.

2.2.1 Autoencoder

An AE is an NN that is used for unsupervised learning of efficient codings (from unlabeled data).
The AE’s codings often reveal useful features from unsupervised data. One of the first AE appli-
cations was dimensionality reduction, which is required in many RS applications. One advantage
of using an AE with RS data is that the data do not need to be labeled. In an AE, reducing the size
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of the adjacent layers forces the AE to learn a compact representation of the data. The AE maps
the input through an encoder function f to generate an internal (latent) representation, or code, h.
The AE also has a decoder function, g that maps h to the output x̂. Let an input vector to an AE be
x ∈ Rd. In a simple one hidden layer case, the function h ¼ fðxÞ ¼ gðWxþ bÞ, whereW is the
learned weight matrix and b is a bias vector. A decoder then maps the latent representation to a
reconstruction or approximation of the input via x 0 ¼ f 0ðW 0xþ b 0Þ, where W 0 and b 0 are the
decoding weight and bias, respectively. Usually, the encoding and decoding weight matrices are
tied (shared), so that W 0 ¼ WT , where T is the matrix transpose operator.

In general, the AE is constrained, either through its architecture, or through a sparsity con-
straint (or both), to learn a useful mapping (but not the trivial identity mapping). A loss function
L measures how close the AE can reconstruct the output: L is a function of x and x̂ ¼ f 0½fðxÞ�.
For example, a commonly used loss function is the mean squared error, which penalizes the
approximated output from being different from the input, Lðx; x 0Þ ¼ kx − x 0k2.

A regularization function ΩðhÞ can also be added to the loss function to force a more sparse
solution. The regularization function can involve penalty terms for model complexity, model
prior information, penalizing based on derivatives, or penalties based on some other criteria
such as supervised classification results (reference Sec. 14.2 of Ref. 23). Regularization is typ-
ically used with a deep encoder, not a shallow one. Regularization encourages the AE to have
other properties than just reconstructing the input, such as making the representation sparse,
robust to noise, or constraining derivatives in the representation. Arpit et al.24 show that denois-
ing and contractive AEs that also contain activations such as sigmoid or rectified linear units
(ReLUs), which are commonly found in many AEs, satisfy conditions sufficient to encourage
sparsity. A common practice is to add a weighted regularizing term to the optimization function,
such as the l1 norm, khk1 ¼

P
K
m¼1 jh½i�j, where K is the dimensionality of h and λ is a term

which controls how much effect the regularization has on the optimization process. This opti-
mization can be solved using alternating optimization over W and h.

A denoising autoencoder (DAE) is an AE designed to remove noise from a signal or an
image. Chen et al.25 developed an efficient DAE, which marginalizes the noise and has a com-
putationally efficient closed-form solution. To provide robustness, the system is trained using
additive Gaussian noise or binary masking noise (force some percentage of inputs to zero).
Many RS applications use an AE for denoising. Figure 1(a) shows an example of an AE.
The diabolo shape results in dimensionality reduction.

Fig. 1 Block diagrams of DL architectures: (a) AE, (b) CNN, (c) DBN, and (d) RNN.
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2.2.2 Convolutional neural network

A CNN is a network that is loosely inspired by the human visual cortex. A typical CNN consists
of multiple layers of operations such as convolution, pooling, nonlinear activation functions, and
normalization, to name a few. The first part of the CNN is typically the so-called feature extractor
and the latter portion of the CNN is usually a multilayer perceptron (MLP), which assigns class
labels or computes probabilities of a given class being present in the input.

CNNs have dominated many perceptual tasks. Following Ujjwalkarn,26 the image recogni-
tion community has shown keen interest in CNNs. Starting in the 1990s, LeNet was developed
by LeCun et al.,27 and was designed for reading zip codes. It generated great interest in the image
processing community. In 2012, Krizhevsky et al.28 introduced AlexNet, a deep CNN. It won the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 by a significant margin.
In 2013, Zeiler and Fergus22 created ZFNet, which was AlexNet with tweaked parameters and
won ILSVRC. Szegedy et al.29 won ILSVRC with GoogLeNet in 2014, which used a much
smaller number of parameters (4 million) than AlexNet (60 million). In 2015, ResNets were
developed by He et al.,30 which allowed CNNs to have very deep networks. In 2016, Huang
et al.31 published DenseNet, where each layer is directly connected to every other layer in a
feedforward fashion. This architecture also eliminates the vanishing-gradient problem, allowing
very deep networks. The aforementioned examples are only a few examples of CNNs.

Most layers in the CNN have parameters to estimate, e.g., the convolution filter parameters,
or the scales and shifts in batch normalization. For example, a CNN that analyzes grayscale
imagery employs two-dimensional (2-D) convolution filters, whereas a CNN that uses red–
green–blue (RGB) imagery uses three-dimensional (3-D) filters. In general, it is easy, in theory,
to support any N-dimensional signal, such as an HSI, as it really only affects the dimensionality
of the first layers of filters. Through training, these filters learn to extract hierarchical features
directly from the data, versus traditional machine learning approaches, that use “hand-crafted”
features. Figure 1(b) shows an example CNN for HSI processing. Note that there are two con-
volution and pooling layers, followed by two fully connected (FC) layers.

The number of convolution filters and the filter sizes, the pooling sizes and strides, and all
other layer operators and associated parameters need to be learned. In general, it has been dem-
onstrated that the lower layers of a CNN typically learn basic features, and as one traverses
the depths of the network, the features become more complex and are built up hierarchically.
The FC layers are usually near the end of the CNN network, and allow complex nonlinear
functions to be learned from the hierarchical outputs of the previous layers. These final layers
typically output class labels, estimates of the posterior probabilities of the class label, or some
other quantities such as softmax normalized values. Convolution layers perform filtering, e.g.,
enhancement, denoising, detection, etc., on the outputs of the previous layers. Consider convo-
lution on a single grayscale image using a m ×m mask. If the input data have dimensions of
K × K, then the convolution output will be ðK −mþ 1Þ × ðK −mþ 1Þ, assuming a stride of
one and no padding. Often, CNNs start with smaller mask sizes such as 3 × 3 or 5 × 5 and may
have different sizes per layer. More information on convolution can be found in Secs. 9.1 and 9.2
of Ref. 23.

Most CNNs then apply a nonlinear activation function σ to the linear convolution result.
Early CNNs used functions such as the hyperbolic tangent (tanh) or sigmoid function, but
researchers later discovered that using a ReLU produced good results and was far more computa-
tionally efficient. Using the nonlinear function gives the CNN convolution layers highly expres-
sive power. In most CNNs, there are ReLUs or parametric ReLUs (PReLUs) following
the convolution layers. Given the input x, the ReLU computes the output as ReLUðxÞ ¼
maxð0; xÞ. ReLU units are often used after an affine transformation of the data, such as
ReLUðxÞ ¼ maxð0;wTxþ bÞ, where w is a weight vector, 0 is the all zero vector, and b is
a bias vector. For reference refer Sec. 6.3 of Goodfellow et al.23 for more information.

For RGB imagery, 3-D convolution is used. Likewise, for N-dimensional data, a N-dimen-
sional convolution is used. Padding can also be applied to keep information around the edge
pixels in the input. Zero padding is a common practice in image processing. Another parameter
for the convolution masks is the stride, or how many units are shifted in each direction between
applications of the convolution mask. For a stride of one, the convolution mask shifts over
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one unit in each direction. A smaller stride produces larger results because more outputs are
produced.

Data can be reduced by pooling, and a commonly used approach is max pooling. Consider an
input with a max pooling layer with a 2 × 2 pooling mask and a stride of two. Figure 2 shows an
example input and output. In this instance, the first output is the max of f3;2; 7;5g, which is 7.
The other outputs are computed in a similar manner. The max pooling layer keeps the strongest
responses but destroys information on where these responses occurred in the earlier layers. Some
other pooling options are average and l2 norm pooling, which is the square root of the sum of
squares of the inputs. More information on pooling can be found in Sec. 9.3 of Ref. 23.

A legitimate question is what hyperparameters to choose? Unfortunately, there is no easy
answer to date, just rules of thumb and knowing from the literature what has worked for
other researchers. Often experimentation and knowledge of the problem at hand are required.
Some good tips can be found in Sec. 11 of Goodfellow et al.23

For those unfamiliar with CNNs, some good beginner tutorial and explanations can be found
in Refs. 32 and 33. For those who want to use TensorFlow, helpful tutorials can be found in
Ref. 32. Furthermore, a useful beginning guide to convolutional arithmetic for CNNs is Ref. 34.

2.2.3 Deep belief network and deep Boltzmann machine

A deep belief network (DBN) is a type (generative) of probabilistic graphical model (PGM), the
marriage of probability and graph theory. Specifically, a DBN is a “deep” (large) directed acyclic
graph (DAG). A deep Boltzmann machine (DBM), on the other hand, is a similar graph, but is
undirected. Thus in a DBM, data can flow both ways, and training can be bottom-up or top-
down. A number of well-known algorithms exist for exact and approximate inference [infer the
states of unobserved (hidden) variables] and learning (learn the interactions between variables) in
PGMs. A DBN can also be thought of as a type of deep NN. In Ref. 35, Hinton showed that a
DBN can be viewed and trained (in a greedy manner) as a stack of simple unsupervised net-
works, namely restricted Boltzmann machines (RBMs), or generative AEs. To date, CNNs have
demonstrated better performance on various benchmark CV data sets. However, in theory DBNs
are arguably superior. CNNs possess generally a lot more “constraints.” The DBN versus CNN
topic is likely subject to change as better algorithms are proposed for DBN learning. Figure 1(c)
depicts a DBN, which is made up of RBM layers and a visible layer.

Consider a DBM with D visible and P hidden units. The DBM energy function is
Eðv; h; θÞ ¼ − 1

2
vTLv − 1

2
hTJh − vTWh, where the visible units are represented by a binary

vector v ∈ f0;1gD, the hidden units are represented by a binary vector h ∈ f0;1gP, and the
DBM network parameters are in θ ¼ fL; J;Wg, and J and L have zero diagonals.36 The condi-
tional probabilities based on the visible and hidden input states can be evaluated via

EQ-TARGET;temp:intralink-;sec2.2.3;116;136pðv; h; θÞ ¼
P

h exp½−Eðv; h; θÞ�
P

v

P
h exp½−Eðv;h; θÞ� :

The numerator is an unnormalized probability and the denominator is the partition function.
A DBM is typically trained layer by layer. The details of this training procedure and evaluating
the DBN outputs are given in Ref. 36.

Fig. 2 CNN max pooling example with 2 × 2 pooling and stride of two.
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2.2.4 Recurrent neural network

The RNN is a network where connections form directed cycles. The RNN is primarily used
for analyzing nonstationary processes such as speech and time-series analysis. The RNN has
memory, so the RNN has persistence, which the AE and CNN do not possess. An RNN can
be unrolled and analyzed as a series of interconnected networks that process time-series data.
A major breakthrough for RNNs was the seminal work of Hochreiter and Schmidhuber,37 the
long short-term memory (LSTM) unit, which allows information to be written to a cell, output
from the cell, and stored in the cell. The LSTM allows information to flow and helps counteract
the vanishing/exploding gradient problems in very deep networks. Figure 1(d) shows an RNN
and its unfolded version. Unlike a traditional NN, the RNN shares the network parameters
ðU;V;WÞ across all steps, which makes the number of parameters to learn much smaller.
In RS, RNNs have been mainly used to generate semantic image descriptions.

From Fig. 1(d), and following Ref. 38, we let xt be the input to the RNN at time t and st is the
hidden state at time t (e.g., the memory of the network). The hidden state is a function of the
current input and the immediate past hidden state, e.g., a simple Ellman and Jordan network,
st ¼ fðUst þWst−1 þ bÞ, where the function f is usually an activation function such as tanh or
a ReLU, U and V are matrices containing the network parameters, and b is the vector bias term.
A common practice is to set the initial memory state s0 to the zero vector. The output of our
simple RNN, ot, is calculated as ot ¼ softmaxðVstÞ, where W is a matrix containing the output
parameters. The network parametersU,V,W, and bmust be learned by the network. Some good
tutorials on RNNs are provided in Refs. 38–41.

2.2.5 Deconvolutional neural network

CNNs are often used for tasks, such as classification. However, a wealth of questions exists
beyond classification, e.g., what are our filters really learning, how diverse are our filters,
how transferable are these filters, what filters are the most active in a given (set of) image
(s), where is a filter active at in a (set of) image(s), or more holistically, where in the image
is our object(s) of interest (soft or hard segmentation)? In general, we want tools to help us
(maybe visually) understand the networks we are working with for purposes such as “explainable
AI” and/or network tuning. To this end, researchers have recently begun to explore topics such as
deconvolutional CNNs.21,22,42,43 The idea is to more-or-less “reverse” the flow of information. In
most works, authors use the concept of “unpooling”—the inverse of pooling. Unpooling makes
use of switch variables, which help us keep track of and place activation in layer l back to its
original pooled location in layer l − 1. Unpooling results in an enlarged, be it sparse, activation
map that is then fed to some other operations.

Noh et al.43 adapted the visual geometry group (VGG) 16-layer CNN into a deep deconvolu-
tional network. First, they took the already trained VGG network (trained on non-RS RGB
imagery) and they removed the classification layer. Next, they constructed a mirrored CNN using
unpooling versus pooling—thus, the data are expanding versus shrinking in a standard pooled
CNN. The first half of the network is a standard CNN and the second half is performing decon-
volution. The network is then trained and it was ultimately used for semantic image segmentation.

In a different approach,21,22 Zeiler and Fergus put forth a deconvolution CNN approach,
DeconvNet, which should really be called transpose convolution, for visualizing and understand-
ing CNNs. The crux of their approach is to use the CNN “as is.” Their idea is to use the filters that
were learned by the CNN to help us (visually) understand how it is working. The mathematics is
relatively straight forward. First, one applies unpooling. Next, a ReLU function is applied. Last,
transpose filtering (using the filter learned by the CNN) is applied. For a given image, let Mi be
the i’th feature map at layer l. Furthermore, let rðM̂iÞ be the unpooled result (M̂i) that has had
ReLU (r) applied to it. Last, let Fk be the filter that we wish to deconvolve with. The operation,
technically transpose filtering, is rðM̂iÞ � Fk, where * is the convolution operator. Zeiler used this
idea to accomplish the following. First, he randomly picked filters in different layers and he
identified the top nine activations (and thus images) across a validation data set. He took
the location in the image (so the patch grows in size as we go deeper in the network) and he
extracted its corresponding subimage so we could see what the filters are firing on. He also
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plotted the transpose convolution filter result. This was an interesting visual odyssey and explo-
ration of what hierarchical features the network was learning. However, Zeiler also used his
approach to observe that some filters were dwarfed in response to others and if one normalizes
filters then the behavior is less prevalent and the CNNs train (converge) faster.

In summary, interesting non-—but clearly related—RS CNN deconvolution research has
been put forth to date. However, there is no systematic way yet to select and/or train the network.
Furthermore, as the authors remark, their approaches respond to “parts” (the responses of what
filters were learned). However, if the goal is segmentation, we may not ensure a desirable result.
For example, if the CNN learns to cue off of wheels and decals on the vehicles, this will not help
us to segment the entire car. Furthermore, when there are multiple instances of an object in a
scene, it is not yet clear how one can associate which evidence with which instance. Regardless,
this is an area of interest to the RS community.

2.3 DL Meets the Real World

It is important to understand the different “factors” related to the rise and success of DL. This
section discusses these factors: graphical processing units (GPUs), DL NN expressiveness, big
data, and tools.

2.3.1 Graphical processing units

GPUs are hardware devices that are optimized for fast parallel processing. GPUs enable DL by
offloading computations from the computer’s main processor (which is basically optimized for
serial tasks) and efficiently performing the matrix-based computations at the heart of many DL
algorithms. The DL community can leverage the personal computer gaming industry, which
demands relatively inexpensive and powerful GPUs. A major driver of the research interest
in CNNs is the ImageNet contest, which has over 1 million training images and 1000 classes.44

DNNs are inherently parallel, use matrix operations, and use a large number of floating point
operations per second. GPUs are a match because they have the same characteristics.45 GPU
speedups have been measured from 8.5 to 945 and even higher depending on the GPU and
the code being optimized. The CNN convolution, pooling, and activation calculation operations
are readily portable to GPUs.

2.3.2 DL NN expressiveness

Cybenko46 proved that MLPs are universal function approximators. Specifically, Cybenko
showed that a feedforward network with a single hidden layer containing a finite number of
neurons can approximate continuous functions on compact subsets of Rn, with respect to rel-
atively minimalistic assumptions regarding the activation function. However, Cybenko’s proof is
an existence theorem, meaning it tells us a solution exists, but it does not tell us how to design or
learn such a network. The point is, NNs have an intriguing mathematical foundation that makes
them attractive with respect to machine learning. Furthermore, in a theoretical work, Telgarsky47

has shown that for NN with ReLU (1) functions with few oscillations poorly approximate func-
tions with many oscillations and (2) functions computed by NN with few (many) layers have few
(many) oscillations. Basically, a deep network allows decision functions with high oscillations.
This gives evidence to show why DL performs well in classification tasks, and that shallower
networks have limitations with highly oscillatory functions. Sharir and Shashua48 showed that
having overlapping local receptive fields (RFs) and more broadly denser connectivity gives
an exponential increase in the expressive capacity of the NN. Liang and Srikant49 showed
that shallow networks require exponentially more neurons than a deep network to achieve
the level of accuracy for function approximation.

2.3.3 Training a DL system

Training a DL system is not a trivial task, because: (1) many DL systems have thousands or
millions of parameters, (2) RS data are limited and may not have labeled instances readily
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available, (3) RS data, especially hyperspectral data, are a very large data cube and many suc-
cessful DL algorithms are tuned for small RGB image patches, (4) RS data gathered via light
detection and ranging (LiDAR) have insufficient DL literature (data are point clouds and not
images), and (5) the best architecture is usually unknown a priori which means a gridded search
(which can be very time consuming) or random methods such as those discussed in Ref. 50 are
required for optimization. Chapter 8 of Ref. 23 discusses optimization techniques for training DL
models. A thorough discussion of these techniques is beyond the scope of this paper; however,
we list some common methods typically used to train DL systems.

Goodfellow et al.23 in Sec. 8.5.4 point out that there is no current consensus on the best
training/optimization algorithm. For the interested reader, the survey paper of Schaul et al.51

provides results for many optimization algorithms over a large variety of tasks. CNNs are typ-
ically trained using stochastic gradient descent (SGD), SGD with momentum,52 AdaGrad,53

RMSProp,54 and ADAM.55 For details on the pros and cons of these algorithms, refer to
Secs. 8.3 and 8.5 of Ref. 23. There are also second-order methods, and these are discussed
in Sec. 8.6 of Ref. 23. A good history of DL is provided in Ref. 56, and training is discussed
in Sec. 5.24. Further discussions in this paper can be found in open questions 7 (Sec. 4.7),
8 (Sec. 4.8), and 9 (Sec. 4.9).

AEs can be trained with optimization algorithms similar to a CNN. Some special AEs, such
as the marginalized DAE in Ref. 25, have closed-form solutions. DBNs can be trained using
greed-layer wise training, as shown in Hinton et al.57 and Bengio et al.58 and Salakhutdinov
and Hinton59 developed an improved pretraining method for DBNs and DBMs, by doubling or
halving the weights (see the paper for more details).

Computation comparisons are complex and highly dependent on factors such as the train-
ing architecture, computer system (and GPUs), the way the architectures get data onto and
off of the GPUs, the particular settings of the optimization algorithm (e.g., the mini-batch
size), the learning rate, etc., and, of course, on the data itself. It is very difficult to know
a priori what the complexities will be. This question is currently unanswered in current
DL knowledge.

The survey paper by Shi et al.60 investigates tools performance to help users of common DL
tools (see Sec. 2.3.5) such as Caffe and TensorFlow to understand these tools’ speed, capabilities,
and limitations. They discovered that GPUs are critical to speeding up DL algorithms, whereas
multicore systems do not scale linearly after about 8 cores. The GTX1080 (and now 1080Ti)
GPUs performed the best among the GPUs they tested.

RNNs can be difficult to train due to the exploding gradient problem.61 To overcome this
issue, Pascanu et al.62 developed a gradient-clipping strategy to more effectively train RNNs.
Martens and Sutskever63 developed a Hessian-free with dampening scheme RNN optimization
and tested it on very challenging data sets.

Last, the survey paper of Deng2 discusses DL architectures and gives many references for
training DL systems. The survey paper of Bengio et al.64 on unsupervised FL also discusses
various learning and optimization strategies.

2.3.4 Big data

Every day, approximately 350 million images are uploaded to Facebook,45 Wal-Mart collects
approximately 2.5 petabytes of data per day,45 and National Aeronautics and Space
Administration (NASA) is actively streaming 1.73 gigabytes of spacecraft borne observation
data for active missions alone.65 IBM reports that 2.5 quintillion bytes of data are now generated
every data, which means that “90% of the data in the world today has been created in the last two
years alone.”66 The point is that an unprecedented amount of (varying quality) data exists due to
technologies such as RS, smartphones, and inexpensive data storage. In times past, researchers
used tens to hundreds, maybe thousands of data training samples, but nothing on the order of
magnitude as today. In areas such as CV, high data volume and variety are at the heart of
advancements in performance, meaning reported results are a reflection of advances in data
and machine learning.

To date, a number of approaches have been explored relative to large-scale deep networks
(e.g., hundreds of layers) and big data (e.g., high volume of data). For example, Raina et al.67
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put forth central processing unit (CPU) and GPU ideas to accelerate DBNs and sparse coding.
They reported a 5- to 15-fold speed-up for networks with 100 million plus parameters
versus previous works that used only a few million parameters at best. On the other hand,
CNNs typically use back propagation and they can be implemented either by pulling or
pushing.68 Furthermore, ideas such as circular buffers69 and multi-GPU-based CNN architec-
tures, e.g., Krizhevsky et al.,28 have been put forth. Outside of hardware speedups, operators
such as ReLUs have been shown to run several times faster than other common nonlinear
functions. Deng et al.70 put forth a deep stacking network (DSN) that consists of specialized
NNs (called modules), each of which has a single hidden layer. Hutchinson et al.71 put forth
Tensor-DSN as an efficient and parallel extension of DSNs for CPU clusters. Furthermore,
DistBelief is a library for distributed training and learning of deep networks with large
models (billions of parameters) and massive sized data sets.72 DistBelief makes use of machine
clusters to manage the data and parallelism via methods such as multithreading, message
passing, synchronization, and machine-to-machine communication. DistBelief uses
different optimization methods, namely SGD and Sandblaster.72 Last, but not least, there are
network architectures such as highway networks, residual networks, and dense nets.30,73–76

For example, highway networks are based on LSTM recurrent networks and they allow
for the efficient training of deep networks with hundreds of layers based on gradient
descent.73–75

Najafabadi et al.77 discuss some aspects of DL in big data analysis and challenges associated
with these efforts, including nonstationary data, high-dimensional data, and large-scale models.
The survey paper of Chen and Len78 also discusses challenges associated with big data and DL,
including high volumes, variety, and velocity of data. The survey paper of Landset et al.79

discusses open-source tools for ML with big data in Hadoop ecosystem.

2.3.5 Tools

Tools are also a large factor in DL research and development. Wan et al.80 observed that DL is at
the intersection of NNs, graphical modeling, optimization, pattern recognition, and signal
processing, which means there is a fairly high background level required for this area. Good
DL tools allow researchers and students to try some basic architectures and create new ones
more efficiently.

Table 1 lists some popular DL toolkits and links to the code. Herein, we review some of the
DL tools, and the tool analysis below is based on our experiences with these tools. We thank our
graduate students for providing detailed feedback on these tools.

AlexNet28 was a revolutionary paper that reintroduced the world to the results that DL
can offer. AlexNet uses ReLU because it is several times faster to evaluate than the hyperbolic
tangent. AlexNet revealed the importance of preprocessing by incorporating some data aug-
mentation techniques and was able to combat overfitting using max pooling and dropout
layers.

Caffe81 was the first widely used DL toolkit. Caffe is C++ based and can be compiled on
various devices, and offers command line, Python, and MATLAB interfaces. There are many
useful examples provided. The cons of Caffe are that is relatively hard to install, due to lack of
documentation and not being developed by an organized company. For those interested in some-
thing other than image processing (e.g., image classification, image segmentation) it is not really
suitable for other areas, such as audio signal processing.

TensorFlow82 is arguably the most popular DL tool available. Its pros are that TensorFlow
(1) is relatively easy to install both with CPU and GPU version on Ubuntu (The GPU version
needs CUDA and cuDNN to be installed ahead of time, which is a little complicated); (2) has
most of the state-of-the-art models implemented, and while some original implementations are
not implemented in TensorFlow, it is relatively easy to find a reimplementation in TensorFlow;
(3) has very good documentation and regular updates; (4) supports both Python and C++ inter-
faces; and (5) is relatively easy to expand to other areas besides image processing, as long as you
understand the tensor processing. One con of TensorFlow is that it is really restricted to Linux
applications, as the windows version is barely usable.

Ball, Anderson, and Chan: Comprehensive survey of deep learning in remote sensing: theories. . .

Journal of Applied Remote Sensing 042609-10 Oct–Dec 2017 • Vol. 11(4)



MatConvNet83 is a convenient tool, with unique abstract implementations for those very
comfortable with using MATLAB. It offers many popular trained CNNs, and the data sets
used to train them. It is fairly easy to install. Once the GPU setup is ready (installation of
drivers + CUDA support), training with the GPU is very simple. It also offers windows support.
The cons are (1) there is a substantially smaller online community compared to TensorFlow and
Caffe, (2) code documentation is not very detailed and in general does not have good online
tutorials besides the manual. Lack of getting started help besides a very simple example,
and (3) GPU setup can be quite tedious. For windows, visual studio is required, due to restric-
tions on MATLAB and its mex setup, as well as Nvidia drivers and CUDA support. On Linux,
one has much more freedom but must be willing to adapt to manual installations of Nvidia driv-
ers, CUDA support, and more.

Table 1 Some popular DL tools.

Tool and citation Tool summary and website

AlexNet28 A large-scale CNN with a nonsaturating, neurons and a very efficient GPU
parallel implementation of the convolution operation to make training faster.

Website: http://code.google.com/p/cuda-convnet/

Caffe81 C++ library with Python and MATLAB® interfaces.

Website: http://caffe.berkeleyvision.org/

cuda-convnet228 The DL tool cuda-convnet2 is a fast C++/CUDA CNN implementation and can
also model any directed acyclic graphs. Training is performed using BP. Offers
faster training on Kepler-generation GPUs and multi-GPU training support.

Website: https://code.google.com/p/cuda-convnet2/

gvnn84 The DL package gvnn is an NN library in Torch aimed toward bridging the gap
between classic geometric computer vision and DL. This DL package is used for
recognition, end-to-end visual odometry, depth estimation, etc.

Website: https://github.com/ankurhanda/gvnn

Keras85 Keras is a high-level Python NN library capable of running on top of either
TensorFlow or Theano and was developed with a focus on enabling fast
experimentation. Keras (1) allows for easy and fast prototyping, (2) supports both
convolutional networks and recurrent networks, (3) supports arbitrary connectivity
schemes, and (4) runs seamlessly on CPUs and GPUs.

Website: https://keras.io/ and https://github.com/fchollet/keras

MatConvNet83 A MATLAB® toolbox implementing CNNs with many pretrained CNNs for image
classification, segmentation, etc.

Website: http://www.vlfeat.org/matconvnet/

MXNet86 MXNet is a DL library. Features include declarative symbolic expression with
imperative tensor computation and differentiation to derive gradients. MXNet
runs on mobile devices to distributed GPU clusters.

Website: https://github.com/dmlc/mxnet/

TensorFlow82 An open-source software library for tensor data flow graph computation.
The flexible architecture allows you to deploy computation to one or more
CPUs or GPUs in a desktop, server, or mobile devices.

Website: https://www.tensorflow.org/

Theano87 A Python library that allows you to define, optimize, and efficiently evaluate
mathematical expressions involving multidimensional arrays. Theano features
(1) tight integration with NumPy, (2) transparent use of a GPU, (3) efficient
symbolic differentiation, and (4) dynamic C code generation.

Website: http://deeplearning.net/software/theano

Torch88 Torch is an embeddable scientific computing framework with GPU optimizations,
which uses the LuaJIT scripting language and a C/CUDA implementation. Torch
includes (1) optimized linear algebra and numeric routines, (2) neural network
and energy-based models, and (3) GPU support.

Website: http://torch.ch/
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2.4 DL in Other Domains

DL has been used in other areas than RS, namely human behavior analysis,89–92 speech recog-
nition,93–95 stereo vision,96 robotics,97 signal-to-text,98–102 physics,103,104 cancer detection,105–107

time-series analysis,108–110 image synthesis,111–117 stock market analysis,118 and security appli-
cations.119 These diverse set of applications show the power of DL.

For the interested reader, we provide some useful survey paper references. Arel et al.120 pro-
vide a survey paper on DL. Deng2 provide two important reasons for DL success: (1) GPU units
and (2) recent advances in DL research. They discuss generative, discriminative, and hybrid deep
architectures and show there is vast room to improve the current optimization techniques in DL.
Liu et al.121 give an overview of the autoencoder, the CNN, and DL applications. Wang and
Raj122 provide a history of DL. Yu and Deng123 provide a review of DL in signal and image
processing. Comparisons are made to shallow learning, and DL advantages are given. Two
good overviews of DL are the survey paper of Schmidhuber et al.56 and the book by
Goodfellow et al.23 Zhang et al.3 give a general framework for DL in RS, which covers four
RS perspectives: (1) image processing, (2) pixel-based classification, (3) target recognition,
and (4) scene understanding. In addition, they review many DL applications in RS. Cheng
et al.1 discuss both shallow and DL methods for feature extraction. Some good DL papers
are the introductory DL papers of Arnold et al.124 and Wang and Raj,122 the DL book by
Goodfellow et al.,23 and the DL survey papers in Refs. 2, 56, 64, 77, 78, 80, 121, 122, and 125.

3 DL Approaches in RS

There are many RS tasks that use RS data, including automated target detection, pansharpening,
land cover and land-use classification, time-series analysis, and change detection. Many of these
tasks use shape analysis, object recognition, dimensionality reduction, image enhancement, and
other techniques, which are all amenable to DL approaches. Table 2 groups DL papers reviewed

Table 2 DL paper subject areas in remote sensing.

Area References Area References

3-D (depth and shape) analysis 126–134 Advanced driver-assistance systems 135–139

Animal detection 140 Anomaly detection 141

ATR 142–153 Change detection 154–158

Classification 159–208 Data fusion 209

Dimensionality reduction 210, 211 Disaster analysis/assessment 212

Environment and water analysis 213–216 Geo-information extraction 217

Human detection 218–220 Image denoising/enhancement 221, 222

Image registration 223 Land cover classification 224–228

Land use/classification 229–239 Object recognition and detection 240–250

Object tracking 251, 252 Pansharpening 253

Planetary studies 254 Plant and agricultural analysis 255–260

Road segmentation/extraction 261–267 Scene understanding 268–270

Semantic segmentation/annotation 271–283 Segmentation 284–289

Ship classification/detection 290–292 Super-resolution 293–296

Traffic flow analysis 297, 298 Underwater detection 299–302

Urban/building 303–313 Vehicle detection/recognition 314–327

Weather forecasting 328–330
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in this paper into these basic categories. From the table, it can be seen that there is a large diver-
sity of applications, indicating that RS researchers have seen value in using DL methods in many
different areas.

Due to the large number of recent RS papers, we cannot review all of the papers using DL or
FL in RS applications. Instead, herein we focus on several papers in different areas of interest
that offer creative solutions to problems encountered in DL and FL and should also have a wide
interest to the readers. We do provide a summary of all of the DL in RS papers we reviewed
online at http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf.

3.1 Classification

Classification is the task of labeling pixels (or regions in an image) into one of several classes.
The DL methods outlined as follows use many forms of DL to learn features from the data itself
and perform classification at state-of-the-art levels. The following discusses classification in HSI,
3-D, satellite imagery, traffic sign detection, and synthetic aperture radar (SAR).

3.1.1 Hyperspectral image

HSI data classification is of major importance to RS applications, so many of the DL results we
reviewed were on HSI classification. HSI processing has many challenges, including high data
dimensionality and usually low numbers of training samples. Chen et al.331 propose an DBN-
based HSI classification framework. The input data are converted to a one-dimensional (1-D)
vector and processed via a DBN with three RBM layers, and the class labels are output from
a two-layer logistic regression NN. A spatial classifier using principal component analysis
(PCA) on the spectral dimension followed by 1-D flattening of a 3-D box, a three-level DBN,
and two-level logistic regression classifier. A third architecture uses combinations of the 1-D
spectrum and the spatial classifier architecture. He et al.170 developed a DBN for HSI classifi-
cation that does not require SGD training. Nonlinear layers in the DBN allow for the non-
linear nature of HSI data and a logistic regression classifier is used to classify the outputs
of the DBN layers. A parametric depth study showed depth of nine layers produced the best
results of depths from 1 to 15, and after a depth of nine, no improvement resulted by adding
more layers.

Some of the HSI DL approaches use both spectral and spatial information. Ma et al.187 cre-
ated an HSI spatial updated deep AE, which integrates spatial information. Small training sets
are mitigated by a collaborative, representation-based classifier and salt-and-pepper noise is
mitigated by a graph-cut-based spatial regularization. Their method is more efficient than com-
parable kernel-based methods, and the collaborative representation-based classification makes
their system relatively robust to small training sets. Yang et al.199 use a two-channel CNN to
jointly learn spectral and spatial features. Transfer learning is used when the number of training
samples is limited, where low-level and midlevel features are transferred from other scenes.
The network has a spectral CNN and spatial CNN, and the results are combined in three
FC layers. A softmax classifier produces the final class labels. Pan et al.193 proposed the so-called
rolling guidance filter and vertex component analysis network (R-VCANet), which also attempts
to solve the common problem of lack of HSI training data. The network combines spectral and
spatial information. The rolling guidance filter is an edge-preserving filter used to remove noise
and small details from imagery. The VCANet is a combination of vertex component
analysis,332 which is used to extract pure endmembers, and PCANet.333 A parameter analysis
of the number of training samples, rolling times, and the number and size of the convolution
kernels is discussed. The system performs well even when the training ratio is only 4%. Lee
and Kwon177 designed a contextual deep fully convolutional DL network with 14 layers that
jointly exploit spatial and HSI spectral features. Variable size convolutional features are used
to create a spectral–spatial feature map. A feature of the architecture is the initial layers use
both ½3 × 3 × B� convolutional masks to learn spatial features, and ½1 × 1 × B� for spectral fea-
tures, where B is the number of spectral bands. The system is trained with a very small number of
training samples (200/class).
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3.1.2 3-D

In 3-D analysis, there are several interesting DL approaches. Chen et al.334 used a 3-D CNN-
based feature extraction model with regularization to extract effective spectral–spatial features
from HSI. L2 regularization and dropout are used to help prevent overfitting. In addition, a vir-
tual-enhanced method imputes training samples. Three different CNN architectures are exam-
ined: (1) a 1-D using only spectral information, consisting of convolution, pooling, convolution,
pooling, stacking, and logistic regression; (2) a 2-D CNN with spatial features, with 2-D con-
volution, pooling, 2-D convolution, pooling, stacking, and logistic regression; (3) 3-D convo-
lution (2-D for spatial and third dimension is spectral); the organization is same as 2-D
case except with 3-D convolution. The 3-D CNN achieves near-perfect classification on the
data sets.

Chen et al.209 proposed an innovative 3-D CNN to extract the spectral–spatial features of HSI
data, a deep 2-D CNN to extract the elevation features of LiDAR data, and then an FC DNN to
fuse the 2-D and 3-D CNN outputs. The HSI data are processed via two layers of 3-D convo-
lution followed by pooling. The LiDAR elevation data are processed via two layers of 2-D con-
volution followed by pooling. The results are stacked and processed by an FC layer followed by
a logistic regression layer.

Cheng et al.243 developed a rotation-invariant CNN (RICNN), which is trained by optimiz-
ing an objective function with a regularization constraint that explicitly enforces the training
feature representations before and after rotating to be mapped close to each other. New training
samples are imputed by rotating the original samples by k rotation angles. The system is
based on AlexNet,28 which has five convolutional layers followed by three FC layers. The
AlexNet architecture is modified by adding a rotation-invariant layer that used the output
of AlexNet’s FC7 layer, and replacing the 1000-way softmax classification layer with a
ðCþ 1Þ-layer softmax classifier layer. AlexNet is pretrained, then fine-tuned using the
small number of HSI training samples. Haque et al.128 developed an attention-based human
body detector that leverages four-dimensional (4-D) spatiotemporal signatures and detects
humans in the dark (depth images with no RGB content). Their DL system extracts voxels
then encodes data using a CNN, followed by an LSTM. An action network gives the class
label and a location network selects the next glimpse location. The process repeats at the
next time step.

3.1.3 Traffic sign recognition

In the area of traffic sign recognition, a nice result came from Ciresan et al.,138 who created a
biologically plausible DNN that is based on the feline visual cortex. The network is composed of
multiple columns of DNNs, coded for parallel GPU speedup. The output of the columns is aver-
aged. It outperforms humans by a factor of two in traffic sign recognition.

3.1.4 Satellite imagery

In the area of satellite imagery analysis, Zhang et al.204 proposed a gradient-boosting random
convolutional network (GBRCN) to classify very high-resolution (VHR) satellite imagery. In
GBRCN, a sum of functions (called boosts) is optimized. A modified multiclass softmax func-
tion is used for optimization, making the optimization task easier. SGD is used for optimization.
Proposed future work was to use a variant of this method on HSI. Zhong et al.208 use efficient
small CNN kernels and a deep architecture to learn hierarchical spatial relationships in satellite
imagery. A softmax classifier output class labels based on the CNN DL outputs. The CPU han-
dles preprocessing (data splitting and normalization), while the GPU performs convolution,
ReLU and pooling operations, and the CPU handles dropout and softmax classification.
Networks with one to three convolution layers are analyzed, with RFs from 10 × 10 to
1000 × 1000. SGD is used for optimization. A hyperparameter analysis of the learning rate,
momentum, training-to-test ratio, and number of kernels in the first convolutional layer was
also performed.
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3.1.5 SAR

In the area of SAR processing, De and Bhattacharya305 used DL to classify urban areas, even
when rotated. Rotated urban target exhibits different scattering mechanisms, and the network
learns the α and γ parameters from the HH, VV, and HV bands (H, horizontal; V, vertical polari-
zation). Bentes et al.143 use a constant false alarm rate (CFAR) processor on SAR data followed
by N AEs. The final layer associates the learned features with class labels. Geng et al.168 used an
eight-layer network with a convolutional layer to extract texture features from SAR imagery, a
scale transformation layer to aggregate neighbor features, four-stacked AE (SAE) layers for fea-
ture optimization and classification, and a two-layer postprocessor. Gray-level co-occurrence
matrix and Gabor features are also extracted, and average pooling is used in layer two to mitigate
noise.

3.2 Transfer Learning

Transfer learning uses training in one image (or domain) to enable better results in another image
(or domain). If the learning crosses domains, then it may be possible to use lower to midlevel
features learned in the original domain as useful features in the new domain.

Marmanis et al.276 attacked the common problem in RS of limited training data by using
transfer learning across domains. They used a CNN pretrained on the ImageNet data set and
extracted an initial set of representations from orthoimagery. These representations are then
transferred to a CNN classifier. This paper developed a cross-domain feature fusion system.
Their system has seven convolution layers followed by two long MLP layers, three convolu-
tion layers, two more large MLP layers, and finally a softmax classifier. They extract features
from the last layer, since the work of Donahue et al.335 showed that most of the discriminative
information is contained in the deeper layers. In addition, they take features from the large
(1 × 1 × 4096) MLP, which is a very long vector output, and transform it into a 2-D array
followed by a large convolution (91 × 91) mask layer. This is done because the large feature
vector is a computational bottleneck, while the 2-D data can very effectively be processed via
a second CNN. This approach will work if the second CNN can learn (disentangle) the
information in the 2-D representation through its layers. This approach is unique and it
raises some interesting questions about alternate DL architectures. This approach was also
successful because the features learned by the original CNN were effective in the new
image domain.

Penatti et al.236 asked if deep features generalize from everyday objects to RS and aerial scene
domains. A CNN was trained for recognizing everyday objects using ImageNet. The CNNs
analyzed performed well, in areas well outside of their training. In a similar vein, Salberg140

use CNNs pretrained on ImageNet to detect seal pups in aerial RS imagery. A linear SVM
was used for classification. The system was able to detect seals with high accuracy.

3.3 3-D Processing and Depth Estimation

Cadena et al.126 used multimodal AEs for RGB imagery, depth images, and semantic labels.
Through the AE, the system learns a shared representation of the distinct inputs. The AEs
first denoise the given inputs. Depth information is processed as inverse depth (so sky can
be handled). Three different architectures are investigated. Their system was able to make
a sparse depth map more dense by fusing RGB data.

Feng et al.127 developed a content-based 3-D shape retrieval system. The system uses
a low-cost 3-D sensor (e.g., Kinect or Realsense) and a database of 3-D objects. An ensemble
of AEs learns compressed representations of the 3-D objects, and the AE acts as probabilistic
models which output a likelihood score. A domain adaptation layer uses weakly supervised
learning to learn cross-domain representations [noisy imagery and 3-D computer-aided
design (CAD)]. The system uses the AE-encoded objects to reconstruct the objects, and
then additional layers rank the outputs based on similarity scores. Sedaghat et al.133 use a
3-D voxel net that predicts the object pose as well as its class label, since 3-D objects can
appear very differently based on their poses. The results were tested on LiDAR data,
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CAD models, and RGB plus depth (RGBD) imagery. Finally, Zelener and Stamos336 label
missing 3-D LiDAR points to enable the CNN to have higher accuracy. A major contribution
of this method is creating normalized patches of low-level features from the 3-D LiDAR point
cloud. The LiDAR data are divided into multiple scan lines, and positive and negative samples.
Patches are randomly selected for training. A sliding block scheme is used to classify the
entire image.

3.4 Segmentation

Segmentation means to process imagery and divide it into regions (segments) based on the con-
tent. Basaeed et al.286 use a committee of CNNs that perform multiscale analysis on each band to
estimate region boundary confidence maps, which are then interfused to produce an overall con-
fidence map. A morphological scheme integrates these maps into a hierarchical segmentation
map for the satellite imagery.

Couprie et al.271 used a multiscale CNN to learn features directly from RGBD imagery. The
image RGB channels and the depth image are transformed through a Laplacian pyramid
approach, where each scale is fed to a three-stage convolutional network that creates feature
maps. The feature maps of all scales are concatenated (the coarser-scale feature maps are
upsampled to match the size of the finest-scale map). A parallel segmentation of the image
into superpixels is computed to exploit the natural contours of the image. The final labeling
is obtained by the aggregation of the classifier predictions into the superpixels.

In his master’s thesis, Kaiser274 (1) generated new ground-truth data sets for three cities con-
sisting of VHR aerial images with ground sampling distance on the order of centimeters and
corresponding pixel-wise object labels, (2) developed FC networks (FCNs) were used to perform
pixel-dense semantic segmentation, (3) created two modifications of the FCN architecture were
found that gave performance improvements, and (4) used transfer learning, where the FCN
model was trained on huge and diverse ground-truth data of the three cities and achieved
good semantic segmentations of areas not used for training.

Längkvist et al.176 applied a CNN to orthorectified multispectral imagery (MSI) and a digital
surface model of a small city for a full, fast, and accurate per-pixel classification. The predicted
low-level pixel classes are then used to improve the high-level segmentation. Various design
choices of the CNN architecture are evaluated and analyzed.

3.5 Object Detection and Tracking

Object detection and tracking is important in many RS applications. It requires understanding at
a higher level than just at the pixel level. Tracking then takes the process one step further and
estimates the location of the object over time.

Diao et al.245 propose a pixel-wise DBN for object recognition. A sparse RBM is trained
in an unsupervised manner. Several layers of RBM are stacked to generate a DBN. For
fine-tuning, a supervised layer is attached to the top of the DBN, and the network is trained
using backpropagation (BP) with a sparse penalty constraint. Ondruska and Posner251 used
RNN to track multiple objects from 2-D laser data. This system uses no hand-coded plant
or sensor models (these are required in Kalman filters). Their system uses an end-to-
end RNN approach that maps raw sensor data to a hidden sensor space. The system then
predicts the unoccluded state from the sensor space data. The system learns directly from
the data.

Schwegmann et al.290 use a very deep highway network for ship discrimination in SAR
imagery, and a three-class SAR data set is also provided. Deep networks of 2, 20, 50, and
100 layers were tested, and the 20-layer network had the best performance. Tang et al.291

used a hybrid approach in both feature extraction and machine learning. For feature extraction,
the discrete wavelet transform (DWT) LL, LH, HL, and HH (L, low frequency and H, high
frequency) features from the JPEG2000 CDF9/7 encoder were used. The LL features were inputs
to a stacked DAE (SDAE). The high-frequency DWT subbands LH, HL, and HH are inputs to a
second SDAE. Thus, the hand-coded wavelets provide features, while the two SDAEs learn
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features from the wavelet data. After initial segmentation, the segmentation area, major-to-minor
axis ratio, and compactness, which are classical machine learning features, are also used to
reduce false positives. The training data are normalized to zero mean and unity variance,
and the wavelet features are normalized to the [0,1] range. The training batches have different
class mixtures, and 20% of inputs are dropped to the SDAEs and there is a 50% dropout in the
hidden units. The extreme learning machine is used to fuse the low- and high-frequency sub-
bands. An online-sequential extreme learning machine, which is a feedforward shallow NN, is
used for classification.

Two of the most interesting results were developed to handle incomplete training data and
how object detectors emerge from CNN scene classifiers. Mnih and Hinton263 developed two
robust loss functions to deal with incomplete training labeling and misregistration (location of
object in map) is inaccurate. An NN is used to model pixel distributions (assuming they are
independent). Optimization is performed using expectation maximization. Zhou et al.250

show that object detectors emerge from CNNs trained to perform scene classification. They
demonstrated that the same CNN can perform both scene recognition and object localization
in a single forward pass, without having to explicitly learn the notion of objects. Images
had their edges removed such that each edge removal produces the smallest change to the clas-
sification discriminant function. This process is repeated until the image is misclassified. The
final product of that analysis is a set of simplified images which still have high classification
accuracies. For instance, in bedroom scenes, 87% of these contained a bed. To estimate the
empirical RF, the images were replicated and random 11 × 11 occluded patches were overlaid.
Each occluded image is input to the trained DL network, and the activation function changes are
observed; a large discrepancy indicates the patch was important to the classification task. From
this analysis, a discrepancy map is built for each image. As the layers get deeper in the network,
the RF size gradually increases, and the activation regions are semantically meaningful. Finally,
the objects that emerge in one specific layer indicated that the networks were learning object
categories (dogs, humans, etc.) This work indicates there is still extensive research to be per-
formed in this area.

3.6 Super-Resolution

Super-resolution analysis attempts to infer subpixel information from the data. Dong et al.294

used a DL network that learns a mapping between the low-resolution (LR) and the high-reso-
lution (HR) images. The CNN takes the LR image as input and the HR image as output. In this
method, all layers of the DL system are jointly optimized. In a typical super-resolution pipeline
with sparse dictionary learning, image patches are densely sampled from the image and encoded
in a sparse dictionary. The DL system does not explicitly learn the sparse dictionaries or mani-
folds for modeling the image patches. The proposed system provides better results than tradi-
tional methods and has a fast online implementation. The results improve when more data are
available or when deeper networks are used.

3.7 Weather Forecasting

Weather forecasting attempts to use physical laws combined with atmospheric measurements to
predict weather patterns, precipitation, etc. The weather affects virtually every person on the
planet, so it is natural that there are several RS papers using DL to improve weather forecasting.
DL ability to learn from data and understand highly nonlinear behavior shows much promise in
this area of RS.

Chen et al.213 use DBNs for drought prediction. A three-step process (1) computes the stand-
ardized precipitation index (SPI), which is effectively a probability of precipitation, (2) normal-
izes the SPI, and (3) determines the optimal network architecture (number of hidden layers)
experimentally. Firth328 introduced a differential integration time step network composed of
a traditional NN and a weighted summation layer to produce weather predictions. The NN com-
putes the derivatives of the inputs. These elemental building blocks are used to model the various
equations that govern weather. Using time-series data, forecast convolutions feed time derivative
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networks which perform time integration. The output images are then fed back to the inputs at
the next time step. The recurrent deep network can be unrolled. The network is trained using BP.
A pipelined, parallel version is also developed for efficient computation. The model outper-
formed standard models. The model is efficient and works on a regional level, versus previous
models that are constrained to local levels.

Kovordányi and Roy329 used NNs in cyclone track forecasting. The system uses a multilayer
NN designed to mimic portions of the human visual system to analyze National Oceanic and
Atmospheric Administration’s Advanced Very High-Resolution Radiometer (NOAA AVHRR)
imagery. At the first network level, shape recognition focuses on narrow spatial regions, e.g.,
detecting small cloud segments. Image regions can be processed in parallel using a matrix feature
detector architecture. Rotational variations, which are paramount in cyclone analysis, are incor-
porated into the architecture. Later stages combine previous activations to learn more complex
and larger structures from the imagery. The output at the end of the processing system is a direc-
tional estimator of cyclone motion. The simulation tool Leabra++ (http://ccnbook.colorado.edu/)
was used. This tool is designed for simulating brain-like artificial NNs (ANNs). There are a
total of five layers in the system: an input layer, three processing layers, and an output layer.
During training, images were divided into smaller blocks and rotated, shifted, and enlarged.
During training, the network was first given inputs and allowed to settle to steady state.
Weak activations were suppressed, with at most k nodes were allowed to stay active. Then
the inputs and correct outputs were presented to the network, and the weights are all zeroed.
The learned weights are a combination of the two schemes. Conditional PCA and contrast’s
Hebbian learning were used to train the network. The system was very effective if the cyclo-
ne’s center varied about 6% or less of the original image size, and less effective if there was
more variation.

Shi et al.216 extended the FC LSTM (FC-LSTM) network that they call ConvLSTM, which
has convolutional structures in the input-to-state and state-to-state transitions. The application is
precipitation nowcasting, which takes weather data and predicts immediate future precipitation.
ConvLSTM used 3-D tensors whose last two dimensions are spatial to encode spatial data into
the system. An encoding LSTM compresses the input sequence into a latent tensor, while the
forecasting LSTM provides the predictions.

3.8 Automated Object and Target Detection and Identification

Automated object and automated target detection and identification are an important RS task for
military applications, border security, intrusion detection, advanced driver-assistance systems,
etc. Both automated target detection and identification are hard tasks, because usually there are
very few training samples for the target (but almost all samples of the training data are available
as nontarget), and often there are large variations in aspect angles, lighting, etc.

Ghazi et al.255 used DL to identify plants in photographs using transfer parameter optimi-
zation. The main contributions of this work are (1) a state-of-the-art plant detection transfer
learning system and (2) an extensive study of fine-tuning, iteration size, batch size, and data
imputation (rotation, translation, reflection, and scaling). It was found that transfer learning
(and fine-tuning) provided better results than training from scratch. Also, if training from scratch,
smaller networks performed better, probably due to smaller training data. The authors suggest
using smaller networks in these cases. Performance was also directly related to the network
depth. By varying the iteration sizes, it is seen that the validation accuracies rise quickly ini-
tially and then grow slowly. The networks studied are all resilient to overfitting. The batch
sizes were varied, and larger batch sizes resulted in higher performance at the expense of
longer training times. Data imputation also had a significant effect on performance. The num-
ber of iterations had the most effect on the output, followed by the number of patches, and the
batch size had the least significant effect. There were significant differences in training times of
the systems. Li et al.141 used DL for anomaly detection. In this work, a reference image with
pixel pairs (a pair of samples from the same class and a pair from different classes) is required.
Using transfer learning, the system is used on another image from the same sensor. Using
vicinal pixels, the algorithm recognizes central pixels as anomalies. A 16-level network
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contains layers of convolution followed by ReLUs. A fully connected layer then provides out-
put labels.

3.9 Image Enhancement

Image enhancement includes many areas such as pansharpening, denoising, and image registra-
tion. Image enhancement is often performed prior to feature extraction or other image processing
steps. Huang et al.253 use a modified sparse denoising autoencoder (SPDAE), denoted MSDAE,
which uses the SPDAE to represent the relationship between the HR image patches as clean data
to the lower spatial resolution, high spectral resolution MSI image as corrupted data. The
reconstruction error drives the cost function and layer-by-layer training is used. Quan et al.223

use DL for SAR image registration, which is in general a harder problem than RGB image regis-
tration due to high speckle noise. The RBM learns features useful for image registration, and the
random sample consensus algorithm is run multiple times to reduce outlier points.

Wei et al.221 applied a five-layer DL network to perform image quality improvement. In their
approach, degraded images are modeled as downsampled images that are degraded by a blurring
function and additive noise. Instead of trying to estimate the inverse function, a DL network
performs feature extraction at layer 1, then the second layer learns a matrix of kernels and biases
to perform nonlinear operations to layer 1 outputs. Layers 3 and 4 repeat the operations of layers
1 and 2. Finally, an output layer reconstructs the enhanced imagery. They demonstrated results
with nonuniform haze removal and random amounts of Gaussian noise. Zhang et al.222 applied
DL to enhance thermal imagery, based on first compensating for the camera transfer function
(small- and large-scale nonlinearities), and then super-resolution target signature enhancement
via DL. Patches are extracted from LR imagery, and the DL learns feature maps from this
imagery. A nonlinear mapping of these feature maps to a HR image is then learned. SGD is
used to train the network.

3.10 Change Detection

Change detection is the process of using two registered RS images taken at different times and
detecting the changes, which can be due to natural phenomenon such as drought or flooding,
or due to man-made phenomenon, such as adding a new road or tearing down an old building.
We note that there is a paucity of DL research into change detection. Pacifici et al.156 used DL for
change detection in VHR satellite imagery. The DL system exploits the multispectral and
multitemporal nature of the imagery. Saturation is avoided by normalizing data to ½−1;1� range.
To mitigate illumination changes, band ratios such as blue/green are used. These images are
classified according to (1) man-made surfaces, (2) green vegetation, (3) bare soil and dry veg-
etation, and (4) water. Each image undergoes a classification, and a multitemporal operator
creates a change mask. The two classification maps and the change mask are fused using an
AND operator.

3.11 Semantic Labeling

Semantic labeling attempts to label scenes or objects semantically, such as “there is a truck next
to a tree.” Sherrah280 used the recent development of fully connected convolutional neural net-
works (FC-CNNs), which were developed by Long et al.337 The FC-CNN is applied to remote-
sensed VHR imagery. In their network, there is no downsampling. The system labels images
semantically pixel-by-pixel. Xie et al.310 used transfer learning to avoid training issues due to
scarce training data, transfer learning is used. The FC-CNN trains in daytime imagery and pre-
dicts nighttime lights. The system also can infer poverty data from the night lights, as well as
delineating man-made structures, such as roads, buildings, and farmlands. The CNN was trained
on ImageNet and uses the NOAA nighttime RS satellite imagery. Poverty data were derived from
a living standards measurement survey in Uganda. Mini-batch gradient descent with momentum,
random mirroring for data augmentation, and 50% dropout were used to help avoid overfitting.
The transfer learning approach gave higher performance in accuracy, F1 scores, precision, and
area under the curve.
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3.12 Dimensionality Reduction

HSI is inherently highly dimensional, and often contains highly correlated data. Dimensionality
reduction can significantly improve results in HSI processing. Ran et al.210 split the spectrum
into groups based on correlation, then apply m CNNs in parallel, one for each band group.
The CNN output is concatenated and then classified via a two-layer FC-CNN. Zabalza et al.211

used segmented SAEs that are used for dimensionality reduction. The spectral data are seg-
mented into k regions, each of which has an SAE to reduce dimensionality. Then the features
are concatenated into a reduced profile vector. The segmented regions are determined using
the correlation matrix of the spectrum. In Ball et al.,338 it was shown that band selection is
task and data dependent, and often better results can be found by fusing similarity measures
versus using correlation, so both of these methods could be improved using similar approaches.
Dimensionality reduction is an important processing step in many classification algorithms,339,340

pixel unmixing,16,17,341–345 etc.

4 Unsolved Challenges and Opportunities for DL in RS

DL applied to RS has many challenges and open issues. Table 3 gives some representative DL
and FL survey papers and discusses their main content. Based on these reviews and the reviews

Table 3 Representative DL and FL survey papers.

References Paper contents

120 A survey paper on DL. Covers CNNs, DBNs, etc.

346 Brief intro to neural networks in remote sensing.

64 Overview of unsupervised FL and deep learning. Provides overview of probabilistic
models (undirected graphical, RBM, AE, SAE, DAE, contractive autoencoders,
manifold learning, difficulty in training deep networks, handling high-dimensional inputs,
evaluating performance, etc.)

347 Examines big-data impacts on SVM machine learning.

1 Covers about 170 publications in the area of scene classification and discusses limitations
of data sets and problems associated with HR imagery. They discuss limitations of
hand-crafted features, such as texture descriptors, GIST, SIFT, HOG.

2 A good overview of architectures, algorithms, and applications for DL. Three important
reasons for DL success are (1) GPU units, (2) recent advances in DL research, and
(3) the success of DL approaches in many image processing challenges. DL is at
the intersection of machine learning, neural networks, optimization, graphical modeling,
pattern recognition, probability theory, and signal processing. They discuss generative,
discriminative, and hybrid deep architectures. They show there is vast room to improve
the current optimization techniques in DL.

348 Overview of NN in image processing.

349 Discusses trends in extreme learning machines, which are linear, single hidden layer
feedforward neural networks. ELMs are comparable or better than SVMs in generalization
ability. In some cases, ELMs have comparable performance to DL approaches.
They generally have high generalization capability, are universal approximators,
do not require iterative learning, and have a unified learning theory.

350 Provides overview of feature reduction in remote sensing imagery.

121 A survey of deep neural networks, including the AE, the CNN, and applications.

351 Survey of image classification methods in remote sensing.

352 Short survey of DL in hyperspectral remote sensing. In particular, in one study,
there was a definite sweet spot shown in the DL depth.
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of many survey papers in RS, we have identified the following major open issues in DL in RS.
Herein, we focus on unsolved challenges and opportunities as it relates to

i. inadequate data sets (Sec. 4.1),
ii. human-understandable solutions for modeling physical phenomena (Sec. 4.2),
iii. big data (Sec. 4.3),
iv. nontraditional heterogeneous data sources (Sec. 4.4),
v. DL architectures and learning algorithms for spectral, spatial, and temporal data (Sec. 4.5),
vi. transfer learning (Sec. 4.6),
vii. an improved theoretical understanding of DL systems (Sec. 4.7),

viii. high barriers to entry (Sec. 4.8), and
ix. training and optimizing the DL (Sec. 4.9).

4.1 Inadequate Data Sets

4.1.1 Open question #1a: how can DL systems work well with limited data sets?

There are two main issues with most current RS data sets. Table 4 provides a summary of the
more common open-source data sets for the DL papers using HSI data. Many of these papers
used custom data sets, and these are not reported. Table 4 shows that the most commonly used
data sets were Indian Pines, Pavia University, Pavia City Center, and Salinas.

A detailed online table (too large to put in this paper) is provided, which lists each paper cited
in Table 2. For each paper, a summary of the contributions is given, the data sets used are listed,
and the papers are categorized in areas (e.g., HSI/MSI, SAR, 3-D, etc.). The interested reader can
find this table at http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf. In addi-
tion, a second online table lists details about data sets from the papers we reviewed. It is located
at http://cs-chan.com/source/FADL/Online_Dataset_Summary_Table.pdf

Although these are all good data sets, the accuracies from many of the DL papers are nearly
saturated. This is shown clearly in Table 5. Table 5 shows results for the HSI DL papers against
the commonly used data sets Indian Pines, Kennedy Space Center, Pavia City Center, Pavia
University, Salinas, and the Washington DC Mall. First, overall accuracy (OA) results from dif-
ferent papers must be taken with a grain of salt, since (1) the number of training samples per class
can differ for each paper, (2) the number of testing samples can also differ, (3) classes with few
relative training samples can even have 0% OA, and if there is a large number of test samples of
the other classes, the final overall accuracies can still be high. Nevertheless, it is clear from

Table 3 (Continued).

References Paper contents

353 Overview of shallow HSI processing.

15 Overview of shallow endmember extraction algorithms.

56 An in-depth historical overview of DL.

122 History of DL.

354 A review of road extraction from remote sensing imagery.

123 A review of DL in signal and image processing. Comparisons are made to shallow learning,
and DL advantages are given.

3 Provides a general framework for DL in remote sensing. Covers four RS perspectives:
(1) image processing, (2) pixel-based classification, (3) target recognition, and
(4) scene understanding.
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Table 4 HSI Data set usage.

Data set and reference Number of uses

IEEE GRSS 2013 Data Fusion Contest355 4

IEEE GRSS 2015 Data Fusion Contest355 1

IEEE GRSS 2016 Data Fusion Contest355 2

Indian Pines356 27

Kennedy Space Center357 8

Pavia City Center358 13

Pavia University358 19

Salinas359 11

Washington DC Mall360 2

Table 5 HSI OA results in percent.

References IP KSC PaCC PaU Sal DCM

284 93.4 — — — — —

160 98.0 98.0 — 98.4 — 95.4

161 97.6 — — — — —

162 97.6 — — — — —

362 — 98.8 98.5 — — —

331 96.0 — 99.1 — — —

167 — — — 94.3 — —

209 89.6 — — 87.1 — —

170 — 96.6 — — — —

172 90.2 — — 92.6 92.6 —

174 — 84.2 — — — —

177 92.1 — — 94.0 — —

178 — — — 99.9 — —

179 96.3 — — — — —

181 94.3 — — 96.5 94.8 —

182 97.6 — — 99.4 98.8 —

183 — 96.0 85.6 — — —

185 91.9 — 99.8 96.7 95.5 —

186 — — 94.0 93.5 — —

233 86.5 — — 82.6 — —

187 99.2 — 99.9 — — —
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examination of the table that the Indian Pines, Pavia City Center, Pavia University, and Salinas
data sets are basically saturated.

In general, it is good to compare new methods with commonly used data sets, new and chal-
lenging data sets are required. Cheng et al.1,361 point out that many existing RS data sets lack
image variation, diversity, and have a small number of classes, and some data sets are also
saturating with accuracy. They created a large-scale benchmark data set, “NWPU-RESISC45,”
which attempts to address all of these issues, and made it available to the RS community. The RS
community can also benefit from a common practice in the CV community: publishing both data
sets and algorithms online, allowing for more comparisons. A typical RS paper may only test their
algorithm on two or three images and against only a few other methods. In the CV community,
papers usually compare against a large amount of other methods and with many data sets, which
may provide more insight about the proposed solution and how it compares with previous work.

An extensive table of all the data sets used in the papers reviewed for this survey paper
is made available online, because it is too large to include in this paper. The table is available
at http://cs-chan.com/source/FADL/Online_Paper_Summary_Table.pdf. The table lists the data
set name, briefly describes the data sets, provides a URL (if one is available), and a reference.
Hopefully, this table will assist researchers who are looking for publicly available data sets.

4.1.2 Open question #1b: how can DL systems work well with limited training
data?

The second issue is that most RS data have a very small amount of training data available.
Ironically, in the CV community, DL has an insatiable hunger for larger and larger data sets

Table 5 (Continued).

References IP KSC PaCC PaU Sal DCM

188 — — 96.0 — — 83.8

228 98.9 — 99.9 — 99.5 —

190 95.7 — — 99.6 97.4 —

191 96.8 — — — — —

234 79.3 — — — —

193 97.9 97.9 — 96.8 — —

197 — 80.5 — — — —

210 93.1 — — 95.6 — —

363 96.6 — — — — —

238 73.0 89.0 — — — —

198 93.1 — — 90.4 99.4 —

199 95.6 — — — — —

201 — — — 67.9 85.2 —

202 — — 95.2 — — —

211 82.1 — 97.4 — — —

205 99.7 — — 98.8 — —

206 — — 99.7 96.8 — —

Note: Results higher than 99% are in bold.
Note: IP, Indian Pines, KSC, Kennedy Space Center, PaCC, Pavia City Center, Pau, Pavia University, Sal,
Salinas, and DCM, Washington DC Mall.
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(millions or tens of millions of training images), while in the RS field, there is also a large
amount of imagery; however, there is usually only a small amount with labeled training samples.
RS training data are expensive, error-prone, and usually require some expert interpretation,
which is typically expensive (in terms of time, effort involved, and money) and often requires
large amounts of field work and many hours or days postprocessing the data. Many DL systems,
especially those with large numbers of parameters, require large amounts of training data, or else
they can easily overtrain and not generalize well. This problem has also plagued other shallow
systems as well, such as SVMs.

Approaches used to mitigate small training samples are (1) transfer learning, where one trains
on other imagery to obtain low- to midlevel features which can still be used, or on other images
from the same sensor—transfer learning is discussed in Sec. 4.6; (2) data augmentation, includ-
ing affine transformations, rotations, small patch removal, etc.; (3) using ancillary data, such
as data from other sensor modalities [e.g., LiDAR, digital elevation models (DEMs), etc.];
and (4) unsupervised training, where training labels are not required, e.g., AEs and SAEs.
SAEs that have a diabolo shape will force the AE network to learn a low-dimensional
representation.

Ma et al.187 used a DAE and employed a collaborative representation-based classification,
where each test sample can be linearly represented by the training samples in the same class with
the minimum residual. In classification, features of each sample are approximated with a linear
combination of features of all training sample within each class, and the label can be derived
according to the class that best approximates the test features. Interested readers are referred to
Refs. 46–48 in Ref. 187 for more information on collaborative representation. Tao et al.364 used a
stacked sparse AE (SSAE) that was shown to be very generalizable and performed well in cases
when there were limited training samples. Ghamisi et al.224 use Darwinian particle swarm opti-
mization in conjunction with CNNs to select an optimal band set for classifying HSI data.
By reducing the input dimensionality, fewer training samples are required. Yang et al.199

used dual CNNs and transfer learning to improve performance. In this method, the lower
and middle layers can be trained on other scenes and train the top layers on the limited training
samples. Ma et al.188 imposed a relative distance prior on the SAE DL network to deal with
training instabilities. This approach extends the SAE by adding the new distance prior term
and corresponding SGD optimization. LeCun365 reviews a number of unsupervised learning
algorithms using AEs, which can possibly aid when training data are minimal. Pal366 reviews
kernel methods in RS and argues that SVMs are a good choice when there are a small number of
training samples. Petersson et al.352 suggest using SAEs to handle small training samples in HSI
processing.

4.2 Human-Understandable Solutions for Modeling Physical Phenomena

4.2.1 Open question #2a: how can DL improve model-based RS?

Many RS applications depend on models (e.g., a model of crop output given rain, fertilizer
and soil nitrogen content, and time of year), many of which are very complicated and often
highly nonlinear. Model outputs can be very inaccurate if the models do not adequately cap-
ture the true input data and properly handle the intricate interrelationships among input
variables.

Abdel-Rahman and Ahmed367 pointed out that more accurate estimation of nitrogen content
and water availability can aid biophysical parameter estimation for improving plant yield mod-
els. Ali et al.368 examine biomass estimation, which is a nonlinear and highly complex problem.
The retrieval problem is ill-posed, and the electromagnetic response is the complex result of
many contributions. The data pixels are usually mixed, making this a hard problem. ANNs
and support vector regression have shown good results. They anticipate that DL models can
provide good results. Both Adam et al.369 and Ozesmi and Bauer370 agree that there is need
for improvement in wetland vegetation mapping. Wetland species are hard to detect and identify
compared to terrestrial plants. Hyperspectral sensing with narrow bandwidths in frequency can
aid. Pixel unmixing is important since canopy spectra are similar and combine with underlying
hydrologic regime and atmospheric vapor. Vegetation spectra highly correlated among species,

Ball, Anderson, and Chan: Comprehensive survey of deep learning in remote sensing: theories. . .

Journal of Applied Remote Sensing 042609-24 Oct–Dec 2017 • Vol. 11(4)



making separation difficult. Dorigo et al.371 analyzed inversion-based models for plant analysis,
which is inherently an ill-posed and hard task. They found that using artificial neural network
(ANN) inversion techniques have shown good results. DL may be able to help improve results.
Canopy reflections are governed by large number of canopy elements interacting and by external
factors. Since DL networks can learn very complex nonlinear systems, it seems like there is
much room for improvement in applying DL models. DBNs or other DL systems seem like
a natural fit for these types of problems.

Kuenzer et al.372 and Wang et al.373 assess biodiversity modeling. Biodiversity occurs at all
levels from molecular to individual animals, to ecosystem, and to global. This requires a large
variety of sensors and analysis at multiple scales. However, a main challenge is low temporal
resolution. There needs to be a focus beyond just pixel-level processing and using spatial patterns
and objects. DL systems have been shown to learn hierarchical features, with smaller scale fea-
tures learned at the beginning of the network, and more complex and abstract features learned in
the deeper portions.

4.2.2 Open question #2b: what tools and techniques are required to
“understand” how the DL works?

It is also worth mentioning that many of these applications involve biological and scientific end-
users, who will definitely want to understand how the DL systems work. For instance, modeling
some biological processes using a linear model is easily understood—both the mathematical
model and the statistics resulting from estimating the model parameters are well understood
by scientists and biologists. However, a DL system can be so large and complex as to defy
analysis. We note that this is not specific to RS, but a general problem in the broader DL
community.

The DL system is seen by many researchers, especially scientists and RS end-users, as a
black box that is hard to understand what is happening “under the hood.” Egmont-Petersen
et al.348 and Fassnacht et al.374 both state that disadvantages of NNs are understanding what
they are actually doing, which can be difficult to understand. In many RS applications, just
making a decision is not enough; people need to understand how reliable the decision is
and how the system arrived at that decision. Ali et al.368 also echo this view in their review
paper on improving biomass estimation. Visualization tools, which show the convolutional
filters, learning rates, and tools with deconvolution capabilities to localize the convolutional
firings, are all helpful.22,375–378 Visualization of what the DL is actually learning is an open
area of research. Tools and techniques capable of visualizing what the network is learning
and measures of how robust the network is (estimating how well it may generalize) would
be of great benefit to the RS community (and the general DL community).

4.3 Big Data

4.3.1 Open question #3: what happens when DL meets big data?

As already discussed in Sec. 2.3.4, a number of mathematics, algorithms, and hardware have
been put forth to date relative to large-scale DL networks and DL in big data. However, this
challenge is not close to being solved. Most approaches to date have focused on big data chal-
lenges in RGB or RGBD data for tasks, such as face and object detection or speech. With respect
to RS, we have many of the same problems as CV, but there are unique challenges related to
different sensors and data. First, we can break big data into its different so-called “parts,” e.g.,
volume, variety, and velocity. With respect to DBNs, CNNs, AEs, etc., we are primarily con-
cerned with creating new robust and distributed mathematics, algorithms, and hardware that can
ingest massive streams of large, missing, noisy data from different sources, such as sensors,
humans, and machines. This means being able to combine image stills, video, audio, text, etc.,
with symbolic and semantic variations. Furthermore, we require real-time evaluation and pos-
sibly online learning. As big data in DL are large topic, we restrict our focus herein to factors that
are unique to RS.
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The first factor that we focus on is high spatial and more-so spectral dimensionality.
Traditional DLs operate on relatively small grayscale or RGB imagery. However, SAR imagery
has challenges due to noise, and MSI and HSI can have from four to hundreds to possibly
thousands of channels. As Arel et al.120 pointed out, a very difficult question is how well
DL architectures scale with dimensionality. To date, preliminary research has tried to combat
dimensionality by applying dimensionality reduction or feature selection prior to DL, e.g.,
Benediktsson et al.379 reference a different band selection, grouping, feature extraction, and sub-
space identification in HSI RS.

Ironically, most RS areas suffer from a lack of training data. Whereas they may have massive
amounts of temporal and spatial data, there may not be the seasonal variations, times of day,
object variation (e.g., plants, crops, etc.), and other factors that ultimately lead to sufficient
variety needed to train a DL model. For example, most online hyperspectral data sets have
little-to-no variety and it is questionable about what they are, and really can at that, learn.
In stark contrast, most DL systems in CV use very large training sets, e.g., millions or billions
of faces in different illuminations, poses, inner class variations, etc. Unless the RS DL applies
a method such as transfer learning, DL in RS often has very limited training data. For example,
Ma et al.188 tried to address this challenge by developing a new prior to deal with the instability
of parameter estimation for HSI classification with small training samples. The SAE is modi-
fied by adding the relative distance prior in the fine-tuning process to cluster the samples
with the same label and separate the ones with different labels. Instead of minimizing clas-
sification error, this network enforces intraclass compactness and attempts to increase inter-
class discrepancy.

Part of this open question is also an open question in the DL community in general, that is,
what is the best training method? There is currently no consensus, and many times people use
whatever method is easy to use based on their DL software. Packages, such as TensorFlow, offer
many different methods, so the user can try them and experiment. Significantly different results
can be found running the same algorithms with different data on different machines (especially
machines with GPUs versus machines with no GPUs, etc.).

4.4 Nontraditional Heterogeneous Data Sources

4.4.1 Open question #4a: how can DL work with nontraditional data sources?

Nontraditional data sources, such a Twitter and YouTube, offer data that can be useful to RS.
Analyzing these types of data will probably never replace traditional RS methods, but usually
offer benefits to augment RS data, or provide quality real-time data before RS methods, which
usually take longer to execute.

Fohringer et al.380 used information extracted from social media photos to enhance RS data
for flood assessments. They found one major challenge was filtering posts to a manageable
amount of relevant ones to further assess. The data from Twitter and Flickr proved useful
for flood depth estimation prior to RS-based methods, which typically take 24 to 28 h.
Frias-Martinez and Frias-Martinez381 take advantage of large amounts of geolocated content
in social media by analyzing tweets as a complimentary source of data for urban land-use plan-
ning. Data from Manhattan (New York), London (UK), and Madrid (Spain) were analyzed using
a self-organizing map382 followed by a Voronoi tessellation. Middleton et al.383 match geolocated
tweets and created real-time crisis maps via statistical analysis, which are compared to the
National Geospatial Agency postevent impact assessments. A major issue is that only about
1% of tweets contain geolocation data. These tweets usually follow a pattern of a small number
of first-hand reports and many retweets and comments. High-precision results were obtained.
Singh384 aggregates user’s social interest about any particular theme from any particular location
into so-called “social pixels,” which are amenable to media processing techniques (e.g., segmen-
tation and convolution), which allow semantic information to be derived. They also developed a
declarative operator set to allow queries to visualize, characterize, and analyze social media data.
Their approach would be a promising front-end to any social media analysis system. In the
survey paper of Sui and Goodchild,385 the convergence of geographic information system
(GIS) and social media is examined. They observed that GIS has moved from software helping
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a user at a desk to a means of communicating earth surface data to the masses (e.g.,
OpenStreetMap, Google Maps, etc.).

In all of the aforementioned methods, DL can play a significant role of parsing data, ana-
lyzing data, and estimating results from the data. It seems that social media is not going away,
and data from social media can often be used to augment RS data in many applications. Thus, the
question is what work awaits the researcher in the area of using DL to combine nontraditional
data sources with RS?

4.4.2 Open question #4b: how does DL ingest heterogeneous data?

Fusion can take place at numerous so-called “levels,” including signal, feature, algorithm,
and decision. For example, signal in–signal out (SISO) is where multiple signals are used to
produce a signal out. For R-valued signal data, a common example is the trivial concatenation
of their underlying vectorial data, i.e., X ¼ fx̂1; : : : ; x̂Ng becomes ½x̂1x̂2: : : x̂N � of length
jx̂1j þ : : : þ jx̂N j. Feature in–feature out (FIFO), which is often related to if not the same as
SISO, is where multiple features are combined, e.g., an HOG and an LBP, and the result is
a new feature. One example is multiple kernel learning (MKL), e.g., l-p norm genetic algorithm
MKL (GAMKLp).386 Typically, the input is N R-valued Cartesian spaces, and the result is
a Cartesian space. Most often, one engages in MKL to search for space in which pattern
obeys some property, e.g., they are nicely linearly separable and a machine learning tool,
such as a SVM, can be employed. On the other hand, decision in–decision out (DIDO),
e.g., the Choquet integral (ChI), is often used for the fusion of input from decision makers,
e.g., human experts, algorithms, classifiers, etc.387 Technically speaking, a CNN is typically
a signal in–decision out (SIDO) or feature in–decision out (FIDO) system. Internally, the FL
part of the CNN is an SIFO or FIFO and the classifier is an FIDO. To date, most DL approaches
have “fused” via (1) concatenation of R-valued input data (SISO or FIFO) relative to a single
DL, (2) each source has its own DL, minus classification, that is later combined into a single DL,
or (3) multiple DLs are used, one for each source, and their results are once again concatenated
and subjected to the classifier (either an MLP, SVM, or other classifier).

Herein, we highlight the challenges of syntactic and semantic fusion. Most DL approaches to
date syntactically have addressed how N things, which are typically homogeneous mathemati-
cally, can be ingested by a DL. However, the more difficult challenge is semantically how should
these sources be combined, e.g., what is a proper architecture, what is learned (can we under-
stand it), and why should we trust the solution? This is of particular importance to numerous
challenges in RS that require a physically meaningful/grounded solution, e.g., model-based
approaches. The most typical example of fusion in RS is the combining of data from two
(or more) sensors. Whereas there may be semantic variation but little-to-no semantic variation,
e.g., both are possiblyR-valued vector data, the reality is most sensors record objective evidence
about our universe. However, if human information (e.g., linguistic or text) is involved or algo-
rithmic outputs (e.g., binary decisions, labels/symbols, probabilities, etc.), fusion becomes
increasingly more difficult syntactically and semantically. Many theoretical (mathematical
and philosophical) investigations, which are beyond the scope of this work, have concerned
themselves with how to meaningfully combine objective versus subjective information, quali-
tative versus quantitative information, and mixed uncertainty information (e.g., beliefs, evi-
dence, probabilities, etc.). It is a naive and dangerous belief that one can simply just “cram”
data/information into a DL and get a meaningful result. How is fusion occurring? Where is it
occurring? Fusion is further compounded if one is using uncertain information, e.g., probabi-
listic, possibilities, or other interval or distribution-based input. The point is, heterogeneous, be
it mathematical representation, associated uncertainty, etc., is a real and serious challenge. If
the DL community wishes to fuse multiple inputs or sources (humans, sensors, and algo-
rithms), then DL must theoretically rise to the occasion to ensure that the proposed DL archi-
tectures be able to answer the question of what is the DL system really learning, and is it
meaningful?

Two preliminary examples of DL works employing multisensor fusion include fusion of
(1) HSI with LiDAR388 (two sensors yielding objective data) and (2) text with imagery or
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video389 (thus high-level human information sensor data). The point is, the question remains,
how can/does DL fuse data/information arising from one or more sources?

4.5 DL Architectures and Learning Algorithms for Spectral, Spatial, and
Temporal Data

4.5.1 DL Open question #5: what architectural extensions will DL systems
require in order to tackle complicated RS problems?

Current DL architectures, components (e.g., convolution), and optimization techniques may not
be adequate to solve complex RS problems. In many cases, researchers have developed network
architectures, new layer structures with their associated SGD or BP equations for training, or new
combinations of multiple DL networks. This problem is also an open issue in the broader CV
community. This question is at the heart of DL research. Other questions related to the open
issues are:

• What architecture should be used?
• How deep should a DL system be, and what architectural elements will allow it to work at

that depth?
• What architectural extensions (new components) are required to solve this problem?
• What training methods are required to solve this problem?

We examine several general areas where DL systems have evolved to handle RS data: (i) mul-
tisensor processing, (ii) using multiple DL systems, (iii) rotation and displacement-invariant DL
systems, (iv) new DL architectures, (v) SAR, (vi) ocean and atmospheric processing, (vii) 3-D
processing, (viii) spectral–spatial processing, and (ix) multitemporal analysis. Furthermore, we
examine some specific RS applications noted in several RS survey papers as areas that DL can
benefit: (a) oil spill detection, (b) pedestrian detection, (c) urban structure detection, (d) pixel
unmixing, and (e) road extraction. This is by no means an exhaustive list, but meant to highlight
some of the important areas.

Multisensor processing. Chen et al.209 use two deep networks, one analyzing HSI pixel
neighbors (spatial data) and the other LiDAR data. The outputs are stacked and an FC and logis-
tic regression lay provides outputs. Huang et al.253 use a modified sparse DAE (MSDAE) to train
the relationship between HR and LR image patches. The stackedMSDAE (S-MSDAE) is used to
pretrain a DNN. The HR MSI image is then reconstructed from the observed LR MSI image
using the trained DNN.

Multi-DL system. In certain problems, multiple DL systems can provide significant benefit.
Chen et al.315 use parallel DNNs with no cross-connections to both speed up processing and
provide good results in vehicle detection from satellite imagery. Ciresan et al.138 use multiple
parallel DNNs that are averaged for image classification. Firth328 use 186 RNNs to perform
accurate weather prediction. Hou et al.171 use RBMs to train from polarimetric SAR data,
and a three-layer DBN is used for classification. Kira et al.390 used stereo-imaging for robotic
human detection, using a CNN which was trained on appearance and stereo disparity-based
features, and a second CNN, which is used for long-range detection. Marmanis et al.277

used an ensemble of CNNs to segment VHR aerial imagery using an FCN to perform pixel-
based classification. They trained multiple networks with different initializations and average
the ensemble results. The authors also found errors in the data set, Vaihingen.391

Rotation- and displacement-invariant systems. Some RS problems require systems
that are rotation and displacement-invariant. CNNs have some robustness to translation, but not
in general to rotations. Cheng et al.243 incorporated a rotation-invariant layer into a DL CNN
architecture to detect objects in satellite imagery. Du et al.146 developed a displacement- and
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rotation-insensitive deep CNN for SAR automated target recognition (ATR) processing that is
trained by augmented data set and specialized training procedure.

DL architectures. Some problems in RS require DL architectures. Dong et al.294 use
a CNN that takes the LR image and outputs the HR image. He et al.170 proposed a DSN for
HSI classification that uses nonlinear activations in the hidden layers and does not require
SGD for training. Kontschieder et al.175 developed deep neural decision forests, which uses
a stochastic and differentiable decision tree model that steers the representation learning usually
conducted in the initial layers of a deep CNN. Lee and Kwon177 analyze HSI by applying multi-
ple local 3-D convolutional filters of different sizes jointly exploiting spatial and spectral fea-
tures, followed by a fully convolutional layers to predict pixel classes. Zhang et al.204 propose
GBRCN to classify VHR satellite imagery. Ouyang andWang219 developed a probabilistic parts-
detector-based model to robustly handle human detection with occlusions are large deformations
using a discriminative RBM to learn the visibility relationship among overlapping parts. The
RBM has three layers that handle different size parts. Their results can possibly be improved
by adding additional rotation invariance.

DL SAR architectures. SAR imagery has unique challenges due to noise and the grainy
nature of the images. Geng et al.168 developed a deep convolutional AE, which is a combination
of a CNN, AE, classification, and postprocessing layers to classify HR SAR images. Hou et al.171

developed a polarimetric SAR DBN. Filters are extracted from the RBMs, and a final three-layer
DBN performs classification. Liu et al.227 use a deep sparse filtering network to classify terrain
using polarimetric SAR data. The proposed network is based on sparse filtering,392 and the pro-
posed network performs a minimization on the output l1 norm to enforce sparsity. Qin et al.196

performed object-oriented classification of polarimetric SAR data using an RBM and built an
adaptive boosting framework (AdaBoost393) vice a stacked DBN in order to handle small train-
ing data. They also put forth the RBM-AdaBoost algorithm. Schwegmann et al.290 used a very
deep highway network configuration as a ship discrimination stage for SAR ship detection. They
also presented a three-class SAR data set that allows for more meaningful analysis of ship dis-
crimination performances. Zhou et al.394 proposed a three-class change detection approach for
multitemporal SAR images using an RBM. These images either increases or decreases in the
backscattering values for changes, so the proposed approach classifies the changed areas into the
positive and negative change classes, or no change if none is detected.

Oceanic and atmospheric studies. Oceanic and atmospheric studies present unique
challenges to DL systems that require developments. Ducournau and Fablet295 developed a
CNN architecture, which analyzes sea surface temperature fields and provides a significant
gain in terms of peak signal-to-noise ratio compared to classical downscaling techniques.
Shi et al.216 extended the FC-LSTM network that they call ConvLSTM, which has convolutional
structures in the input-to-state and state-to-state transitions for precipitation nowcasting.

3-D processing. Guan et al.256 use voxel-based filtering to remove ground points from
LiDAR data, then a DL architecture generates high-level features from the trees 3-D geometric
structure. Haque et al.128 use both of CNN and RNN to process 4-D spatiotemporal signatures to
identify humans in the dark.

Spectral–spatial HSI processing. HSI processing can be improved by fusion of spectral
and spatial information. Ma et al.187 propose a spatial updated deep AE which adds a similarity
regularization term to the energy function to enforce spectral similarity. The regularization term
is a cosine similarity term (basically the spectral angle mapper) between the edges of a graph,
where the nodes are samples, which enforces keeping the sample correlations. Ran et al.210
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classify HSI data by learning multiple CNN-based submodels for each correlated set of bands,
while in parallel a conventional CNN learns spatial–spectral characteristics. The models are
combined at the end. Li et al.181 incorporated vicinal pixel information by combining the center
pixel and vicinal pixels, and using a voting strategy to classify the pixels.

Multitemporal analysis. Multitemporal analysis is a subset of RS analysis that has its own
challenges. Data revisit rates are often long, and ground-truth data are even more expensive
as multiple imagery sets have to be analyzed, and images must be coregistered for most
applications.

Jianya et al.12 review multitemporal analysis, and observe that it is hard, the changes are often
nonlinear, and changes occur on different timescales (seasons, weeks, years, etc.). The process
from ground objects to images is not reversible, and image change to earth change is a very
difficult task. Hybrid method involving classification, object analysis, physical modeling,
and time-series analysis can all potentially benefit from DL approaches. Arel et al.120 ask if
DL frameworks can understand trends over short, medium, and long times? This is an open
question for RNNs.

Change detection is an important subset of multitemporal analysis. Hussain et al.11 state that
change detection can benefit from texture analysis, accurate classifications, and from the ability
to detect anomalies. DL has huge potential to address these issues, but it is recognized that DL
algorithms are not common in image processing software in this field, and large training sets and
large training times may also be required. In cases of nonnormal distributions, ANNs have
shown superior results to other statistical methods. They also recognize that DL-based change
detection can go beyond traditional pixel-based change detection methods. Tewkesbury et al.395

observe that change detection can occur at the pixel, kernel (group of pixels), image-object,
multitemporal image-object (created by segmenting over time series), vector-polygon, and
hybrid. While the pixel level is suitable for many applications, hybrid approaches can yield better
results in many cases. Approaches to change detection can use DL to (1) coregister images and
(2) detect changes at hierarchical (e.g., more than just pixel levels).

Some selected specific applications that can benefit from DL analysis. This sec-
tion discusses some selected applications where applying DL techniques can benefit the results.
This is by no means an exhaustive list, and many other areas can potentially benefit from
DL approaches. In oil spill detection, Brekke and Solberg396 point out that training data are
scarce. Oil spills are very rare, which usually means oil spill detection approaches are
anomaly detectors. Physical proximity, slick shape, and texture play important roles. SAR
imagery is very useful, but there are look-alike phenomena that cause false positives. Algal infor-
mation fusion from optical sensors and probability models can aid detection. Current algorithms
are not reliable, and DL has great promise in this area.

In the area of pedestrian detection, Dollar et al.8 discuss that many images with pedestrians
have only a small number of pixels. Robust detectors must handle occlusions. Motion features
can achieve very high performance, but few have used them. Context (ground plane) approaches
are needed, especially at lower resolutions. More data sets are needed, especially with occlu-
sions. Again, DL can provide significant results in this area.

For urban structure analysis, Mayer397 reports that scale-space analysis is required due to
different scales of urban structures. Local contexts can be used in the analysis. Analyzing
parts (dormers, windows, etc.) can improve results. Sensor fusion can aid results. Object vari-
ability is not treated sufficiently (e.g., highly nonplanar roofs). The DL system’s ability to learn
hierarchical components and learn parts makes is a good candidate for improving results in
this area.

In pixel unmixing, Shi and Wang20 and Somers et al.398 review papers both point out that
whether an unmixing system uses a spectral library or extracts endmembers spectra from
the imagery, the accuracy highly depends on the selection of appropriate endmembers.
Adding information from a spatial neighborhood can enhance the unmixing results. DL methods
such as CNNs or other tailored systems can potentially inherently combine spectral and spatial
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information. DL systems using denoising, iterative unmixing, feature selection, spectral weight-
ing, and spectral transformations can benefit unmixing.

Finally in the area of road extraction, Wang et al.354 point out that roads can have large vari-
ability, are often curves, and can change size. In bad weather, roads can be very hard to identify.
Object shadows, occlusions, etc. can cause the road segmentation to miss sections. Multiple
models and multiple features can improve results. The natural ability of DL to learn complicated
hierarchical features from data makes them a good candidate for this application area also.

4.6 Transfer Learning

4.6.1 Open question #6: how can DL in RS successfully use transfer learning?

In general, we note that transfer learning is also an open question in DL in general, not just in DL
related to RS. Section 4.9 discusses transfer learning in the broader contact of the entire field of
DL, which this section discusses transfer learning in an RS context.

According to Tuia et al.399 and Pan and Yang,400 transfer learning seeks to learn from one area
to another in one of the four ways: instance-transfer, feature-representation transfer, parameter
transfer, and relational-knowledge transfer. Typically in RS, when changing sensors or changing
to a different part of a large image or other imagery collected at different times, the transfer fails.
RS systems need to be robust, but many do not necessarily require near-perfect knowledge.
Transfer among HSI images where the number and types of endmembers are different has
very few studies. Ghazi et al.255 suggest that two options for transfer learning are to (1) use
pretrained network and learn new features in the imagery to be analyzed or (2) fine-tune the
weights of the pretrained network using the imagery to be analyzed. The choice depends on
the size and similarity of the training and testing data sets. There are many open questions
about transfer learning in HSI RS:

• How does HSI transfer work when the number and type of endmembers are different?
• How can DL systems transfer low- to midlevel features from other domains into RS?
• How can DL transfer learning be made robust to imagery collected at different times and

under different atmospheric conditions?

Although in general these open questions remain, we do note that the following papers have
successfully used transfer learning in RS applications: Yang et al.199 trained on other RS imagery
and transferred low- to midlevel features to other imagery. Othman et al.235 used transfer learning
by training on the ILSVRC-12 challenge data set, which has 1.2 million 224 × 224 RGB images
belonging to 1000 classes. The trained system was applied to the UC Merced Land Use401 and
Banja-Luka402 data sets. Iftene et al.173 applied a pretrained CaffeNet and GoogLeNet models on
the ImageNet data set, and then applying the results to the VHR imagery denoted the WHU-RS
data set.403,404 Xie et al.310 trained a CNN on nighttime imagery and used it in a poverty mapping.
Ghazi et al.255 and Lee et al.405 used a pretrained networks AlexNet, GoogLeNet, and VGGNet
on the LifeCLEF 2015 plant task data set406 and MalayaKew data set407 for plant identification.
Alexandre240 used four independent CNNs, one for each channel of RGBD, instead of using
a single CNN receiving the four input channels. The four independent CNNs are then trained
in a sequence using the weights of a trained CNN as starting point to train the other CNNs that
will process the remaining channels. Ding et al.408 used transfer learning for automatic target
recognition from midwave infrared (MWIR) to longwave IR (LWIR). Li et al.141 used transfer
learning by using pixel-pairs based on reference data with labeled sampled using Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data.

4.7 Improved Theoretical Understanding of DL Systems

4.7.1 DL open question #7: what new developments will allow researchers to
better understand DL systems theoretically?

The CV and NN image processing communities understand BP and SGD, but until recently,
researchers struggled to train deep networks. One issue has been identified as vanishing or
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exploding gradients.61,409 Using normalized initialization and normalization layers can help
alleviate this problem. Using special architectures, such as deep residual learning30 or highway
networks76 feed data into the deeper layers, thus allowing very deep networks to be trained.
FCNs337 have achieved success in pixel-based semantic segmentation tasks and are another alter-
native to going deep. Sokolic et al.410 determined that the spectral norm of the NN’s Jacobian
matrix in the neighborhood of the training samples must be bounded in order for the network to
generalize well. All of these methods deal with a central problem in training very deep NNs. The
gradients must not vanish, explode, or become too uncorrelated, or else learning is severely
hindered.

The DL field needs practical (and theoretical) methods to go deep, and ways to train efficiently
with good generalization capabilities. Many DL RS systems will probably require new compo-
nents, and these networks with the new components need to be analyzed to see if the methods
above (or new methods not yet invented) will enable efficient and robust network training.
Egmont-Petersen et al.348 point out that DL training is sensitive to the initial training samples, and
it is a well-known problem in SGD and BP of potentially reaching a local minimum solution but
not being at the global minimum. In the past, seminal papers, such as Hinton et al.’s,57 that allow
efficient training of the network have allowed researchers to break past a previously difficult barrier.

4.8 High Barriers to Entry

4.8.1 DL open question #8: how to best handle high entry barriers to DL?

Most DL papers assume that the reader is familiar with DL concepts, e.g., BP, SGD, etc. This is
in reality a steep learning curve that takes a long time to master. Good tutorials and online train-
ing can aid students and practitioners who are willing to learn. Implementing BP or SGD on a
large DL system is a difficult task, and simple errors can be hard to determine. Furthermore, BP
can fail in large networks, so alternate architectures, such as highway nets, may be required.

Many DL systems have a large number of parameters to learn and often require large amounts
of training data. Computers with GPUs and GPU-capable DL programs can greatly benefit by
offloading computations onto the GPUs. However, multi-GPU systems are expensive, and stu-
dents often use laptops that cannot be equipped with a GPU. Some DL systems run under
Microsoft Windows, while others run under variants of Linux (e.g., Ubuntu or Red Hat).
Furthermore, DL systems are programmed in a variety of languages, including MATLAB®,
C, C++, Lua, and Python. Thus, practitioners and researchers have a potentially steep learning
curve to create custom DL solutions.

Finally, a large variety of data types in RS, including RGB imagery, RGBD imagery, MSI,
HSI, SAR, LiDAR, stereo imagery, tweets, and GPS data, all of which may require different
architectures of DL systems. Often, many of the tasks in the RS community require components
that are not part of a standard DL library tool. A good understanding of DL systems and pro-
gramming is required to integrate these components into off-the-shelf DL systems.

One of the authors provides a set of MatConvNet DL example codes and codes for fusion on
his website. Interested readers are referred to http://derektanderson.com/FuzzyLibrary/.

4.9 Training

4.9.1 Open question #9: how to train and optimize the DL system?

Training a DL system can be difficult. Large systems can have millions of parameters. There are
many methods that DL researchers use to effectively train systems. These methods are discussed
as follows.

Data imputation. Data imputation,57 also called data augmentation, is important in RS,
since there are often a small number of training samples. In imagery, image patched can be
extracted and stretched with affine transformations, rotated, and made lighter or darker (scaling).
Also, patched can be zeroed (removed) from training data to help the DL be more robust to
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occlusions. Data can also be augmented by simulations. Another method that can be useful in
some circumstances is domain transfer, discussed below (transfer learning). Another common
approach for RGB imagery is to train with rotated version of the image and by varying the image
brightness or intensity.

Pretraining. Erhan et al.411 performed a detailed study trying to answer the questions:
“How does unsupervised pretraining work?” and “Why does unsupervised pretraining help
DL?” Their empirical analysis shows that unsupervised pretraining guides the learning toward
attraction basins of minima that support better generalization and pretraining also acts as a reg-
ularizer. Furthermore, early training examples have a large impact on the overall DL perfor-
mance. Of course, these are experimental results, and results on other data sets or using
other DL methods can yield different results. Many DL systems use pretraining followed by
fine-tuning.

Transfer learning. Transfer learning is also discussed in Sec. 4.6. Transfer learning
attempts to transfer learned features (which can also be thought of as DL layer activations
or outputs) from one image to another, from one part of an image to another part, or from
one sensor to another. This is a particularly difficult issue in RS, due to variations in atmosphere,
lighting conditions, etc. Pan and Yang400 point out that typically in RS applications, when chang-
ing sensors or changing to a different part of a large image or other imagery collected at different
times, the transfer fails. RS systems need to be robust, but they do not necessarily require near-
perfect knowledge. Also, transfer among images where the number and types of endmembers are
different has very few studies. Zhang et al.3 also cite transfer learning as an open issue in DL in
general, and not just in RS.

Regularization. Regularization is defined by Goodfellow et al.23 as “any modification we
make to a learning algorithm that is intended to reduce its generalization error but not its training
error.” There are many forms of regularizer—parameter size penalty terms (such as the l2 or l1
norm, and other regularizers that enforce sparse solutions; diagonal loading of a matrix so
the matrix inverse (which is required for some algorithms) is better conditioned; dropout
and early stopping (both are described below); adding noise to weights or inputs; semisuper-
vised learning, which usually means that some function that has a very similar representation
to examples from the same class is learned by the NN; bagging (combining multiple models);
and adversarial training, where a weighted sum of the sample and an adversarial sample is used
to boost performance. The interested reader is referred to chapter 7 of Ref. 23 for further infor-
mation. An interesting DL example in RS is, Mei et al.,190 who used a PReLU,412 which
can help improve model fitting without adding computational cost and with little overfitting
risk.

Early stopping. Early stopping is a method where the training validation error is monitored
and previous coefficient values are recorded. Once the training level reaches stopping criteria,
then the coefficients are used. Early stopping helps to mitigate overtraining. It also acts as
a regularizer, constraining the parameter space to be close to the initial configuration.411

Dropout. Dropout usually uses some number of randomly selected links (or a probability
that a link will be dropped).413 As the network is trained, these links are zeroed, basically
stopping data from flowing from the shallower to deeper layers in the DL system. Dropout
basically allows a bagging-like effect, but instead of the individual networks being independent,
they share values, but the mixing occurs at the dropout layer, and the individual subnetworks
share parameters.23 Dropout may not be needed or advantageous if batch normalization is
used.
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Batch normalization. Batch normalization was developed by Ioffe and Szegedy.414 Batch
normalization breaks the data into small batches and then normalizes the data to be zero
mean and unity variance. Batch normalization can also be added internally as layers in the
network. Batch normalization reduces the so-called internal covariate shift problem for
each training mini-batch. Applying batch normalization had the following benefits: (1) allowed
a higher learning rate, (2) the DL network was not as sensitive to initialization, (3) dropout
was not required to mitigate overfitting, (4) the l2 weight regularization could be reduced,
increasing accuracy. Adding batch normalization increases the two extra parameters per
activation.

Optimization. Optimization of DL networks is a major area of study in DL. It is nontrivial
to train a DL network, much less squeeze out high performance on both the training and testing
data sets. SGD is a training method that uses small batches of training data to generate an esti-
mate of the gradients. Le et al.415 argues the SGD is not inherently parallel and often requires
training many models and choosing the one that performs best on the validation set. They also
show that no one method works best in all cases. They found that optimization performance
varies per problem. A nice review paper for many gradient descent algorithms is provided
by Ruder.416 According to Ruder, complications for gradient descent algorithms include:

• how to choose a proper learning rate,
• how to properly adjust learning-rate schedules for optimal performance,
• how to adjust learning rates independently for each parameter, and
• how to avoid getting trapped in local minima and saddle points when one dimension slopes

up and one down (the gradients can get very small and training halts).

Various gradient descent methods, such as AdaGrad,53 which adapts the learning rate to the
parameters, AdaDelta,417 which uses a fixed size window of past data, and Adam,55 which also
has both mean and variance terms for the gradient descent, can be used for training. Another
recent approach seeks to optimize the learning rate from the data is described in Schaul et al.418

Finally, Sokolic et al.410 concluded experimentally that for a DNN to generalize well, the spectral
norm of the NN’s Jacobian matrix in the neighborhood of the training samples must be bounded.
They furthermore show that the generalization error can be bounded independent of the DL
network’s depth or width, provided that the Jacobian spectral norm is bounded. They also ana-
lyze residual networks, weight normalized networks, CNN’s with batch normalization and
Jacobian regularization, and residual networks with Jacobian regularization. The interested
reader is referred to chapter 8 of Ref. 23 for further information.

Data propagation Both highway networks73 and residual networks30 are methods that
take data from one layer and incorporate it, either directly (highway networks) or as a differ-
ence (residual networks) into deeper layers. These methods both allow very deep networks to
be trained, at the expense of some additional components. Balduzzi et al.419 examined
networks and determined that there is a so-called “shattered gradient” problem in DNN,
which is manifested by the gradient correlation decaying exponentially with depth and
thus gradients resemble white noise. A “looks linear” initialization is developed that prevents
the gradient shattering. This method appears not to require skip connections (highway net-
works, residual networks).

5 Conclusions

We performed a thorough review and analyzed 205 RS papers that use FL and DL, as well as 57
survey papers in DL and RS. We provided researchers with a clustered set of 12 areas where DL
has been applied to RS. We quickly summarize these findings. First, the bulk of attention has
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been placed on tasks such as classification, segmentation, object detection, and tracking. This is
as expected, since it is the closest to what the CV community has studied and it is potentially the
lowest hanging fruit for DL in RS. We also highlighted interesting preliminary work in DL-based
transfer learning, primarily as it relates to a single sensing modality (e.g., RGB imagery).
However, it is not yet clear how to carry out transfer learning for non-RGB RS specific sensors
and/or multisensor platforms, i.e., visible, near-IR, hyperspectral, SAR, etc. RS researchers have
also just started to investigate DL for 3-D processing. However, non-RS research in DL-based
stereo vision for CV is arguably more mature and a possible area of interest and future integra-
tion. Similar to transfer learning, DL-based super-resolution was also highlighted and we dis-
cussed that it needs new theory and applications with respect to multimodal (sensor) systems. To
our surprise, weather forecasting had a lot more DL work than what we expected. However,
whereas many exciting works have started to emerge, we observed that new abstract theory,
versus a case-by-case solution, is needed as it relates to the integration (and fusion) of domain
models and/or knowledge in RS DL. Next, we discussed image enhancement and change detec-
tion, which are massive areas in RS and to the best of our knowledge, limited DL work has been
performed on them to date. As stated in the case of 3-D processing in RS, semantic labeling,
either as symbols or natural language statements, is another topic in RS that is in an infancy stage
and could likely benefit from integration of work in CV surrounding signal-to-text. Last,
dimensionality reduction is at the heart of tasks such as multisensor (“multispectral”) and
HSI signal processing. However, to date most methods have focused on using “human created”
transforms (e.g., principle components analysis) to reduce the dimensionality pre-DL versus
addressing how DL can accomplish this feat (possibly in a more effective and/or more effi-
cient way).

Herein, we also examined why DL is popular and we looked at some factors that enable DL,
from theory to applications and systems/hardware. We showed what data sets are being used in
different DL RS research—sadly not many and not a lot of agreement at that—and we high-
lighted the fact that new high-volume and high variety benchmark community data sets are direly
needed for purposes such as reproducible research and comparability across DL approaches, and
many commonly used RS data sets are saturated. Furthermore, we emphasized that fundamental
DL questions plague the field at large (and therefore RS); e.g., how many neurons, layers, what
“types” of layers to use, what learning algorithm, penalty terms (or methods such as batch nor-
malization), drop out, etc. are needed. In addition, we summarized existing DL tools (libraries)
that RS researchers should be aware of. It is hard to pick a “winner.” These packages vary in what
they support, e.g., types of data, programming language, other dependencies (e.g., MATLAB®).
Whereas there is a variety in languages and etc., TensorFlow has recently become a dominant
figure in terms of factors, such as performance, programming language, community support, and
documentation. We also critically looked at the DL RS field and identified nine general areas
with unsolved challenges and opportunities. Specifically, we enumerated 11 difficult thought-
provoking open questions. Whereas we summarized the 12 clusters of existing work above, we
cannot succinctly and sufficiently summarize the nine unsolved challenges. The reader should
refer to Sec. 4 for full detail, i.e., contributing factors, recommendations, related work, etc. Last,
we provided multiple tables, e.g., a table of survey papers that address, in one form or another,
DL and/or FL in RS.

In conclusion, DL and FL are hot emerging topics, with no drop-off in sight, that have much
promise and relevance to RS. However, whereas there has been a good deal of initial RS work to
date, much more work is needed, in both theory and in application. Although many tasks in RS
can be thought about as signal/image processing challenges, RS offers a great deal of complexity
(and therefore should be viewed as an opportunity). To make advancements in DL RS, we need
more individuals trained in a variety of topics from electromagnetics to multisensor systems,
signal processing, machine learning (including DL), and data fusion, to name a few. The
point is, the cost of entry to DL RS is high and the field is multidisciplinary.
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