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Abstract. The utility of the ground-based soil observation laser absorption spectrometer
(SOLAS) was demonstrated through spectral reflectance measurements of five soil types during
laboratory- and field-based collection. The SOLAS telescope-assisted measurements were com-
pared with proximal measurements. The spectra that were acquired at an intermediate range of
40 meters compared well with the spectra that were acquired proximally. Specimen type, range-
dependent spatial resolution, and environmental conditions are discussed. The signal-to-noise
ratio (SNR) was assessed and is presented as a function of wavelength for the spectral range of
the receiver for each measurement condition. The proximal measurements performed outdoors
under solar illumination had the greatest SNR, while the remote measurements performed
indoors under artificial illumination had the lowest SNR. For the outdoor measurements, loss
of signal was observed around the 1400- and 1900-nm bands due to long-path atmospheric water
vapor absorption. The discussed future improvements to the SOLAS remote sensor will enable
measurements of reflectance over longer ranges. Envisioned applications include remote char-
acterization of surface materials for large construction projects (e.g., surface mines and tailings)
for geohazard investigations, or for ground truthing of current and future multispectral and
hyperspectral satellite data. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
Jull attribution of the original publication, including its DOIL [DOI: 10.1117/1.JRS.14.027503]
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1 Introduction and Background

Hyperspectral sensing, primarily in the visible near-infrared (VNIR) and shortwave infrared
(SWIR) ranges, has become increasingly utilized for ecologic', geologic,” civil engineering,’
and agronomic* applications. While high spectral resolution (<10 nm) sensing for rapid char-
acterization of rocks, minerals, soils, and vegetation is commonly performed at a proximal range
(<1 m), remote measurements with increasingly higher spectral and spatial resolutions have
been demonstrated.™® The proliferation of compact sensors has enabled portable and accurate
measurements of spectral reflectance from ground-based, manned and unmanned aircraft, and
spaceborne platforms. There is continued interest in developing hyperspectral remote sensing
technologies for a variety of applications, for example, for land-use/land-cover classification’
with several countries investing in planned space missions.® The prototype soil observation laser
absorption spectrometer (SOLAS), which is discussed in this paper, enabled high spectral res-
olution measurements at ranges greater than conventional proximal measurements while main-
taining cost and deployment feasibility. This type of device is needed because previous airborne
missions have been cost prohibitive and continuous full-spectrum sensors have only recently
overcome payload limitations for heavy unmanned platforms.”!® Deployment of the SOLAS
could support remote characterization of rocks, minerals, soils, or vegetation on inaccessible
slopes or outcroppings for economic geology, earthworks, or agriculture and forestry research

*Address all correspondence to Sean E. Salazar, E-mail: sean.salazar@ngi.no

Journal of Applied Remote Sensing 027503-1 Apr—Jun 2020 « Vol. 14(2)


https://doi.org/10.1117/1.JRS.14.027503
https://doi.org/10.1117/1.JRS.14.027503
https://doi.org/10.1117/1.JRS.14.027503
https://doi.org/10.1117/1.JRS.14.027503
https://doi.org/10.1117/1.JRS.14.027503
mailto:sean.salazar@ngi.no
mailto:sean.salazar@ngi.no
mailto:sean.salazar@ngi.no

Salazar and Coffman: Validation of a ground-based telescope-assisted hyperspectral. . .

applications. The SOLAS could also provide a means for ground truthing data collected from
current and future multispectral and hyperspectral missions.

The development of the SOLAS prototype was described previously in the literature.
In its current form, the SOLAS utilizes a portable, tripod-mounted telescope that collimates
reflected light through an optical receiver into a high radiometric-resolution spectroradiometer
[Analytical Spectral Devices (ASD) FieldSpec 4 Hi-Res; Malvern Panalytical Ltd., Malvern,
United Kingdom]. Light is detected on 2151 continuous bands from the ultraviolet to SWIR
wavelengths. The FieldSpec instrument utilizes a silicon detector for the VNIR wavelength
range (350 to 1000 nm) with a spectral resolution of 3 nm and a sampling interval of 1.4 nm.
A pair of thermoelectric-cooled indium gallium arsenide (InGaAs) detectors provide a spectral
resolution of 8 nm and a sampling interval of 1.1 nm for the SWIR wavelength ranges from 1001
to 1800 nm and 1801 to 2500 nm, respectively.

The motivation for this paper was to demonstrate the utility of telescope-assisted hyperspec-
tral measurements through indoor (laboratory) and outdoor (field) collection using different soil
specimens as targets. This paper presents the methods used to collect data and a related discus-
sion of the results. Additionally, the signal noise of the measurements is characterized as a func-
tion of wavelength across the entire receiver spectrum, and future improvements to the SOLAS
receiving system are suggested.

11,12

2 Methods

The SOLAS receiver was tested in both indoor and outdoor environments at various ranges from
the target. Proximal range measurements performed both indoors and outdoors were also col-
lected to provide comparisons for the telescope-assisted measurements. The methods that were
used to collect the hyperspectral data are described.

2.1 Indoor and Outdoor Proximal Range Data Collection

Specimens consisting of five different soil materials (Ottawa sand, coarse river sand, Donna Fill,
bentonite soil, and kaolinite soil) were characterized in the laboratory using a benchtop setup.
An 8-deg field-of-view (FOV) fore optic was attached to the end of the fiber-optic bundle leading
to the ASD FieldSpec 4 spectroradiometer. The setup, as shown in Fig. 1, was similar to that
used by other researchers' and as recommended by ASD for conventional measurements in the

ASD llluminator <

halogen lamp

8-deg fore optic ASD FieldSpec 4

Fig. 1 Labeled photograph of the laboratory setup as used to collect proximal range spectral
reflectance measurements with the ASD FieldSpec 4 Hi-Res spectroradiometer (pictured with
calibrated Spectralon® reference panel as target).
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laboratory or field. A 25 x 25 cm? calibrated reference panel (Spectralon®; Labsphere Inc.,
North Sutton, New Hampshire) was placed in the FOV of the fore optic. For proximal near-field
range (<1 m) measurements, the perpendicular diameter of the FOV Dgrgy was determined
using Eq. (1).

0
DFOV = DF.O. + 2R -tan (2), (1)

where Dg o is the diameter of the fore optic lens, R is the range, and 6 is the angular FOV in
degrees. The perpendicular Dgqy for the aforementioned laboratory setup corresponded with the
perpendicular Drqy for the SOLAS receiver for ranges of 20, 35, 50, 60, and 100 m. The dis-
tance between the fore optic and the target surface, equivalent to the Drgy at a given range in the
field, was determined using the relationship presented in Eq. (1).

The incidence angle of the fore optic relative to the target surface was set to 30 deg to match
typical field scale measurements performed using the SOLAS. A tungsten quartz, full-spec-
trum, halogen lamp (ASD “Illuminator’”’) was directed perpendicular to the target surface. The
FieldSpec 4 instrument and Illuminator lamp were allowed to warm up for 1 h before any
spectra were acquired to minimize temperature-induced radiometric errors. The following pro-
cedure was repeated for each set of measurements, for each Drgy equivalent range. The fore
optic was centered on the Spectralon panel, the instrument settings were optimized within
the ASD RS? software, and ten reference spectra were collected for a given acquisition. After
referencing the Spectralon panel, the panel was successively replaced with one of seven
25-cm diameter, dry soil specimens (Ottawa sand, coarse river sand, Donna Fill with smooth
and rough surface textures, bentonite soil, or kaolinite soil with smooth and rough surface
textures). Ten spectra were collected for each specimen. A summary of the baseline measure-
ments acquired for the soil specimens, collected from proximal range distances while indoors,
is presented in Fig. 2.

The five soil types were also tested outdoors under solar illumination. The aforementioned
procedures were repeated to collect reflectance spectra at a proximal range of 12 cm with an
incidence angle of 44 deg and an illumination angle of ~60 deg relative to the target surface.
The Dggy was 2.4 cm, which is equivalent to a SOLAS measurement at 40 m from the target.
The resulting spectra served as a comparison for the SOLAS measurements that are described in
Sec. 2.2. A summary of the measurements acquired for the soil specimens, collected from proxi-
mal range while outdoors, is presented in Fig. 3.

The tested specimens were selected because of previous studies in which benchmark char-
acteristics were determined for the soils.'® A brief description of each of the soil types follows.

Acquisition Target Incidence Illumination Range  Corresponding Drov
number angle (deg) angle (deg) (cm) range (m) (cm)
1, 9,17,25,33 Spectralon® 3 20 1.2
10 35 2.1
2,10, 18, 26, 34 Ottawa sand 30 90 16 50 3.1
21 60 3.7
3,11,19,27,35 Coarse sand 38 100 6.1

4,12, 20, 28, 36 Donna Fill (smooth)

5,13,21,29, 37 Donna Fill (rough)

¥, Artificial
Te i, illumination

6, 14, 22, 30, 38 Bentonite

7, 15,23, 31, 39 Kaolinite (smooth)

8, 16,24, 32,40 Kaolinite (rough)

Fig. 2 Summary of measurements acquired indoors at different proximal ranges under artificial
illumination.
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Acquisition Incidence Illumination

number Target angle (deg) angle (deg) Range (cm) Drov (cm)

1 Spectralon® 44 ~ 60 12 2.4
2 Ottawa sand
3 Coarse sand
451 DBonna 1?111 Solar
entonite ore . jnation
t) Jumy
6 Kaolinite pli i

Fig. 3 Summary of measurements acquired outdoors at proximal range under solar illumination.

The Ottawa sand (Humboldt Mfg. Co., Elgin, Illinois) was a pure silica sand. The coarse, quartz-
itic river sand was sourced from the Arkansas River (Arkhola, Van Buren, Arkansas). The Donna
Fill (Donna Fill Co., Little Rock, Arkansas) was a synthetic nepheline synetite material that was
dark gray in color. The bentonite soil was a tan-colored smectitic clay (PondSeal™) that was
sourced from Wyoming. The kaolinite soil was a commercial KaoWhite-S product (Thiele
Kaolin Co., Sandersville, Georgia).

2.2 QOutdoor Intermediate-Range Data Collection

The SOLAS receiver was tested in an outdoor environment at the Cato Springs Research Center
(CSRC) that is located south of the University of Arkansas campus. The SOLAS device was set
up on the rooftop of the CSRC, as depicted in Fig. 4, to allow for a better vantage point and
a greater incidence angle relative to the target. The angular FOV of the SOLAS receiver was
3.5% 1072 deg. The range-dependent Dpgy of the SOLAS receiver was previously described
in more detail.'”> Each specimen was 25 cm in diameter and was prepared dry. The same five soil
types that were tested proximally were tested at a range of 40 m. The target was inclined 29 deg
relative to the ground, while the SOLAS receiver was declined 15 deg for an effective incidence

l Multichannel
™ receiver relay®

ASD FieldSpec 4
spectroradiometer

=~

Fig. 4 Labeled photograph of the field setup as used to collect intermediate-range spectral reflec-
tance measurements with the SOLAS telescope-enhanced receiver.
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Acquisition Incidence Illumination

number Target angle (deg) angle (deg) Range (m)  Drov (cm)

1, 7,13 Spectralon® 44 ~60 40 2.4
2, 8,14 Ottawa sand

3, 9,15 Coarse sand

4,10, 16 Donna Fill

5, 11,17 Bentonite

6,12,18 Kaolinite

Fig. 5 Summary of measurements acquired outdoors at a range of 40 m under solar illumination.

angle of 44 deg relative to the target. The illumination angle from the sun was approximated
based on the time of year and time of day using the spherical trigonometric relationship pre-
sented in Eq. (2).

cos(f,) = sin(®) - sin(8) + cos(D) - cos(6) - cos(h), 2)

where 6, is the solar zenith angle, ® is the local latitude, ¢ is the sun declination, and 4 is the hour
angle (local solar time). During the readings, the sky was clear (no cloud coverage) and the air
temperature was 22°C with a humidity of 43% and a wind speed of 20 kmh~=!.

To determine the repeatability of the measurements under outdoor conditions and solar
illumination, the set of measurements was repeated twice within 30 min. As described in
Sec. 2.1, the set of specimens was also tested at the proximal range of 12 cm with the afore-
mentioned 8-deg fore optic under the same solar illumination conditions. These proximal
measurements provided a comparison to the outdoor measurements collected at a range of
40 m. A summary of the intermediate-range measurements as acquired outdoors at a range
of 40 m is presented in Fig. 5.

2.3 Processing Methods

For each set of measurements of a given specimen, the raw reflectance values were averaged and
normalized with respect to the Spectralon reference panel. The resulting reflectance values were
then plotted as a function of wavelength. While the proximal range measurements did not require
additional corrections, the SOLAS telescope-assisted measurements collected indoors under
artificial illumination'? were splice corrected'® if an offset was observed at the transition
wavelengths between the three instrument detector ranges (VNIR, SWIR 1, and SWIR 2).
For the measurements collected outdoors under solar illumination, the 1900-nm long-path
water vapor absorption band interfered with the aforementioned splice correction procedure
at the 1800-nm detector transition. Therefore, the spectra collected outdoors were not corrected.
A Savitzky—Golay filter'> was applied to smooth all of the collected spectra except for the
indoor proximal range measurements, which did not require filtering.

For each of the aforementioned sets of measurements, the noise was characterized. A pro-
cedure outlined by ASD!'®!7 was followed to determine the baseline noise of the detectors within
the FieldSpec 4 instrument. The noise-equivalent radiance was determined indoors at a proximal
range using the Spectralon reference panel as the target due to the Lambertian reflectance proper-
ties of the panel across the 350- to 2500- nm range. The noise-equivalent radiance was used to
derive the signal-to-noise ratio (SNR) across the range of wavelengths for typical measurements
(1) performed at proximal ranges using the §8-deg fore optic indoors and outdoors and (2) col-
lected at various intermediate ranges using the SOLAS telescope-enhanced receiver indoors and
outdoors.
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3 Results and Discussion

3.1 Indoor Proximal Range Measurements

The baseline spectra for each of the five materials that were tested in this study are presented in
Fig. 6(a). Because the measurements were collected indoors at proximal ranges and under arti-
ficial illumination, as described in Sec. 2.1, the resulting spectra were expected to be smooth and
contain minimal noise. The spectra are presented in terms of absolute reflectance with respect to
wavelength to allow for comparison with the United States Geological Survey (USGS) spectral
library data.'® The spectra for the Ottawa sand [Fig. 6(b)], bentonite soil [Fig. 6(c)], and kaolinite
soil [Fig. 6(d)] specimens generally matched the USGS standards. The USGS spectral library did
not contain a material called “bentonite.” The closest match within the database was a mont-
morillonite clay soil. Although both soils are in the Smectite group and share mineralogical
properties, it is likely that the color of the soil and perhaps the particle size distribution differed.
Moreover, the USGS reflectance spectra were collected with similar though different ASD spec-
troradiometers and with a perpendicular incidence angle.

As shown in Fig. 6(d), the surface roughness had an influence on the amplitude of the
reflectance values, while the general trends including absorption features were well preserved.
The kaolinite soil specimen that was prepared with a smooth surface texture reflected more
light across the entire VNIR and SWIR wavelength range than the kaolinite soil specimen that

Kaolinite

o
o
T
L

0.8
Ottawa sand

Ottawa sand

0.6

o
)

18
Bentonite USGS standard

0.4

I
~

Donna Fill

Absolute reflectance, R (R/Rggr)
Absolute reflectance, R (R/Rggr)

0.2

o
¥
T
L

Proximal range
Coarse sand Artificial illumination |
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el I —t
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n

T T T T T T
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——rT—T 1T

1 T
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o
[
T

0.6

o
o
T
L
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’

04F

o
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o
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(© (d
Fig. 6 Absolute reflectance spectra for dry specimens of (a) five soil types collected indoors at

proximal ranges, (b) Ottawa sand, (c) bentonite soil, and (d) kaolinite soil, as compared with the
USGS spectral library standards.'®

Journal of Applied Remote Sensing 027503-6 Apr—Jun 2020 « Vol. 14(2)



Salazar and Coffman: Validation of a ground-based telescope-assisted hyperspectral.. .

was prepared with a rough surface texture. A similar, though less pronounced, effect was
observed for the darker Donna Fill specimens that were prepared with smooth and rough
surface textures.

Another factor that affected the spectral amplitude was the range-dependent FOV diameter
Doy or spatial resolution of the measurements. An increase in Dggy generally resulted in an
increase in the reflectance values across the wavelength range for the rough-textured kaolinite
soil and Donna Fill specimens, as shown in Figs. 7(a) and 7(b), respectively. This was due to
more light being reflected into the fore optic, given an increase in the distance between the fore
optic and the target surface. For Drgy > 6 cm, the effect of range on the spectral amplitude was
negligible. Likewise, the effect was insignificant for the other soil specimens, including the
smooth-textured kaolinite and Donna Fill specimens (not shown in Fig. 7).

3.2 Outdoor Intermediate Range Measurements

The results for the outdoor intermediate-range measurements that were described in Sec. 2.2 are
shown in Figs. 8 and 9. The repeatability of the measurements is demonstrated in Fig. 8. The
average of the three measurements, acquired for each specimen using the SOLAS receiver at a
range of 40 m, is shown in Fig. 9 alongside the indoor and outdoor proximal measurements.
When comparing the telescope-assisted measurements to the spectra collected proximally, the
Droy was matched as closely as possible though the range-dependent Drqy effect was small,
as discussed in Sec. 3.1. The indoor and outdoor measurements compared well. The outdoor
measurements, acquired under solar illumination, contained a loss in SNR around the 1400- and
1900-nm bands, typical of long-path atmospheric water vapor absorption. The erroneous reflec-
tance values around these bands were preserved to illustrate the effect on the signal; however,
they are commonly removed in postprocessing. As described in Sec. 2.3, the transition between
adjacent detectors in the FieldSpec instrument sometimes resulted in an offset that was addressed
with a simple splice correction procedure during processing. However, this procedure was not
applicable to the transition between the two SWIR detectors because of the interference of the
long-path water vapor absorption band.

Spectral signatures outside of the long-path absorption bands were identifiable. For example,
the kaolinite spectra contained the characteristic doublet feature in the 2200-nm region, as pre-
sented in Fig. 10, and the bentonite spectra retained the signature in the 2200 to 2300 nm region.
The Ottawa and river sands contained weak features with signature peaks at 2140 nm followed

L e e e e L e e e 1 T T T T T T

Proximal range Proximal range
Kaolinite (rough) Artificial illumination - 3 Avrtificial illumination
30° incidence angle 30° incidence angle

o
©

08 k

I In order, top down:

100-m equivalent FOV
0.6 | 60-m equivalent FOV 1
50-m equivalent FOV
35-m equivalent FOV
20-m equivalent FOV

o
o

I
'S

| Inorder, top down:

100-m equivalent FOV
60-m equivalent FOV t 0.2
50-m equivalent FOV
| 35-m equivalent FOV
20-m equivalent FOV

Absolute reflectance, R (R/Rgee)
Absolute reflectance, R (R/Rggf)

I
)
T

Donna Fill (rough) 1

400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400
Wavelength, A (nm) Wavelength, A (nm)

() (b)

Fig. 7 Absolute reflectance spectra for dry specimens of (a) kaolinite soil with a rough surface
texture and (b) Donna Fill with a rough surface texture, collected indoors at proximal ranges cor-
responding to equivalent FOV diameters as observed with the SOLAS at distances of 20, 35, 50,
60, and 100 m from the target.
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Fig. 8 Three independent sets of reflectance spectra acquired outdoors under solar illumination
over a period of 30 min at a range of 40 m for dry specimens of (a) Ottawa sand and coarse river
sand, (b) kaolinite soil, (¢) bentonite soil, and (d) Donna Fill.

by troughs at 2200 nm. As expected, the Donna Fill spectra contained no distinguishable
features.

The spectra for all of the specimens collected with the SOLAS receiver contained a feature
around the 970-nm water absorption band; however, the absorption feature was only discern-
ible for the kaolinite spectra. An inverted artifact with increased reflectivity was observed for
the sand, bentonite, and Donna Fill specimens. It is hypothesized that the decreased sensitivity
at the upper range of the VNIR detector and the lower range of the SWIR 1 detector, as dis-
cussed in Sec. 3.4, contributed to the artifact, with the possibility of the telescope amplifying
the effect.

3.3 Noise-Equivalent-Radiance Characterization

The noise statistics for typical telescope-assisted measurements were presented previously;'”
however, the noise was not previously characterized across the entire VNIR to SWIR wavelength
range. Therefore, for completeness, the noise-equivalent radiance for the ASD FieldSpec 4
instrument is plotted as a function of wavelength in Fig. 11(a). For each of the three detectors,
the measured noise was greatest near the edges of each detector range, which is attributed to
reduced sensitivity of the silicon and InGaAs detectors at these wavelengths.!®!” While the
SWIR 1 range (1001 to 1800 nm) was the most stable range statistically, it also contained the
greatest noise-equivalent-radiance value (7.5 x 10™° Wem™2nm~!sr~! at 1001 nm).

As described in Sec. 2.3, the noise-equivalent radiance was used to derive the SNR across
the entire range of collected wavelengths. A plot of the SNR for typical indoor and outdoor
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Fig. 9 Reflectance spectra acquired indoors and outdoors at proximal ranges and outdoors at
a range of 40 m for dry specimens of (a) Ottawa sand and coarse river sand, (b) kaolinite soil,
(c) bentonite soil, and (d) Donna Fill.
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Fig. 10 Reflectance spectra acquired for kaolinite soil centered around the characteristic doublet

feature acquired indoors and outdoors at proximal range and outdoors at a range of 40 m as
compared with the USGS spectral library standard.'®

Journal of Applied Remote Sensing 027503-9 Apr—Jun 2020 « Vol. 14(2)



Salazar and Coffman: Validation of a ground-based telescope-assisted hyperspectral. . .

A1.E-7--.--.--.--.--.--.--.: 100000 F——7FT—"+—"—T+——7T—"—" T T T T 7T
; VNIR SWIR 1 SWIR2 ] VNIR SWIR 1 SWIR 2
TE 1 Outdoor, Proximal
£ 10000 £ 4
'S % Atmospheric absorption
21E8L {1 3
3 1 % 1000}
c -
© Q
k-1 k]
® ]
= <
£ & 100
T1EQ} = Indoor, Proximal
> c
= o
=3 [
& 10
8
]
z
1.E-10 1
350 650 950 1250 1550 1850 2150 2450 350 650 950 1250 1550 1850 2150 2450
Wavelength, A (nm) Wavelength, A (nm)
(a) (b)
100000 F——F—"—"—T+—+—T T T T T T T 100000 T T T T T T T
VNIR SWIR 1 SWIR 2 VNIR SWIR 1 SWIR 2
Qutdoor, Proximal
10000 10000 E
o o«
4 =z
o Outdoor, 85-m «
£ 1000 | 2 1000 | .
[ [
o o
.g Atmospheric absorption .g
c c
g 10 4 g 100 ]
3 ¥ 3
c c
o k=)
@ 10 @ 10}
Indoor, 100-m Outdoor, 85-m
1 1
350 650 950 1250 1550 1850 2150 2450 350 650 950 1250 1550 1850 2150 2450
Wavelength, A (nm) Wavelength, A (nm)
(©) (d)

Fig. 11 (a) Noise as a function of wavelength as measured across the three detector ranges of the
ASD FieldSpec 4 spectroradiometer (one VNIR and two SWIR detectors) and typical SNRs as
functions of wavelength for (b) indoor and outdoor measurements acquired at proximal range,
(c) indoor and outdoor telescope-assisted measurements acquired at ranges of 100 and 85 m,
respectively, and (d) outdoor measurements acquired at a proximal range of 85 m (telescope-
assisted).

measurements, as acquired at proximal range, is presented in Fig. 11(b). The measurements
acquired under solar illumination had a greater SNR than the measurements acquired under
artificial illumination, except for where the sunlight was absorbed by the atmosphere.
Similarly, as presented in Fig. 11(c), a comparison of the SNR for telescope-assisted, remote
measurements performed indoors and outdoors indicated that the SNR was greater for the out-
door measurements. A comparison of proximal and remote measurements acquired outdoors
under solar illumination revealed far greater SNR for the proximal measurements, as presented
in Fig. 11(d).

According to previous studies using an ASD FieldSpec 4 instrument,'” increased levels of
noise were observed due to ambient temperature fluctuations and different sensor radiance lev-
els. The noise manifested itself at the edges of each of the three detector wavelength ranges in the
form of radiometric “jumps” between detectors; however, the noise was always greatest at the far
edges of the instrument range (near 350 and 2500 nm). The ambient temperature-induced noise
was minimized once the instrument had achieved internal thermal equilibrium requiring a 1-h
(minimum) warm-up period. Ambient temperature fluctuations of 5°C or more also required time
to achieve thermal equilibrium within the instrument. It is recommended that future measure-
ments be collected in radiance mode (as opposed to reflectance mode). This will allow for
the application of a parabolic correction algorithm (available in the ASD software) before
calculating reflectance factors for further analysis. Corrections that were applied directly to the
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reflectance data did not fully address the thermal noise nor were the corrections applicable to
measurements that were affected by long-path water vapor absorption near the 1900-nm water
band (as discussed in Sec. 3.3).

3.4 Limitations and Future Applications

The measurements that were collected for this study were limited by several factors. For exam-
ple, the maximum incidence angle of the reflectance measurements was limited primarily by the
angle of repose of the dry granular soil specimens (Ottawa and coarse river sands). Despite this
constraint, it was demonstrated that the SOLAS receiver could be utilized to collect measure-
ments from oblique targets that mimicked soil slopes and other natural surfaces. Another major
limitation for testing the maximum range of the SOLAS receiver was the size of the Spectralon
reference panel used in this study. Specifically, the range-dependent Drqy (spot size) of the
receiver could not exceed the elevation (effective height) of the target, which was significantly
reduced by the shallow incidence angles tested in this study. Conversely, the azimuthal dimen-
sion of the FOV was not affected by the incidence angle.

A solution to the target size limitation is the incorporation of a companion spectrometer that
measures a reference simultaneous to the sample target (e.g., ASD FieldSpec Dual methodol-
ogy). This would eliminate the need for placing a reference panel downrange making long-range
measurements more practical. An added benefit of near-simultaneous referencing of the
Spectralon panel is the reduction of error associated with rapid changes in atmospheric condi-
tions (cloud cover and wind). Although the outdoor measurements presented in this study were
collected under relatively stable atmospheric conditions, even small variations in the solar irra-
diance or illumination angle resulted in changes in the amplitude of the reflectance spectra and
the SNR. Another solution to the range limitation due to the diverging FOV could be provided by
modifying the receiver, which was described previously,'” to achieve a narrower FOV for more
effective intermediate- and long-range measurements.

In the future, the SOLAS will incorporate differential laser absorption measurements.'!
These measurements of atmospheric attenuation due to absorption and scattering by water vapor
along the receiver path will enable corrections to determine exact reflectance measurements.
Deployment of the SOLAS will enable remote classification of surface materials over large areas
that are hazardous or otherwise difficult to access. Examples of the applications of the SOLAS
include rapid characterization of rocks, minerals, soils, or vegetation on slopes or outcroppings
for economic geology, agriculture or forestry research, monitoring of soils used in construction
projects (e.g., mining operations and tailings dams), or forensic investigation of geohazards (e.g.,
landslides and debris flows). The SOLAS could also provide high spatial, spectral, and temporal
resolution ground truth data for current multispectral (e.g., Sentinel-2*) or future hyperspectral
(e.g., EnMAP?!' and HyspIRI?) satellite missions. More information about the SOLAS instru-
ment is available in the literature.'"!?

4 Conclusions

Hyperspectral reflectance measurements were acquired for five different soil types (Ottawa sand,
coarse river sand, Donna Fill, bentonite soil, and kaolinite soil) under artificial illumination
(indoors) and solar illumination (outdoors). Telescope-assisted measurements acquired using
the SOLAS device were demonstrated for an intermediate range of 40 m from the target.
Reflectance spectra acquired at a proximal range in the laboratory and the field were provided
for comparison. The spectra matched well with distinguishable absorption and reflectance
features characteristic of soil mineralogy. Additionally, the effect of specimen type, range-
dependent spatial resolution, and environment on the measured reflectance was presented and
discussed.

Adoption of the ASD FieldSpec 4 spectroradiometer instrument into the SOLAS platform
reduced the typical SNR of measurements performed at the proximal range; however, an accept-
able SNR was maintained for the telescope-assisted intermediate-range measurements. The SNR
of the measurements was determined as a function of wavelength for the full spectral range of
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the receiver. The greatest overall SNR was observed for the proximal measurements that were
performed outdoors, followed by the proximal measurements that were performed indoors, the
remote measurements that were performed outside, and finally, the remote measurements that
were performed indoors. The average ratio of the proximal range SNR to the intermediate-range
SNR was 16:1. As expected, signal loss around the 1400- and 1900-nm bands due to long-path
atmospheric water vapor absorption was observed for the outdoor measurements. Increased
levels of noise, inherent to the design of the spectroradiometer, were observed for the wave-
lengths near the edges of each detector range (350, 1000, 1800, and 2500 nm). Proper instrument
warm-up practices minimized the radiometric noise present in the signal, particularly at the
transition from one detector to the next. Future development of the SOLAS remote sensor will
allow for derivation of exact reflectance measurements over longer ranges.
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