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Abstract. Ground-truthing results are presented for a new 1-km air temperature product down-
scaled for New York City (NYC) from ∼12 kmNorth American Land Data Assimilation System
(NLDAS) air temperature data using 1 km moderate resolution imaging spectroradiometer
surface temperature data. The downscaled product was compared against a unique highly spa-
tially resolved ground-level ambient air temperature dataset collected through the New York City
Community Air Survey (NYCCAS), a neighborhood level air pollution and temperature mon-
itoring network, for the years 2009 and 2010. This work focuses on the spatial variation in
daily minimum temperatures within the five counties that comprise NYC (∼784 km2).
Overall, the downscaled daily minimum temperature was well correlated with ground station
data, with NYCCAS minimum temperatures being slightly higher. Minimum temperature R2

values were 0.9 and 0.92, and mean absolute errors were 0.69°C and 0.86°C for years 2009
and 2010, respectively. The smallest differences between NYCCAS and the downscaled data
were seen at lower temperatures, in less densely urbanized areas, and in areas with higher veg-
etative cover, suggesting systematic bias in the downscaled data related to land-use. The 1-km
dataset discerned neighborhood level temperature differences in high-density urban situations
with heterogeneous land cover. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.024516]
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1 Introduction

As the frequency of extreme heat days has risen with the increase of anthropogenic global warm-
ing in recent years1,2 so has the availability of weather data with higher spatial and temporal
resolutions. Making this rich data set available and relevant to the decisions that public health
and policy professionals need to make is important for the development of interventions to
reduce the health impacts and the frequency of extreme heat.3 In addition, the mapping of
the physical determinants of heat risk allows for resources to be allocated efficiently and
can be used for population-level assessment of human exposures for health studies.

The North American Land Data Assimilation System (NLDAS) derived from the North
American Regional Reanalysis (NARR) datasets4 produces hourly meteorological forcing var-
iables, such as air temperature, surface shortwave and longwave incident radiation, and other
heat-related data at a 1∕8 deg (∼12 km) spatial resolution. Ground-truthing, i.e., validating
modeled temperature data with on-the-ground temperature measurements, of the meteorological
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data products is a critical component in the development of accurate exposure metrics for health
studies. Prior work in the validation of NLDAS components has relied on the Oklahoma
Mesonet and the Atmospheric Radiation Measurement Program (ARM) as data sources for com-
parison. Luo et al.5 found that air temperature at 2 m from model simulations forced with
NLDAS data compared well with those forced with station observations. Another retrospective
forcing study of NLDAS radiation and precipitation data6 found the best results for radiation
measures. Robock et al.6 found good agreement for soil temperature, but differences in surface
energy partitioning between the model and station observed values. Properly estimating energy
partitioning between latent and sensible heat is an ongoing challenge in many of these studies
and may explain discrepancies in this study’s outcomes as well. Energy absorbed at the surface
and released as sensible heat will heat the surface and the air near the surface, while energy used
to evaporate water will cool the same surface. The amount of surface cooling is related to both
the vegetation coverage of the land surface and soil moisture content, both of which vary sig-
nificantly across a coastal urban setting such as New York City (NYC).

Although performing well in ground-truthing analyses, one drawback of the NLDAS datasets
is that the spatial resolution (∼12 km) may not be appropriate for describing exposures in areas
with large variation in land cover, such as complex coastlines, steep slopes, or urban areas. In
order to address this gap, our project created a downscaled 1-km resolution air temperature data-
set. Prior ground-truthing has not been done for a downscaled NLDAS dataset or for air temper-
ature in a highly variable urban landscape such as NYC.

The New York City Community Air Survey (NYCCAS) has the most comprehensive geo-
graphic coverage of any urban air monitoring network in the United States, with up to 150 mon-
itors in a 790-km2 area. While developed to capture spatial variation in air pollution, it also
records ground-level air temperature and relative humidity. Using NYCCAS’ highly spatially
resolved data, we assessed the extent to which downscaled NLDAS data products capture
the intraurban patterns in warm season temperature and identified adjustments to the downscal-
ing process that improved the accuracy of the data product.

Once the downscaled data products have been finalized, they will be incorporated into a
collaborative heat stress vulnerability study involving the National Aeronautics and Space
Administration (NASA), the New York State Department of Health (NYSDOH), and other agen-
cies. The fine spatial scale of the final dataset will fill in spatial gaps in ground-based temperature
sources. The accuracy of the 1-km downscaled data in highly variable landscapes, such as cities,
will be evaluated and improved through the ground-truthing process in NYC. The final nation-
wide dataset will be disseminated via the Centers for Disease Control and Prevention (CDC)
Environmental Public Health Tracking Network to be used as an alternative to ground-based or
12-km NLDAS surface temperature data in vulnerability mapping or potentially for the calibra-
tion or validation of other models.

2 Data Sources and Methods

2.1 New York City Community Air Survey: Air Temperature Records

NYCCAS is a monitoring dataset that was developed primarily for the purposes of tracking
street-level air pollutant distribution across the city. The spatial designation of the sensors
was optimized to capture intraurban spatial variation in fine particulate pollutant concentrations
from local sources in NYC. More details of the site selection process and monitoring strategy can
be found in Ref. 7. In order to compute the temperature-corrected flow volume of the sensor air
pump, temperature and relative humidity were also recorded, thereby providing more spatially
resolved temperature data than the three National Weather Service locations in NYC. Most
NYCCAS sites were monitored for 14 continuous days, once per season (four times per year).
A small subset of sites (five) was continuously monitored, so as to track city-wide temporal
variation in pollution. The monitors were mounted on utility poles 3 m above the street and
recorded temperature and relative humidity every 15 min. Our study uses May to October
data from the years 2009 to 2013, for which the NYCCAS and downscaled NLDAS datasets
coincide. The number of NYCCAS sites has fluctuated over time due to funding availability,
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with 155 sites monitored in 2009 and 2010, 100 sites in 2011 and 2012, and 60 sites in 2013.
These air-sampling units were not standard weather stations and were variably subject to direct
sunlight, which may have introduced additional errors in the monitored daytime maximum tem-
perature across sites. Because of this, our study focused on minimum temperatures, which
tended to occur during nighttime when the influence of shading across sites was presumed
to be minimal.

To provide context to our temperature comparison, we retrieved NDVI data from thee
United States Geological Survey (Landsat 5, image taken April 22, 2010) and calculated the
average value around each NYCCAS sampling location at 15 buffer distances from 100 to
1000 m. We also developed measures of the total interior square footage of all buildings within
the 15 buffers around each location using extensive land use and geographic data at the tax lot
level maintained by New York City Department of City Planning.8

2.2 NLDAS Meteorological Reanalysis 1 × 1 km2 Downscaled Temperature
Data

A fine-scaled, near-surface (2 m above ground level) temperature dataset was derived from
meteorological reanalysis and remote sensing data for the years 2005 to 2013. Historical
NLDAS temperature data were derived from the NARR analysis fields, which have a 32-km
spatial resolution and 3-hourly temporal frequency.4 The NARR fields that were used to generate
NLDAS meteorological fields were spatially interpolated to the finer resolution of the NLDAS
1∕8- deg grid (∼12 km) and then temporally disaggregated to the NLDAS hourly frequency.
From the hourly NLDAS data, we derived daily maximum and minimum air temperatures
on the 1∕8 deg grid for the months of May to October.

These daily temperatures, described in Ref. 9, were then downscaled to a 1-km product using
the 1-km moderate resolution imaging spectroradiometer (MODIS) land surface temperature
(LST) product “MYD11A2.” In this downscaling algorithm, LST data from the daytime and
nighttime (∼1:30 PM and AM local standard time, respectively) aqua MODIS overpasses
were used to provide 1-km spatial patterns of LST for the conterminous United States. The
MODIS LST grids form the basis for the downscaled patterns of air temperatures, using the
algorithm described below. Daytime LST data were used for downscaling daily maximum tem-
peratures, and nighttime LST data were used for downscaling daily minimum temperatures.

We chose this remote sensing-based approach, as opposed to using available data sets that
rely solely on ground station data, such as DayMet10 and PRISM (parameter-elevation relation-
ships on independent slopes model),11 in order to capture geographic temperature distributions,
including intraurban variations, which are extremely difficult to represent using ground station
data alone. Remotely sensed LST has been shown to be an excellent predictor of spatial patterns
in near-surface air temperature over large expanses,12–14 which substantiates the use of LST for
estimating air temperature at the MODIS scale.

The downscaling model is based on the assumption that in the absence of strong horizontal
temperature advection, air temperature is driven by sensible heat flux from the surface, thus the
spatial patterns of air temperature mimic the patterns of LST. Another assumption is that daily
maximum air temperatures occur during the early-mid afternoon, near the time of the PM aqua
overpass (1:30 PM local standard time), and the daily minimum air temperatures occur in the
early morning, near the 1:30 AM aqua overpass. These two assumptions are generally appro-
priate for quiescent conditions associated with weak synoptic flow, typical of the warm season at
mid-latitudes. A final assumption is that the spatial pattern (but not the magnitude) of temper-
atures is nearly constant from day to day within a 40-day period, so that use of MODIS LST
data predating the current day by up to 40 days is still valid. This assumption can be violated by
rapidly changing vegetation conditions or large changes in soil moisture, but neither of these
conditions typically is relevant to an urban environment.15–17

Air temperature variations tend to be much smaller in magnitude than corresponding LST
variations. Therefore, our method computes and applies normalized MODIS LST spatial anoma-
lies to disaggregate daily maximum NLDAS air temperature; the normalization procedure
accounts for this difference in magnitude of variation. We first created daytime and nighttime
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LST grids using the most recent previous 8-day composite MODIS LST products. If LST data
are missing due to cloudiness in the most recent composite, we use data from prior periods, going
back a maximum of five 8-day periods, or 40 days, from the day for which downscaling is being
performed. By using up to 40 days of LST data, the missing data problem is virtually eliminated.
After the composite LST grid is established, standardized LST departures, ZHR, [Eq. (1)] are
calculated from the composite LST grid, in which the spatial means and standard deviations
are calculated within a local neighborhood or “moving window” (kernel). The size of the win-
dow can be varied; we consider it to be a “tunable parameter.” As a step toward optimizing the
downscaling model, we tested two sizes of the spatial neighborhood, 3 × 3 NLDAS grid cells
[version 1 (v1)] and 5 × 5 NLDAS grid cells [version 2 (v2)], or ∼36 × 36 km2 or 60 × 60 km2.
The departures are calculated according to

EQ-TARGET;temp:intralink-;e001;116;604ZHR ¼ ðTHR − THRmeanÞ∕σHR; (1)

where THR is the high-resolution LST, and THR;mean and σHR are the mean and standard
deviation, respectively, of high-resolution LST over the neighborhood. Once the departures are
calculated, we then compute the downscaled daily maximum air temperatures for each day,
TDIS, based on the standardized LST departures

EQ-TARGET;temp:intralink-;e002;116;529TDIS ¼ TLR þ ZHR · σLR ¼ TLR þ ðTHR − THRmeanÞ · ðσLR∕σHRÞ; (2)

where TLR and σLR are the mean and standard deviation, respectively, of low-resolution daily
maximum or minimum air temperatures over the neighborhood. Through this algorithm, areas
within the NLDAS grid cell for which the MODIS LST composite is warmer (colder) than the
NLDAS grid cell mean will result in a maximum or minimum air temperature that is warmer
(colder) than the NLDAS air temperature recorded for the respective day. More details of this
procedure are provided in Ref. 18.

2.3 Statistical Analysis

In order to assess the performance of the downscaling algorithm, we intersected NYCCAS
monitor locations with the native NLDAS grid (∼12 km) and downscaled (1 km) NLDAS
grid (see Fig. 1 for graphical explanation) and matched the minimum temperatures by day
for all days present in both datasets during the months of May to October. We then averaged
the values by year and NLDAS grid cell (see Table 1 for sample sizes). We characterized the
relationship between native and downscaled NLDAS data and NYCCAS monitor data using
the following metrics: coefficient of determination (R2) from a linear model with the spatial
distribution of the NYCCAS minimum temperatures as the dependent variable and the down-
scaled NLDAS minimum temperatures as the explanatory variable, root-mean square error
(RMSE) for information on bias and precision, mean absolute error (MAE) to describe the
accuracy of the modeled data, and the slope of the regression equation to determine any
bias in the linear relationship. Initial comparisons included all 5 years (2009 to 2013); how-
ever, the analyses presented here focused on years with the most spatial coverage in the
NYCCAS program, 2009 and 2010, a cooler and a typical summer, respectively. We tested
for spatial autocorrelation in the residuals from this model using Moran’s I using the R package
ape.19 In order to account for spatial autocorrelation in the residuals, we included a thin-plate
smooth function of the XY coordinates in a generalized additive model. We tested various
degrees of freedom in the spatial smooth term and selected the minimum number necessary
to remove spatial autocorrelation in the residuals. We explored the spatial pattern of residuals
from the model without the smooth term by correlating them with indicators of the intensity of
development and greenness (NDVI, density of interior built space). All analyses were con-
ducted using statistical package R version 3.3.2 (R Core Team, Vienna).
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3 Results

3.1 12 km NLDAS-NYCCAS Minimum Temperature Comparisons

The results from the comparison of the native NLDAS data with average NYCCAS temper-
ature was based on only the five cells whose centroids fall within NYC boundaries (Table 1 and
Fig. 2). These results provided context for the 1-km outcomes, demonstrating that the temper-
ature variability found within NYC boundaries was not well described at the ∼12 km

resolution.

H
ud

so
n 

R
iv

er

High temperature

NYCCAS Ground Stations

~12 km NLDAS grid cell

Down-scaled 1 km grid

Low temperature

New York City borough boundaries

6 0 63 Kilometers

Atlantic Ocean

New Jersey

-73.675, 40.752

-73.675, 40.626

-73.675, 40.876

H
ud

so
n

R
iv

er

New Jersey(a)

(b)

Fig. 1 Illustration of how the NYCCAS data are matched geographically to the NLDAS
temperature data. (a) Citywide extent of the (∼12 km) and 1 km NLDAS grid cells.
(b) Detailed inset with example of the spatial distribution of NYCCAS ground sites.
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3.2 Downscaled NLDAS-NYCCAS Minimum Temperature Comparison

Unique locations in the downscaled NLDAS–NYCCAS comparison totaled 146 in 2009 and 141
in 2010. The number of matching days at each location ranged from 15 to 153 with a median of
number of days of 26 by year of analysis (2009 and 2010). NLDAS minimum temperatures
explained the spatial variation in NYCCAS data well with a maximum R2 without spatial smooth
of 0.85 in both 2009 and 2010 [v2, Figs. 3(b) and 3(d), Table 1]. 2009 was a relatively cool year
compared to those before and after, with May to October average minimum temperature of
17.4°C as measured by NYCCAS as compared to 19.1°C in 2010. Both v1 (3 × 3 kernel)
and v2 (5 × 5 kernel) of the downscaled data were highly correlated with NYCCAS data
(R2 ranging from 0.83 to 0.92, Table 1). Error was smaller in 2009 (v2 RMSE ¼ 0.87) than
in 2010 (v2 RMSE ¼ 1.07) and for v2 (2009 RMSE ¼ 0.87) compared to v1 (2009

Table 1 Performance of downscaled NLDAS data in describing summertime average minimum
temperatures from NYCCAS. Comparison of regression metrics from separate models for the
years 2009 and 2010, for the native NLDAS grid (∼12 km), downscaled data using a 3 × 3
and a 5 × 5 kernel (versions 1 and 2, respectively), and with a smooth term to account for spatial
autocorrelation of the residuals (indicated by “+”). Metrics include coefficient of determination (R2),
RMSE, MAE, the slope and intercept and their standard errors (SE), and the sample size (n).

Year Version R2 RMSE (°C) MAE (°C) Slope (SE) Intercept (SE) (°C) n

2009 1 0.83 0.93 0.75 0.94 (0.04) 1.95 (0.59) 146

2009 1+ 0.9 0.69 0.54 0.93 (0.03) 2.12 (0.46) 146

2009 2 0.85 0.87 0.69 0.92 (0.03) 1.94 (0.54) 146

2009 2+ 0.9 0.67 0.51 0.91 (0.03) 2.11 (0.44) 146

2010 1 0.85 1.1 0.88 1.03 (0.04) 1.73 (0.64) 141

2010 1+ 0.92 0.75 0.58 1.01 (0.03) 2.11 (0.46) 141

2010 2 0.85 1.07 0.86 1.01 (0.04) 1.82 (0.61) 141

2010 2+ 0.92 0.79 0.62 0.98 (0.03) 2.28 (0.48) 141

2009 12 km 0.05 0.6 0.52 −0.44 (1.14) 23.81 (18.27) 5

2010 12 km 0.01 0.92 0.78 0.24 (1.16) 14.54 (19.22) 5

° °

Fig. 2 Example of the native and downscaled NLDAS minimum temperatures for July 7, 2010; the
high reported at JFK weather station on this day was 38°C, and the low was 25°C.
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RMSE ¼ 0.93). The better agreement in 2009, the cooler year, is consistent with the observation
that NLDAS underestimates higher temperatures on average across both versions and all years.
There was also a narrower range of temperatures in 2009 compared with 2010, which included
two much cooler outliers [Figs. 3(c) and 3(d)]. Examination of the residuals did not reveal vio-
lations of linear model assumptions; however, we did see a significant spatial pattern in the
residuals (Moran’s I p-value < 0.000001). The xy smooth function with seven degrees of free-
dom was sufficient to control spatial autocorrelation in the residuals, which increased the R2

from 0.85 to 0.9, decreased the error by over 20% while changing the slope by less than
3% and the intercept by on average 15% (Table 1).

NYCCAS-NLDAS temperature differences are mapped in Figs. 4(a) and 4(b). (See Fig. 5 for
histograms). A comparison of these two plots shows the improvement that the 5 × 5 kernel
makes in the downscaling, with average difference between NYCCAS and NLDAS decreasing
from 0.93°C with a 3 × 3 kernel (v1) to 0.64°C with a 5 × 5 (v2) kernel for 2009. In 2010, while
the average differences are higher, the 5 × 5 kernel improves the performance of the downscaled
data to the same extent as is 2009 [2.29°C for v1 and 1.98°C for v2, Figs. 4(c) and 4(d)]. Orange
points in Fig. 4(c), representing a 4°C to 5°C difference between NYCCAS and downscaled
NLDAS are not present in Fig. 4(d). Figures 4(a) and 4(b) also show greater divergence between
the datasets in the higher density areas of mid-town Manhattan and Brooklyn. NYCCAS
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Fig. 3 Scatterplots of (a) 2009 NYCCAS versus NLDAS downscaled 1 km averaged values for the
version 1 model (3 × 3 kernel), and (b) the same for version 2 (5 × 5 kernel). Plots (c) and (d) are
the same scatterplots for versions 1 and 2, respectively, for 2010. The blue line shows values fitted
to a linear model; gray shading shows the 95% confidence interval limits. The green line shows a
1:1 fit.
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minimum temperatures tend to be higher than downscaled estimates in most of NYC except
Staten Island, the least built-up borough, as well as in less densely urbanized parts of the
other boroughs. We found the spatial pattern in the residuals from the model without the spatial
smooth to be correlated most strongly with NDVI at a buffer size of 300 m (r = −0.65 for 2010
v2), with lower NDVI values indicating more urbanization and less green cover corresponding to
areas where the downscaled dataset underestimated NYCCAS temperatures the most [Fig. 6(b)]
while temperatures in greener areas were overestimated NLDAS.

4 Discussion and Conclusion

4.1 Overall Results

This study takes advantage of a unique high-density monitoring network in NYC to ground-truth
remotely sensed and modeled temperature estimates, specifically in terms of the spatial variabil-
ity in temperature within a complex urban and coastal environment. The native NLDAS
(∼12 km) resolution performs well in regions that are flat and landlocked with comparatively
low population density, such as the Southern Great Plains, as demonstrated in the many studies
that use Oklahoma Mesonet data.20,21 NYC has, in common with many other cities, a high pop-
ulation density and complex coastal features, which are among the contributors to surface tem-
perature heterogeneity that are not well captured at a ∼12-km scale. However, the spatial
variability in warm season daily minimum temperatures in NYC is well described by downscal-
ing the native NLDAS air temperature estimates to a 1-km product using an algorithm that

RMSE=0.93; MAE=0.75; n=146 RMSE=0.87; MAE=0.69; n=146

RMSE=1.07; MAE=0.86; n=141RMSE=1.1; MAE=0.88; n=141

(a) (b)

(c) (d)

Fig. 4 NYCCAS-downscaled NLDAS 2009 1-km downscaled average minimum temperature
differences for the (a) version 1 model (3 × 3 kernel) and (b) version 2 (5 × 5 kernel). Plots (c)
and (d) are the same NYCCAS-downscaled NLDAS differences for versions 1 and 2, respectively,
for 2010.
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employs a 5 × 5 kernel neighborhood to impose the spatial temperature pattern from MODIS
LST data. While the datasets were highly correlated (R2 = 0.85), NLDAS downscaled data con-
sistently underestimated the warmest minimum temperatures measured by NYCCAS. Using the
relationship of the downscaled NLDAS data to ground station monitoring that we have deter-
mined for NYC, other cities can make use of the regression parameters from our adjusted model
and apply them to the downscaled data now available for the contiguous United States. The US
Centers for Disease Control (CDC) recommends that health departments use data at the finest
geographic resolution available when assessing vulnerability to climate change22 and many local
health departments express the desire for finer resolution exposure data.

Similar measures of R2, MAE, and RMSE have been used in prior studies that compare
remote sensing sources with monitored air temperature.23–25 A good correspondence (i.e., a
high R2) between satellite-based and ground-measured data is possible only when the observa-
tions contain sufficient variation in measured values, which is more often typical of country-scale
studies. The very small spatial extent of cites make a good fit less likely; Ho et al.25 found that the
spatial pattern of Landsat-derived daytime surface temperature correlated poorly (R2 = 0.39)
with maximum air temperature measured at 39 weather stations for 6 hot summer days in
the greater Vancouver area. In Birmingham, United Kingdom, nighttime MODIS-based surface
temperature averaged over June to August was moderately correlated (R2 = 0.6) with minimum
air temperatures measured at 107 locations.23 In comparison, we find good correspondence in the
spatial patterns between the temperature measures in our study.

Other data sets exist that provide high-resolution daily meteorological variables. For our
specific application, the primary shortcoming of some of these, such as DayMet10 and PRISM11

(parameter-elevation relationships on independent slopes model), is that their temperatures are
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Fig. 5 NYCCAS-downscaled NLDAS 2009 1 km downscaled average minimum temperature
differences for the (a) version 1 model (3 × 3 kernel) and (b) version 2 (5 × 5 kernel). Plots (c)
and (d) are the same NYCCAS-downscaled NLDAS differences for versions 1 and 2, respectively,
for 2010.
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based on station data alone, with no remotely sensed inputs. From the station data, DayMet and
PRISM interpolate to a 1-km or 800-m grid through a sophisticated spatial algorithm, which also
adjusts temperatures based on surface elevation in the case of DayMet, and surface elevation and
other physiographic factors such as coastal proximity, topographic facet orientation, and vertical
atmospheric layer in the case of PRISM. However, ground stations are rarely available at any-
thing close to 1 km or 800 m spacing. Thus, even in urban areas where surface observations are
relatively dense, the estimated temperatures rely heavily on spatial interpolation. In more rural
areas, ground observations are very sparse and thus the DayMet temperatures are even more
heavily interpolated. In our approach, use of remote sensing data at the desired spatial resolution
of the resulting data set allows us to capture the thermal details of, for example, an urban envi-
ronment. Even in rural areas, temperature variations that occur due to agricultural patterns, soil
moisture variations, and riparian areas are not well captured by ground observations and thus are
mostly absent in the DayMet and PRISM temperature data sets. These features are observed by
MODIS LST and are therefore represented in our downscaled temperature data. Admittedly, the
MODIS data are not of air temperature, but they at least provide the fine-scale structure of tem-
perature, and we argue that our downscaling model provides a bridge between LST and air
temperature.

In NYC, there is variability in built density as measured by NDVI, and the fact that we found
monitored values to exceed remotely sensed modeled estimates in areas of high built density is
consistent with other studies. Bechtel compared temporal trends in air temperature with remotely
sensed LST at six ground-station sites in Hamburg, Germany, which ranged from suburban
neighborhoods and urban parks to very compact buildings and highly sealed areas; the remotely
sensed data underestimated air temperature in sites with extensive impervious surface.24 This
inverse relationship of modeled versus observed temperature differences and NDVI could
have several explanations.26,27 MODIS surface temperature used in the downscaling process
tends to amplify temperature extremes in both directions, especially over built or sparsely veg-
etated surfaces.9,28 Satellite-derived surface temperature spatial patterns have been found to
diverge from the spatial pattern of air temperature in urban settings, hypothesized to be due
to the advection of heat produced in the city center.23 Perhaps the warm season synoptic
flow in NYC is not as weak as is assumed in the downscaling model. The summertime prevailing
winds from the southwest in NYC may push heat created in Midtown Manhattan and the heavily
industrialized area of New Jersey into residential neighborhoods to the north and east, exacer-
bating air temperatures already impacted by high surface temperatures as seen in Birmingham,
United Kingdom.29 Weather patterns in NYC, as with many other coastal cities, include complex
land-water boundaries with sharp changes in energy and moisture exchanges. These drive a host
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Fig. 6 (a) Surface NDVI, V3.0, from Landsat/WELD for July 21, 2010, NYC borders added in
orange (Roy 2010). (b) Scatterplot of residuals from the linear regression of NYCCAS-downscaled
NLDAS (v2) and NDVI averaged within a 300-m buffer for 2010.
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of meteorological effects, such as the pattern of land-sea breezes, which are distinct from inland
areas and can vary in effect on the urban climate depending on the weather pattern.26,27 While the
combination of the NLDAS-based air temperatures and the MODIS surface temperatures did
well in describing air temperatures in NYC, further steps could be taken to improve the fit
such as using land-use regression modeling to combine the downscaled data with NDVI.
Evrendilek et al.30 used satellite-based and mesoscale regression modeling of air temperature
with other variables including NDVI to compare against 83 ground-based stations in Turkey.
The adjusted R2 of the best minimum air temperature model was 0.65 and the RMSE 5.9°C
and included NDVI in addition to the remotely sensed surface temperature. The downscaled
NLDAS dataset is available for the continental United States as is NDVI (USGS) which
would allow other cities to produce 1-km resolution temperature surfaces for exposure assess-
ment in health studies and evaluation of urban heat mitigation activities.

4.2 Limitations

The entire area of NYC is coastal and urban, and weather patterns evident here may not apply to
inland locations. We do not have access to information regarding when monitors are in sunlight
or shade, thus daytime NYCCAS temperatures are likely more subject to errors than recordings
at night. Daytime comparisons (Fig. 7) should be interpreted with caution. While we limited this
analysis to ground-truthing overnight minimum temperatures due to daytime temperature lim-
itations, minimum temperatures are highly correlated with maximum temperatures and heat
index in NYC and have similar association with warm-season natural cause mortality.31 The
frequency of extreme warm overnight temperatures is increasing more rapidly than extreme day-
time temperatures in the United States (graph32,33).

4.3 Summary

Our study has demonstrated the improvement of the downscaled NLDAS model in capturing the
spatial variability of temperature across NYC neighborhoods over the native ∼12-km resolution.
Comparisons of warm-season (May to October) downscaled NLDASmodeled temperatures with
NYCCAS ground station measurements showed strong agreement overall, with better agreement
for v2, which uses a 5 × 5 kernel. NYCCAS measured minimum temperatures were warmer on
average than the downscaled NLDAS temperatures, with the best agreement occurring for areas

(a) (b)

Fig. 7 Scatterplots of (a) 2009 and (b) 2010 NYCCAS versus downscaled NLDAS 1 km averaged
maximum temperatures for the version 2 model. The R2 is 0.80 for 2009 and 0.76 for 2010.
The blue and gray as above show the linear model and the 95% CI.
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and years with cooler minimum temperatures. Improvements to the downscaling algorithm in v2
reduced these differences further for both normal and cooler summers and improved model fit in
the more densely urbanized areas.

This study demonstrates that the 1-km downscaled NLDAS dataset provides high accuracy
temperature data at a temporal and spatial resolution that is desired by end-users in the climate
and health community for research and policy development and evaluation purposes.34 While the
∼12-km data are useful in places with less heterogeneous land-cover and lower population den-
sity, the higher resolution is needed for coastal and/or urban applications. In cities without a high
resolution network of temperature monitors such as NYCCAS, this dataset could provide expo-
sure estimates useful in the understanding of heat-related health effects, as heat-health vulner-
ability exhibits high rates of geographic variability.35
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