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Abstract. Optical recording facilitates monitoring the activity of a large neural network at the cellular scale, but
the analysis and interpretation of the collected data remain challenging. Here, we present a MATLAB-based
toolbox, named NeuroCa, for the automated processing and quantitative analysis of large-scale calcium imaging
data. Our tool includes several computational algorithms to extract the calcium spike trains of individual neurons
from the calcium imaging data in an automatic fashion. Two algorithms were developed to decompose the im-
aging data into the activity of individual cells and subsequently detect calcium spikes from each neuronal signal.
Applying our method to dense networks in dissociated cultures, we were able to obtain the calcium spike trains of
∼1000 neurons in a few minutes. Further analyses using these data permitted the quantification of neuronal
responses to chemical stimuli as well as functional mapping of spatiotemporal patterns in neuronal firing within
the spontaneous, synchronous activity of a large network. These results demonstrate that our method not only
automates time-consuming, labor-intensive tasks in the analysis of neural data obtained using optical recording
techniques but also provides a systematic way to visualize and quantify the collective dynamics of a network in
terms of its cellular elements. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
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1 Introduction
The sophisticated functions of the brain are governed by the
coordinated activity of multiple neurons.1–3 Therefore, deci-
phering the spatial and temporal patterns of neuronal activity
in a large population is essential to understand the operating
principles of neural circuits.4 Optical recording using activity-
dependent fluorescence sensors, particularly calcium indicators,
is a powerful method due to its superior resolution in space by
comparison with electrophysiological approaches.5 Nowadays,
it becomes feasible to simultaneously capture the activity of
hundreds and thousands of individual cells from dissociated cul-
tures,6,7 tissue slices,8–10 or the brain of living animals,11–13 pro-
viding the glimpses of collective neural dynamics. Although the
optical acquisition of neural activity data has been remarkably
advanced owing to the efforts in developing genetic sensors14–16

and imaging techniques,17,18 it remains challenging to analyze
the collected image datasets due to their massive size and
complexity.

The analysis of calcium imaging data requires spike sorting
to isolate the signals of individual cells and quantitative repre-
sentation of their activity patterns. However, computational
tools are often unavailable that supports automated processing
and quantitative analyses of the imaging data. As a result, typical
approaches have relied on the manual annotation of cells19–21

and qualitative comparison of their fluorescent signals13,22,23

despite the consumption of considerable time and human

labor. Recently, several computational methods were suggested
to automate cell identification24–27 and spike inference28–32 from
the imaging data. However, additional programming still
requires for integrating and optimizing these algorithms for
practical use in data analysis. Additionally, even though the
activities of individual neurons are identified, visualizing and
deriving meaningful features of their ensemble activity are
still challenging due to the deficiency of suitable and standard-
ized methods.33,34 Thus, developing a comprehensive software
package for automated processing and quantitative analyses of
calcium imaging data would be beneficial for large-scale neuro-
physiological studies.

In this work, we have developed a new open-source, stand-
alone toolbox called NeuroCa. This program includes our new
algorithms for cell identification and spike detection from the
calcium imaging data, and also allows the quantification and
visualization of neuronal activity patterns in a large network
(Fig. 1). To detect individual cells, we applied a morphological
feature extraction method based on the circular Hough transform
to the image set. Our method enabled isolating the regions of
individual cell bodies with high efficiency, resulting in the fluo-
rescence signals of each cell as “multi-channel neural data.” To
extract the calcium spikes of each neuron, we devised a pro-
cedure that corrected the background trend of cellular signals
by using curve fitting and subsequently detected calcium spikes
by using deconvolution with data-driven kernels. Using disso-
ciated cultures of cortical neurons, we demonstrated that the
reconstructed spike trains of individual neurons could be utilized
not only to calculate the quantitative measures of cellular*Address all correspondence to: Yoonkey Nam, E-mail: ynam@kaist.ac.kr
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activity, but also to estimate the functional connectivity of the
neural circuits. In particular, we attempted to exploit neuronal
calcium spike trains to infer the firing patterns in the synchro-
nous activity of a large network for demonstrating the utility of
our approach to dissect the spatial and temporal organization of
neuronal circuits at cellular scale.

2 Methods

2.1 Cell Culture

Cortical neurons were cultured to construct functionally active
neural networks in vitro. The cortical tissues were dissected
from E18 SD rats (Koatech, Republic of Korea) and immersed
into HBSS (14175, Gibco, California). After dissociating the
tissue into the single cells, we centrifuged the suspension at
1000 rpm for 2 min. Supernatant was then gently removed,
and the plating medium [Neurobasal medium (21103, Gibco,
California) supplemented with B27 (17504-044, Gibco,
California), 2 mM GlutaMAX-1 (35050, Gibco, California,

12.5 μM L-glutamate (L-Glutamic acid, nonanimal source,
G8415, Sigma, Missori, and 1% (v/v) penicillin-streptomycin
(15140, Gibco, California)] was re-filled to suspend cells.
Cells were cultured on the substrate with the density of
∼1000 cells∕mm2, and half of medium was changed with the
maintenance medium (as same as the plating medium without
L-glutamate) twice a week. All procedures of cultivation were
performed according to the approved animal use protocols of the
KAIST Institutional Animal Care and Use Committee.

2.2 Calcium Imaging

We used a commercial calcium indicator, Oregon green
BAPTA-1 (OGB-1; 50 μg; O6807, Molecular Probes®,
California), for measuring neural activities. The stock solution
of the calcium indicator was made of OGB-1 (50 mg), 48 μl of
dimethyl sulfoxide (DMSO; D4540, Sigma, Missouri), and
2 μl of F127 solution [Pluronic® F-127; 20% (w/v) in
DMSO; P2443, Sigma, Missouri]. We also used buffered arti-
ficial cerebrospinal fluid (bACSF) composed of NaHCO3

Fig. 1 Analytical procedure of calcium imaging data. (a,b) The image sequence is decomposed into the
regions of individual cell bodies by our cell body detection algorithm, and (c) the fluorescence signal of
each region of interest (ROI) was calculated by averaging the mean intensity of each region at each
frame. From the calcium signals, (d) the baseline fluctuation was compensated by our curve fitting
method and (e) calcium spikes were detected. (f, g) The constructed spike train data could be further
used for the analysis of neural activity (f) and functional connectivity (g). (h) We have focused on inves-
tigating the neuronal firing patterns in synchronous network bursts that are spontaneously emerged from
the dissociated neural networks.
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(25 mM), D-glucose (25 mM), NaCl (125 mM), KCl (2.5 mM),
NaH2PO4 (1.25 mM), MgCl2 · 6H2O (1 mM), and
CaCl2 · 2H2O (2 mM) in third distilled water and supplemented
with 10 mM of HEPES. Prior to the preparation of imaging, all
materials were heated in an incubator (37°C, CO2 5%).

To introduce the calcium indicator to the samples, the stock
solution was added to bACSF and gently mixed by pipetting (the
final concentration of OGB-1 was 2.5 mM). After aspirating the
whole medium in the culture, we added the diluted indicator
solution to the sample for 30 min of dye loading. Next, the sol-
ution was aspirated again and washed with fresh bACSF two or
three times. The sample was soaked in fresh bACSF for 30 min
again for stabilization and then ready to be measured.

The imaging setup was composed of an upright microscope
(BX51, Olympus, Japan) with a light-emitting diode (LED)
source (SOLA SM, Lumencor, Oregon), a camera (sCMOS
Neo, Andor Technology, UK), and a heating plate with a temper-
ature controller (TC01, Multichannel Systems, Germany) for
maintaining 37°C during imaging. We acquired images with
the frame rate of about 32 Hz and the field-of-view (FOV) of
about 800 μm × 700 μm.

The computer for acquiring real-time image data was com-
posed of Intel® Core i5-2400 processor (3.1 GHz; motherboard:
Asus P8H67) supporting SATA 6 GB∕s and 16 GB of memory.
For achieving fast and stable data acquisition, we connected
solid-state drives (SSDs; 840 Pro, Samsung, Republic of
Korea). In all calcium imaging experiments, image data were
collected via custom-made software based on Andor SDK3
(Andor Technology, UK).

2.3 Chemical Stimulation

Several agonists of neurotransmitter receptors, such as N-methyl-
D-aspartic acid (NMDA; M3262, Sigma, Missouri), α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; Asc-130,
Ascent Scientific), and γ-aminobutyric acid (GABA; A2129,
Sigma, Missouri), and an antagonist of GABAergic receptor
(bicuculline; Tocris), were used to change neural activity.
NMDA, GABA, and bicuculline were dissolved into bACSF
with 20 μM of concentration and AMPA was dissolved into
bACSF with 40 μM of concentration. After baseline recording
with the culture immersed in pure bACSF, half of the bath sol-
ution was replaced with the same amount of drug-containing sol-
ution; therefore, the final concentration of NMDA, GABA, and
bicuculline was 10 μM, and that of AMPA was 20 μM. All the
bath solution was aspired for washing out, and fresh bACSF
heated up to 37°C in advance was filled in the culture.

2.4 Cell Body Detection

To correct the imbalance illumination and enhance the contrast
level, top-hat filtering and contrast adjustment were applied to
the image data. Next, circular Hough transform (CHT) was
applied to the corrected image to detect all circular elements
(here, somata) as independent regions of interest (MATLAB
function: imfindcircles). This step gave rise to the center
and radius of each region of interest (ROI) that is available
to construct the binary mask image. We used radius 1 to fill
the ROI area instead of the original value to avoid the overlap-
ping between different ROIs. Furthermore, to prevent missing
cells that are not activated at the very first snapshot, we
repeated this procedure in the first 200 images of a sequence
(if the total number of images were less than 200, all the

images were used) and overlapped each mask into one by
“OR” operation. Using this final mask, we could obtain the
spatial information (center and radius) of each circular element
that outlined the somata as ROIs one-by-one and traced the
mean intensity of pixels in each ROI over time as a calcium
signal.

2.5 Photobleaching Correction

To calculate ΔF∕F, we estimated the baseline, F, from each
fluorescence calcium signal by double curve fitting. First, the
signal was fitted with the exponential decay function, and we
built the error histogram between the fitted curve and the raw
signal (first fitting). By fitting the Gaussian distribution to
this histogram, we defined the range of noise values as the
full-width half-maximum (FWHM) of the histogram. Then,
only considering these noise values, we fitted the signal once
again with a new exponential decay curve to find the baseline
signal. Using this signal, we finally calculated ΔF∕F to obtain
the cellular signals with zero baseline.

2.6 Calcium Spike Detection

To detect calcium spikes from each signal, we used the
deconvolution method suggested by Yaksi and Friedrich35

with slightly modified steps. First, we used a low-pass
Butterworth filter (second order) to attenuate noisy fluctuation
in the calcium signal (cutoff frequency: 2 Hz). Subsequently,
the large peaks in this filtered signal were simply detected by
finding the local maxima above the threshold (3 to 5 times the
standard deviation), and the signal was segmented with the 5-s
window from the peaks. All the segments were aligned to zero
and averaged to create a representative form of calcium spikes
for this signal. Then, we used this averaged spike to estimate
the decay time [τ in Fig. 4(c), third graph] of the kernel,
y ¼ expð−t∕τÞ. The signal was deconvolved using inverse fil-
tering of this kernel, and the peaks of this trace above the
threshold were detected to extract the timestamps.

2.7 Synchronous Activity Detection

We simply detected the timing of network-wide synchrony from
the calcium spike trains of all ROIs in one FOV. The first step of
this procedure was to obtain the network burst profile by calcu-
lating the ratio of activated ROIs to the total number of ROIs at
each frame. The peaks of this profile above the threshold (here,
we used 0.2–0.3 in most cases) were detected as “network burst
points.” At each network burst point, we defined the duration of
this burst as between two frames at which all cells were silent
just before and after the burst point.

2.8 Statistical Analysis

Using the temporal ROI sequences of a network burst, we
implemented the nonparametric statistical analysis based on
the Kendall’s rank correlation for evaluating the association
and consistency of the temporal orders.8 The coefficient, τb,
indicates the association between two ranking orders as
follows:

τb ¼
nc − ndffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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2
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where nc and nd are the number of concordant and disconcord-
ant pairs, respectively; and n is the number of the rank. As the
firing order of several neurons is usually tied due to the limited
temporal resolution, the additional terms, ti and si, were com-
plemented with the number of concurrently fired ROIs in i’th
order. In this measure, τb can span from 0 to 1; if the order of
two sequences is exactly the same, τb is 1. The pairwise com-
parison of all pairs of ROIs could be then clustered to identify
the patterns of inter-burst propagation in the similar way to the
correlation analysis. To create the matrix of τb, we defined the
distance, dτ, between two temporal orders in i’th and j’th
bursts, as follows:

dτ ¼ 1 − τði; jÞ; (2)

where τði; jÞ is τb of i’th and j’th bursts.

3 Results

3.1 Procedure for Data Processing and Analysis

Our approach was aimed at converting the two-dimensional
images of optical neural data to the collection of neuronal cal-
cium spike trains (“data processing”) and using these spike
data for the various analyses of neural dynamics (“data analy-
sis”). To achieve the first goal of data processing, we developed
a step-by-step procedure (“Basic image processing” in Fig. 1);
the first step was to identify the regions of individual cell
bodies (“Cell body detection” in Fig. 1). Then, the mean fluo-
rescence intensity of each ROI over time (frame) was traced to
extract cellular signals (“Calcium signal tracing” in Fig. 1).
These signals were subsequently converted into the relative
change of intensity after automatic baseline correction
(“Background correction” in Fig. 1), and the transients of cal-
cium signals were detected as “calcium spikes” whose peaks
imply the timing of cellular firing (“Calcium spike detection”
in Fig. 1).

The neuronal spike trains derived from the imaging data were
then used to analyze neural activities with a multitude of quan-
titative measures (“Post analysis” in Fig. 1). The temporal pat-
terns of neural activity were quantified by using mean firing rate
(MFR), inter-spike interval (ISI), or the amplitude of calcium
spikes (“Basic spike train analysis” in Fig. 1). The functional
connectivity between neurons was estimated by calculating
pair-wise cross-correlation (“Cross-correlation” in Fig. 1).
Finally, we utilized neuronal spike trains to reveal the spatiotem-
poral firing patterns in the synchronous activity of a network.
(“Network burst analysis” in Fig. 1).

3.2 Sorting of Cellular Signals

To automatically identify each cell body from an image where
hundreds or thousands of cells were captured, we used the ellip-
tical morphology of cell bodies. Following the preprocessing of
images to enhance the contrast between cellular regions and
background [“Adjusted contrast” in Fig. 2(a)], we applied
CHT36 to the calcium imaging data in order to isolate circular
elements that corresponded to the cell bodies [“Detected
somata” in Fig. 2(a); for further details, see Methods section].
Despite the coexistence of thin linear structures (neurites) with
similar brightness, CHT could detect circular regions with their
location and size, thereby isolating each cell body as an ROI
[ROI; outlined with red circles in Fig. 2(a)]. Subsequently,

the mean fluorescence intensity of each ROI was traced in all
the frames of the image set as the signal of each cell [Fig. 2(b)].

Using CHT to the cell body identification requires the pre-
determination of two parameters: sensitivity and the range of
radius. The sensitivity of CHT determines how much rounded
objects would be detected; the larger this value is, the more
circles CHT can detect including distorted ones. The second
parameter, the range of radius, constrains the size of detectable
objects. To optimize these parameters, we compared the number
of cells detected by CHT with manual annotation. We used 10
different images of dye-loaded neural networks in dissociated
cultures and manually counted the total number of cells in
each image (∼300–500 cells). The true positive rate (TPR), indi-
cating the ratio of automatically detected cells to the manually
identified ones, gradually escalated as the sensitivity increased.
The maximum TPR was achieved when the sensitivity was in
the range of 0.90–0.98 [Fig. 2(c)]. On the other hand, the false
positive rate, calculated by the ratio of false alarms at each sen-
sitivity to the maximum likelihood (when the sensitivity was 1),
did not change at the sensitivity of less than 0.9 but drastically
increased above this value [Fig. 2(c)]. Thus, the optimal sensi-
tivity was set to be 0.9 for the accurate detection of cell bodies
[Fig. 2(c), indicated by a black dashed line].

With the optimal sensitivity of 0.9, we calculated TPR as the
measure of detection accuracy in varying ranges of radius. All
paired combinations from 3 to 31 pixels, which corresponded to
about to 2–20 μm in diameter, were examined. Our examination
showed that the best result of our algorithm was achieved at the
range of 5–6 pixels for the minimum radius and 15–31 pixels for
the maximum radius with the detection accuracy of >90%
[Fig. 2(d)]. For the analysis of real data, we chose 5–15 pixels
as the optimal range of the radius. This pixel-range corresponds
to 3–10 μm in diameter for our microscopic setup (objective:
20x, image resolution: 1280 × 1080) such that the optimal
range for other imaging data could be converted, according
to the spatial resolution of the microscopic setup.

Next, using the optimized parameters, we assessed how many
cells our algorithm can detect and how well it can separate a cel-
lular cluster into single cells. For the quantitative evaluation, we
measured the detection accuracy of our method and compared it
with that of a simple thresholding method. The simple threshold-
ing method isolated the connected pixels brighter than their sur-
roundings as one ROI. As a result, CHT showed superior
performance of individual cell separation than the thresholding
method [Fig. 3(a)]. Compared to the manual detection, CHT
could identify more cells (90.6� 1.7%) than simple thresholding
[41.1� 4.8%; Fig. 3(b)]. In addition, CHT could select individ-
ual cells as different ROIs, but the simple thresholding method
could not separate them from the bright region in which cells
were too close to each other or formed clusters [Figs. 3(a) and
3(c)]. More than 95% of the ROIs contained only one cell by
applying CHT [Fig. 3(c), right], but only half of ROIs did in
case of the simple thresholding [Fig. 3(c), left]. Furthermore,
the distribution of ROI diameters detected by using CHT also
showed that it was comparable to the size of cell bodies
[about 10 μm in diameter;37 Fig. 3(d)]. In addition, the minimum
distance between two ROIs was 3.2 μm, implying the possibility
of our method to distinguish two overlapping cells as different
ROIs. As a consequence, all the results indicated that our algo-
rithm based on CHT had the outstanding ability to not only iden-
tify most of the cells but also isolate each of them in calcium
imaging data.
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3.3 Calcium Spike Detection from Fluorescence
Signals

After extracting the mean fluorescence intensity of each ROI
from the image sequence, we applied two operations to the fluo-
rescence signal in order to reconstruct the spike train of each
neuron [Fig. 4(a)]. First, the raw signal was converted into
the relative value of the baseline (ΔF∕F, where F is the baseline
level). Second, the rapid transients of calcium signals were
detected to infer the timing of the action potential firing.

In the first step, precisely estimating the trend of the baseline
is essential to correct each cellular signal, as the background
fluorescence intensity was not consistent but often decreased
over time mostly due to photobleaching. To correct this incon-
sistent decay, we developed a method based on curve fitting for
estimating the baseline from each cellular signal [Fig. 4(b)].
First, we fit an exponential decay function to the original

fluorescence signal [Fig. 4(b), top graph]. The histogram of
the errors between the original and fitted values was then fit
to Gaussian distribution to determine the noise level of the sig-
nal; we decided the noise range as the FWHM of this distribu-
tion. By only using the noise values for the second fitting of a
new exponential decay function, we were able to estimate the
background trend (F) for each ROI. The calcium signal of
each cell (ΔF∕F) was finally calculated as follows:

ΔF
F

¼ Fi − F
F

; (3)

where Fi was the mean fluorescence intensity of each ROI at the
i’th frame [Fig. 4(b), bottom graph].

The next step was to detect spikes from the corrected signals.
Considering the fluorescence signal as the superposition of
calcium spikes that follow the instantaneous increase and

Fig. 2 Cell body detection and parameter optimization. (a) The procedure of the cell body detection from
the image sequences. (a) The image (“Original image”) was preprocessed by tophat filtering and contrast
level adjustment (“Adjusted contrast”) and used to detect cells by applying circular Hough transform
(CHT) (“Detected somata”). (b) Examples of the raw fluorescence calcium signal traced from each iden-
tified cell in (a). These signals were traced from seven neurons selectively marked with the same color in
(a). (c) True positive rate [(TPR); orange] and false positive rate; blue versus sensitivity (the parameter for
determining the threshold of circularity) was plotted (mean� SEM; n ¼ 10). The dashed line indicates
the sensitivity of 0.9. (d) The color-coded image of detection efficiency depending on the combination of
minimum and maximum radii. The scale bar in “Original image” and “Detected somata” of (a) indicates
100 μm and 30 μm, respectively.
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subsequent exponential decay,38 we designed a new simple
method based on deconvolution,35 which used a kernel of cal-
cium spikes derived from the real data [Fig. 4(c)]. The signal
was smoothed using a low-pass filter to attenuate the fast,
noisy component [second Butterworth; Fig. 4(c), top graph].
Then the large peaks were detected from the signal with thresh-
olding [Fig. 4(c), the second graph]. By averaging these large
spikes, we obtained a template of a spike for each calcium signal
and fitted the exponential decay curve to construct a kernel
[Fig. 4(c), the third graph]. With this data-driven kernel, the sig-
nal was subsequently deconvolved [Fig. 4(c), the fourth graph].
Finally, we detected the peaks of the deconvolved signal above
the threshold that corresponded to calcium spikes [Fig. 4(c), bot-
tom graph; for further details, see Methods section].

Our calculation based on curve fitting successfully corrected
the decreasing trend of background without the distortion of fast
calcium spikes [Fig. 4(d)]. Furthermore, we validated the ability
of our algorithm to detect calcium spikes by measuring the
detection accuracy with respect to the manual annotation
according to the spike amplitude [Fig. 4(e)]. Our method was
capable of detecting more than 90% of the spikes that have
the amplitude of ≥5%. These results demonstrated that our
method based on the combination of noise-estimated curve fit-
ting and deconvolution with a data-driven kernel was efficient to
detect calcium spikes, particularly the small ones that may re-
present a single action potential.8,29,39

3.4 Reconstruction of Neuronal Spike Trains from
a Large-Scale Network

To demonstrate the applicability of our tool, we used the calcium
imaging data of spontaneous neural activity measured from cul-
tured neural networks (Fig. 5). In our experimental setup, we
captured a large area (∼800 × 700 μm2) of the network in

which 500–1000 cells were simultaneously recorded [Fig. 5(a)].
Using our method, we were able to extract the activity of each
cell in the form of spike trains [exemplified in Figs. 5(b) and
5(b’)].

Although the neurons were cultured in the serum-free con-
dition, glial cells often emerged in the mature networks (>2
weeks in vitro). Some of the ROIs showed slow transients of
astrocytes, and others contained the mixed features of neuronal
spikes and glia transients in some cases that two different cells
were overlapped. Among 5989 cells in nine networks, neuronal,
glia, and mixed signals were 62.0%, 6.21%, and 20.7%, respec-
tively. The rest of the ROIs were silent (11.1%). The results indi-
cated that our algorithm could identify not only neuronal cell
bodies, but also glia cells with the mean discrimination accuracy
of 79.3%, which was comparable to the previous methods.24,33

In addition, our algorithm was also able to identify silent cells,
which were vital to represent neural activity in behaviors40 and
cognitive functions.41

3.5 Post Analysis 1: Quantification of Neuronal
Activities

Using our method, we quantitatively analyzed the responses of
cultured neurons to the controlled extracellular environment by
pharmacological treatment (Fig. 6). We used four different
chemicals to control neural activity; NMDA and AMPA are
the agonists of excitatory glutamatergic receptors, and GABA
and bicuculline are the agonist and antagonist of inhibitory
GABAergic receptors, respectively. As we reconstructed
spike trains from the image datasets, we could directly calculate
the MFR, ISI, the mean amplitude of calcium spikes, and the
ratio of active cells as the measure of cellular activity before
and after treatment.

Fig. 3 CHT identifies most of the cell bodies as a single ROI. (a) The same image processed with simple
thresholding and CHT algorithm. Each area outlined a red curve in simple threshold or circle in CHT
indicates each ROI. (b) The ratio of identified ROI numbers to the number of cells that were manually
detected (mean� SEM; n ¼ 10; � � �p < 0.001). (c) The cumulative distribution of the number of cells
detected as one ROI (left) with simple thresholding (gray) and CHT (magenta) and the normalized histo-
gram of CHT (right; mean� SEM; n ¼ 10). (d) The distribution of ROI diameters in 10 field-of-views
(gray) and average (black). The scale bar in (a) indicates 10 μm.
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Fig. 4 Spike detection algorithm including baseline estimation and deconvolution with data-driven kernels.
(A) To detect the calcium spikes from the fluorescence signal of each cell, we used a two-step procedure:
(b) thecorrectionofbaseline leveland(c)deconvolutionwithdata-drivenkernels. (B) In the firststepfor remov-
ing thebaseline trend, the rawsignalwas fitted to theexponential function (reddashed line)at first (topgraph).
Then, the noise level was estimated bymeans of Gaussian distribution fitting (black dashed line) to the error
histogram(secondgraph).Thevalueswithin the full-widthhalf-maximum(FWHM)wereconsideredasnoise.
Using only noise values (red dots), the second fitting was carried out to find more precise baseline (third
graph). This second fitted signal was finally concerned as the baseline (blue dashed line indicated as
“F”). The relative ratio of fluorescence intensity change to the baseline was calculated (bottom graph).
(C) From this corrected signal, we could detect calcium spikes. To reduce the noise, we smoothed the signal
using low-pass filter (top graph), and detect only large peaks (markedwith red circles) by simply thresholding
(reddashed line) the filteredsignal (secondgraph).Usinga5swindow(bluedashed rectangles),wecollected
the largespikesand found theparameter, τ, todetermine thedata-drivenkernel (thirdgraph).Thenwedecon-
volved the filteredsignal using thiskernel anddetected thepeaksabove the threshold (reddashed line; fourth
graph; red arrowheads: hits, black arrowhead: miss). These peaks were then concerned as the timing of
spikes (bottom graph; red ticks: detected spikes, gray tick: missed spike). (D) Validation of the ability of
ourmethod.Rawneuronal calciumsignals (I)werecorrectedbyour curve fittingmethod (ii). (E)Thedetection
accuracy of our method from corrected signals with respect to the manual inspection was measured. Each
point represents the accuracy of spike detection in the amplitude range of i% to less than ði þ 1Þ%.
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When the neural network was stimulated by additional
NMDA, MFR, and amplitude increased, but ISI did not signifi-
cantly change [Fig. 6(a)]. The results implied that NMDA
increased the activity of neural networks as we expected. On
the other hand, AMPA showed the opposite results; the level
of all measures significantly dropped [Fig. 6(b)]. We speculated
that the opposite responses of neural activity to NMDA and
AMPA resulted from the dose-dependency. According to the
previous work,42 the firing rate of neural networks significantly
increased at the low concentration of AMPA less than 1 nM,
whereas it decreased at the high concentration that ranged
from 5 to 100 μM. NMDA treatment also showed dose-depend-
ency, but the range was different; the increment of the firing rate
appeared at the concentration of a few μM, whereas its decre-
ment emerged when the concentration was higher than 100 μM.
The concentration of AMPA and NMDA used in this work was
20 and 10 μM, which both corresponded to the range of decreas-
ing activity and that of increasing activity, respectively. GABA
stimulation also decreased all measures of neural activity [Fig. 6
(c)]. Interestingly, the mean ratio of active cells after GABA
treatment was 12.7� 2.3%, which was the similar range of
inhibitory cells in cultured neural networks.43 Bicuculline treat-
ment caused the decrement of MFR and ISI but significantly
increased the amplitude of spikes [Fig. 6(d)]. These results
were also observed in other studies8,44 that described this phe-
nomenon as interictal discharges or bursts.

The spike train data of neurons sorted by our method were
also useful to analyze the synchronous activity of neural net-
works. We calculated the pairwise cross-correlation between
two cellular trains and applied the hierarchical clustering

method to show the synchrony level with respect to the chemical
perturbation. The presence of more reddish colors in the corre-
lation matrix after the bicuculline treatment than that of before
(“base”) implied that the more cells simultaneously fired
[Fig. 7(a)]. Quantitatively, the mean correlation coefficient
after bicuculline treatment was significantly higher than that
of the before (“base”), also supporting that bicuculline-induced
network synchronization [Fig. 7(b)]. Altogether, our results
demonstrated that our spike train-based approach to the calcium
imaging data analysis allowed quantification of individual neu-
ral activities and network synchrony for stimulus-response
experiments with five distinct measures.

3.6 Post Analysis 2: Spatiotemporal Mapping of
Neuronal Firing Patterns in Synchronous
Network Bursts

To demonstrate the applicability of our toolbox to synchronous
events in neural networks, we attempted to analyze the firing
patterns of neurons in bursting networks. To detect each network
burst from the spike train data [Fig. 8(a), (i)], we counted the
number of firing cells at each frame of an image sequence
[Fig. 8(a), (ii)] and divided it into the total number of cells
to construct the ratio profile of firing cells over time [Fig. 8(a),
(iii)]. By thresholding this profile, we detected peaks above the
threshold as the burst point. Furthermore, the start and end
points of each burst were defined as the time point at which
all neurons were silent before and after the burst point. Using
the real data from cultured networks, we detected the timing
of network bursts and extracted all the spikes involved with

Fig. 5 Our automated procedure extracts cellular signals and spikes from large-scale calcium imaging
data (Video 1, MOV, 4.6 MB) [URL: http://dx.doi.org/10.1117/1.NPh.2.3.035003.1]. (a) The first image of
an image sequence recorded by calcium imaging. Colored circles outline each cell body detected by
our method. (b) Each signal traced from 100 cells randomly selected from (a). (b’) The inferred
spikes (marked as ticks under the each signal) of four selected cells. The scale bar in (a) indicates
100 μm.
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each burst [Figs. 8(b) and 8(b’)]. Under our definition, we
observed that all neurons were silent 133� 7.21 ms before
and 230� 13.3 ms after the burst point, respectively
(mean� SEM, n ¼ 161 bursts in 11 networks). The mean dura-
tion and inter-burst interval of network bursts was
364� 15.4 ms (mean� SEM, n ¼ 161 bursts in 11 networks)
and 24.5� 2.04 s (mean� SEM, n ¼ 150 bursts in 11 net-
works), respectively, and comparable to the results using the cul-
tured networks at the similar ages with multichannel
electrophysiological tools.45,46

The location of neurons and their spikes participating in one
network burst were then utilized to map the propagation of syn-
chronous activity. As exemplified in Fig. 9, we could categorize

the spikes in a single burst according to their timestamp.
Figure 9(a) shows the difference in the onset timing of seven
groups, indicating the capability of our spike detection method
to resolve neuronal firing within a single burst. It should be
noted that our data were collected with a frame rate of
30 Hz, which is much slower than the previous work for similar
analysis.8 This shows that our frame rate was sufficient to seg-
regate neurons into several groups based on their firing, and sig-
nal propagation map of a single burst could be visualized
(“Pseudocolored map” in Fig. 9).

By collecting all the firing patterns of each network burst, we
quantitatively analyzed the similarity of the sequences. As the
patterns of signal propagation were described as a sequence of

Fig. 6 Quantitative analyses of the effect of chemical stimulation on cultured neural networks. Four differ-
ent chemicals: (a) NMDA, (b) AMPA, (c) GABA, and (d) bicuculline was examined. Quantitative features
of neural activity, such as mean firing rate (MFR), inter-spike interval (ISI), spike amplitude (amplitude),
and the ratio of active cells that showed calcium signals among all detected ROIs, were measured
(mean� SEM; n ¼ 5; � � �p < 0.001; ns: not significant).
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neuronal groups in our analysis, we used Kendal’s τb to adjust
the tied ranks of cells in the same group. The pairwise compari-
son using Kendal’s statistics and hierarchical clustering of the
correlation matrix revealed the similar sequences of neuronal
firing emerged from different network bursts [Fig. 10(a)].
Prior to the clustering of the matrix, there was no apparent
region that shared similar activity patterns, indicating that sev-
eral patterns alternatively appeared rather than locally repeated
[Fig. 10(b)]. To quantitatively evaluate the nonrandomness of
firing patterns, we separately shuffled the order of ROIs in
each burst and compared the renewed correlation matrix to
the original one. As a result, the mean coefficient (τb) of the
real data was significantly higher than that of the shuffled
one, which was close to 0. The results implied that despite
the entire regeneration of cellular connections in dissociated

cultures, several consistent patterns of neuronal firing alterna-
tively repeated in spontaneous, synchronous events.

4 Discussion
Here, we introduced NeuroCa, a toolbox that includes a series
of algorithms for the automated analysis of calcium imaging
data from large-scale neural networks (Fig. 11 shows the
graphical user-interfaces modularized for data processing
and post analysis). Our cell identification algorithm was effi-
cient to detect cell bodies regardless of cell types or activity
levels and was notably useful in separating individual ones
that are very close to each other. We also devised computa-
tional strategies for adjusting the baseline level of fluorescence
signals and estimating the spike waveform from the real data,

Fig. 7 The effect of the bicuculline treatment on network synchronization. (a) In the case of the bicucul-
line treatment, the cross-correlation analysis between before (base) and after treatment (+BIC) was per-
formed to investigate the network synchronization effect. (b) Mean correlation coefficients (MCC) of each
case were used as a quantitative measure (mean� SEM; n ¼ 5 FOVs; � � �p < 0.001; ns: not
significant).

Fig. 8 Synchronous network burst detection from calcium spike trains. (a) The procedure for network
burst detection. From the raster plot of the entire ROIs (i), we calculated the number of activate ROIs at
each frame (ii) and obtained a network burst profile by normalizing each value to the total number of ROI
(iii). The peaks of the profiles above the threshold (blue dashed line) were detected as the point of net-
work bursts (indicated by blue arrowheads). The duration of each network burst was defined as the period
between the frames when all ROIs were silent (indicated by red bold lines). (b) The representative exam-
ples of the real raster plot (top) obtained from Fig. 5 and the network burst profile (bottom). The points of
network bursts and their durations were marked by blue arrowheads and red bold lines, respectively.
(b’) The magnified version of the ratio graph in the bottom of (b), showing the start point at which all
neurons were silent before the burst point.
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Fig. 9 Spatiotemporal mapping of signal propagation within a network burst. (a) The kinetics of calcium
spikes in each group (categorized according to the timing of detected spikes). The spikes of each cell
were marked as gray curves, and the average spike in each group was marked as a black curve. Two red
dashed lines indicate the onset timing of calcium spikes in the first and last group. (b) Black dots indicate
the neurons fired at each time point and gray dots silent ones. These time-series images were then
merged into one by color-coding (“Pseudocolored map”); in this image, early firing neurons were marked
as red colors and late firing neurons as blue colors.

Fig. 10 Consistent sequence of neuronal firing repeated appeared in network bursts. (a) Representative
correlation matrix based on Kendall’s τb in five different networks. All matrices were sorted according to a
hierarchical clustering. (b) Pairwise calculation of Kendall’s τb between all firing orders of each burst (top,
left) was clustered to find consistent sequences (top, right). To statistically confirm the nonrandomness of
firing patterns, the firing order of each burst was shuffled (bottom, left) and the correlation matrix was
clustered as same as the original one (bottom, right). (c) When the coefficients of all possible pairs were
averaged, the real data revealed much higher values than shuffled [mean� SEM; n ¼ 15 (“Real”) and 75
(“Shuffled”); � � �p < 0.001 under paired t test].
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which facilitated the successful detection of small transients.
Using this method, we were able to construct individual
spike trains of ∼1000 cells in a submillimeter-sized network.
Our method combined the advantage of optical recording and

spike train analysis, allowing us to not only easily extract the
quantitative measures of neural activity but also to perform the
spatiotemporal mapping of cellular firing in a population activ-
ity, especially synchronous bursts.

Fig. 11 Graphical user interfaces of NeuroCa. (a) Main GUI of NeuroCa that supports data processing
including cell body isolation, photobleaching correction, and calcium spike detection. (b–d) Sub-GUIs
of NeuroCa for supporting calculations [spike rate histogram, interspike interval, and spike amplitude;
(b)], cross-correlation (c), and network burst analysis (d). These sub GUIs are opened if the buttons
in the main GUI are selected (Video 2, MOV, 12.7 MB) [URL: http://dx.doi.org/10.1117/1.NPh.2.3
.035003.2].
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Moreover, identifying cell bodies using a morphological fil-
ter in NeuroCa allows not only detecting most of the cells in a
FOV with high accuracy, but also distinguishing individual ones
from clustered regions. Essentially, CHT determines a circular
object based on the intensity of local pixels, therefore being less
sensitive to the imbalance background illumination than other
image segmentation algorithms.22,25,27,34 In addition, much
higher spatial resolution was achieved in our method; for exam-
ple, our CHT-based method showed less than 5% of the error
rate (the percentage of ROIs that contained multiple cells),
which was two times less than the previous algorithm based
on watershed transform (11%).42 The minimum cell-to-cell dis-
tance that our algorithm could separate was about 3 μm (center-
to-center distance). Considered the diameter of cells as 10 μm,
this feature implies the possibility of our method for isolating
cells even if they are partially overlapped each other.
Consequently, our method will be also applicable to the analysis
of larger and denser neuronal population including tissue slices
or a three-dimensional brain, where cells were far closer than
dissociated cultures.

Adapting the deconvolution method with an additional step
for baseline adjustment and template estimation from the real
data, we were able to detect calcium spikes as small as one
reflecting a single action potential firing with high accuracy.
As some calcium imaging and modeling studies suggested
the exponential form of calcium spikes in response to the action
potentials,38,47,48 it was reasonable to infer the timing of action
potential firing by deconvolving the original fluorescent signal
with an exponential kernel.17,24,30,35,49 The performance of this
method critically relied on how flat the baseline of the signal
was and how accurate the estimated exponential model was
for each neuron. However, most practical cases include the pho-
tobleaching decay of fluorescent indicators in calcium signals,
and the waveform of calcium spikes varied in different cells.
Here, we exploited curve fitting in order to estimate a back-
ground trend and spike waveform for each cellular signals,
thereby compensating for cell variance. This capability of our
method will facilitate data analysis obtained from various neural
networks regardless of cellular types or their temporal firing
patterns.

Our analysis of calcium imaging data recorded from a large
cultured network demonstrates the utility of NeuroCa to scru-
tinize the spatial and temporal patterns of neuronal activity
with various quantitative measures. In the chemical perturba-
tion study, the alteration of neural activity and synchrony was
faithfully represented by five measures including MFR, ISI,
calcium spike amplitude, the percentage of active cells, and
pairwise cross-correlation.11,13,33 Furthermore, with the advan-
tage of optical recording that provides the spatial information
of individual cells, it was also possible to map the rapid propa-
gation of neural activity during the short duration of synchro-
nous events. Several previous methods were suggested to
identify the coherent activity from calcium signals and provide
the spatial organization of cellular assemblies,34,50 but it is still
difficult to uncover the temporal sequences of cellular firing
within such short period events. Our results using NeuroCa,
on the other hand, showed the spatial location of cells as
well as their temporal orders, allowing us to obtain insights
that are pertinent to hidden signaling pathways mediating
the synchronous activity.

Our studies demonstrate that cultured neural networks
revealed several consistent patterns of neuronal activity in

synchronous bursting events despite the overall regeneration
of cellular connectivity. In slice cultures that are composed
of intact neural circuits of neurons, the sequence of cellular
activation was reliably repeated in synchronous activity,8

and several types of patterns emerged from one network
over time.1 Such repetition and diversity of consistent firing
patterns have implied their role in serving as the substrate
for information processing and storage.1 However, in dissoci-
ated cultures, although such a tendency of repeated patterns
across the subregions of a large network has been reported
in several studies using microelectrode arrays,51–53 the contri-
bution of each cell to the activity patterns of synchrony remains
unknown. Our results support these previous results and also
extend the existence of sequential activation at the cellu-
lar level.

NeuroCa is essentially applicable to other types of data using
different indicators (genetic5,14 or voltage-sensitive dyes54) or
imaging tools (two-photon55 or light sheet microscopic imag-
ing11,13,17). In addition, data from tissue slices or living animals
were also available to be analyzed. However, for further appli-
cations, several additional algorithms will be necessary. First,
NeuroCa has a limitation in detecting other neuronal areas
such as dendrites24,33,56 or neurophils,57 which have been also
of interest for investigating cellular signaling or intercellular
interaction in localized regions. We anticipate that it could be
resolved by combining additional morphological filters.
Second, a sophisticated algorithm for separating cell types,
such as neurons and glial cells, will be necessary. Third, move-
ment correction and 3D-optimized cell identification will be
required, especially for the data from living animals.24

NeuroCa will provide the opportunities to come close to the
answer to some interesting questions in neuroscience: how indi-
vidual neurons functionally participate in the various modes of
brain activity and what is the role of functional interactions
between neurons and glial cells in circuit dynamics? One pos-
sibility for such studies is to apply our method to in vivo sys-
tems. Recently, optical recording technologies have been
exploited to the various types of living animals, such as C. ele-
gans,13 zebrafish,11,12 rodents,16,19,48,58 or primates.59 These stud-
ies have reported the impressive results of neural activity at
population level and also suggested the great promise of optical
neural recording technologies in functional mapping of the
brain. In this stream of neuroscience research, a convenient
and user-friendly tool, such as our NeuroCa, is certainly neces-
sary for the analysis of large-scale neural data. We believe that
our tool will contribute to innovative studies such as the BRAIN
initiative,60 considerably reducing the enormous loads of post-
experimentation steps. NeuroCa is available for free public
download (see Ref. 61).

5 Conclusions
We present a new computational approach for the automated
analysis of calcium imaging data from a large neural network.
Our methods facilitated the identification of individual cells
from an image sequence and the detection of spikes from neuro-
nal calcium signals. The calcium spike trains were useful to
quantitatively analyze the overall activity of neuronal popula-
tion. Furthermore, our method enabled us to map the spatiotem-
poral patterns of cellular firing in a large network when they
synchronously fired. We believe that our approach will be a
powerful tool that can contribute to the functional mapping
of the brain.
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