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Abstract. Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distrib-
uted optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional
neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the
short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform
different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction
and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine,
the performance of the classifier is enhanced. Experiments show that after using this method to process 4000
vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing,
and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this
method can automatically make an effective feature selection and greatly improve the classification accuracy of
vibrational events in distributed optical fiber sensing systems. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.OE.57.1.016103]
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1 Introduction
Distributed optical fiber sensing techniques have been
widely used in many fields, such as security,1 military,
and pipeline transportation,2 because of the optical fiber’s
small size, light weight, lack of power supply requirement,
antielectromagnetic interference, high sensitivity,3 and long
detection distance. Among the various systems, the distrib-
uted optical fiber sensing system based on phase-sensitive
optical time-domain reflectometer (φ-OTDR), with the
advantages of a simple structure, multipoint vibration detec-
tion and positioning,4–7 and high positioning accuracy, has
become the new hotspot in the present distributed optical
fiber sensing research field.

Vibration signals collected in distributed optical fiber
sensing systems can reflect the characteristics of vibration
sources. Thus, the pattern identification of vibrational events
is an achievable function in distributed optical fiber sensing
systems. The difficulty in achieving this function is figuring
out the best methods of feature extraction. The existing
feature extraction methods are based on some certain
time-domain features or frequency-domain features.8–9

Considering that vibration signals are nonstationary and
manual feature extraction needs expert knowledge, using
time-frequency analysis to obtain time-frequency diagram of
vibration signals and automatically extracting deep features
of time-frequency diagram by convolutional neural network
(CNN) is a more efficient and more universal method.

The CNN is one of the most important models in the area
of deep learning, especially in image processing. It is a type

of feed-forward artificial neural network designed to recog-
nize two-dimensional data. Its unique network structure can
resist influences from image translation, scaling, or distortion
in some degree. Krizhevsky et al.10 use a deep CNN with
rectified linear units (reLU) defined as an activation function
for natural image classification and obtain the best result in
ImageNet competition. Due to proved success of CNN in
image recognition,11 it is also successfully applied to speech
recognition, face recognition, target detection, and some
other fields.12 Badshah et al.13 use time-frequency represen-
tation of a speech signal as input and a CNN as a classifier to
detect speech emotion. This method combining time-fre-
quency analysis and CNN has a lower model complexity
and a better recognition performance.

In this paper, we use time-frequency analysis to transform
different types of vibration waveform data collected by an
intensity-demodulated φ-OTDR into corresponding image
data which express more abundant information about time-
frequency characteristic and then classify them by a CNN.
Spectrum subtraction and support vector machine (SVM)
are implied to improve the algorithm performance. As exper-
imental results show, this method can accurately classify four
vibration event patterns, namely, knocking, shaking, crush-
ing, and watering, under conditions of low signal-to-noise
ratio (SNR) and can overcome the shortcoming of manual
feature selection of the existing pattern recognition methods
in distributed optical fiber sensing systems.

Moreover, considering that phase-demodulated φ-OTDRs
have better sensitivity and higher SNRs than intensity-
demodulated φ-OTDRs and can perfectly express the
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frequency characteristics of the vibration sources, which are
also the input characteristics of the recognition method pro-
posed in this paper,6,7 we strongly believe that this method
can be applicable for distributed optical fiber sensing sys-
tems based on phase-demodulated φ-OTDRs.

2 Principle of Classification

2.1 Time-Frequency Analysis

Time-frequency diagrams obtained by time-frequency analy-
sis show the combined information in time domain and
frequency domain, which directly reflect change of the fre-
quency components of the signals with time. Common time-
frequency transform methods include short-time Fourier
transform (STFT), continuous wavelet transform, and
S-transform. Because spectrograms obtained by STFT have
succeeded in practical application in the fields of music,
sonar, radar,12 and speech processing13 and has a rich
image color information that is helpful to image recognition,
we choose STFT as the time-frequency analysis method in
this paper.

2.1.1 Short-time Fourier transform

The STFT is a Fourier-related transform used to determine
the sinusoidal frequency and phase content of local sections
of a signal as it changes over time. In practice, the procedure
for computing STFTs is to divide a longer time signal into
shorter segments of equal length by a window function,
which is nonzero for only a short period of time and then
compute the Fourier transform separately on each shorter
segment. Mathematically, this is written as

EQ-TARGET;temp:intralink-;e001;63;406STFTðt; fÞ ¼
Z

∞

−∞
xðτÞwðt − τÞe−j2πftdτ; (1)

where xðtÞ is a time-domain signal, wðtÞ is the window func-
tion, commonly a Hamming window or a Gaussian window
centered around zero, and τ is the center of the window
function.

When the window function of STFT has been chosen, the
resolution is fixed as long as the window length of the win-
dow function is fixed. Since the time resolution is inversely
proportional to the frequency resolution, they are unable to
be optimal at the same time. When the window length

becomes longer, the time resolution becomes lower, and
when the window length becomes shorter, the frequency
resolution becomes higher. Thus, it is important to choose
an appropriate type of window function and a reasonable
window length.

2.1.2 Spectrogram

After the signal in time domain in each segment is trans-
formed to the frequency domain by fast Fourier transform
(FFT), the amplitude frequency is rotated by 90 deg, and
the spectral amplitude mapped to a gray level (0 to 255)
value. The higher the amplitude is, the darker the corre-
sponding region. Time-frequency representation of a signal
is referred to as spectrogram.

Due to the randomness of the vibration signal and the
complexity of its frequency spectrum performance, we use
the Hamming window function to segment the signal into
the small frames. The Hamming window function can reduce
the discontinuities of the signal at the edge of frame and
eliminate high-frequency interference and energy leaks. It
is formulated with the following equation:

EQ-TARGET;temp:intralink-;e002;326;516wðnÞ ¼ 0.54 − 0.46 cos½2nπ∕ðN − 1Þ�; 0 ≤ n ≤ N − 1;

(2)

where N is the length of the window.
By using high-resolution FFT to process the vibration

signal, we found that the lowest frequency of its spectrum
peak was around 25 Hz. Therefore, the frequency resolution
should be lower than 25 Hz. With a system sampling rate of
5000 Hz, the maximum value of the number of FFT could be
calculated as 200. To obtain a high-frequency resolution and
facilitate the computing, the number of FFT is set as 128 and
the time length of each frame is 64 ms.

Take a digging signal as an example. The total time length
of the signal is 2.4 s. After using STFT to transform the time-
domain signal to the frequency domain, the time-frequency
representation of the digging signal is shown in Fig. 1.

2.1.3 Spectral subtraction

Spectral subtraction14 is the most common method for deal-
ing with wide-band noise. Its principle is obtaining the spec-
trum of the pure speech by subtracting the estimated noise

Fig. 1 An example of a knocking signal: (a) the original time-domain waveform of the knocking signal and
(b) the spectrogram of the knocking signal.
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amplitude spectrum from the amplitude spectrum of the
noisy signal. The effect is equivalent to carrying out a
type of equalization to the noisy signal in the transform
domain. Compared with other noise reduction methods,
spectral subtraction has the least constraint, the most direct
physical meaning, the least amount of calculation, and the
desired effect.

Assuming that the correlation between noise in the noisy
signal and the vibration signal itself is zero, that is, the two
are independent of each other and additive in the frequency
domain, the additive model of the signal can be expressed as

EQ-TARGET;temp:intralink-;e003;63;431XwðωÞ ¼ SwðωÞ þ NwðωÞ; (3)

where XwðωÞ is the short-time Fourier spectra of the small
frame of noisy signal, SwðωÞ and NwðωÞ are the short-time
Fourier spectra of noise component and effective component
of the signal frame, respectively.

The magnitude squared of the short-time Fourier spec-
trum gives the short-time power spectrum

EQ-TARGET;temp:intralink-;e004;63;334jYwðωÞj2 ¼ jSwðωÞj2 þ jNwðωÞj2 þ SwðωÞN�
wðωÞ

þ S�wðωÞNwðωÞ: (4)

Since sðmÞ and nðmÞ are independent of each other, the
cross-correlation statistical mean is 0. The short-time power
spectrum of the pure signal is estimated as

EQ-TARGET;temp:intralink-;e005;63;251jŜωðωÞj2 ¼ jYωðωÞj2 − E½jNωðωÞj2�; (5)

where SωðωÞ is the short-time power spectrum estimation of
the pure signal.

The phase is restored and then the inverse Fourier trans-
form is used to obtain the denoised time-domain signal

EQ-TARGET;temp:intralink-;e006;63;174ŝðmÞ ¼ IFFT½jŝwðωÞjeiφðωÞ�: (6)

Since the noise is locally stationary, to estimate the noise
power spectrum, it is assumed that the noise at no vibration is
close to the noise at the time of vibration. Thus, the noise
power spectrum at the time of vibration can be estimated
from the short-time power spectrum of the silent frame
without vibration according to Welch’s method.

After using spectral subtraction to denoise the original
knocking signal in Fig. 1, the time-frequency presentation
of the denoised signal is shown in Fig. 2.

It can be seen from Fig. 2(a) that the signal quality
improves after noise reduction, and meanwhile the signal
intensity and time-domain characteristics of the effective sig-
nals are not weakened. Figure 2(b) shows the broadband
noise in noisy signals is significantly suppressed and other
noise with multiple harmonics generated by the acquisition
process is eliminated. By this method, adverse effects from
noise in vibration signals on the spectrogram classification
are reduced.

2.2 Convolutional Neural Network

CNN is a hierarchical neural network composed of a
sequence of layers. A typical model usually consists of sev-
eral convolutional layers where image contents are repre-
sented as a set of feature maps obtained after convolving
the input with a variety of filters, which are learned during
the training phase. Pooling layers are introduced after con-
volutional layers to reduce the image size and accumulate
maximum activation features from convolutional feature
maps. Furthermore, CNNs may also contain fully connected
(FC) layers where each neuron of the input layer is connected
with every neuron in the layer. A sequence of convolutional,
pooling, and FC layers form a feature extraction pipeline that
models the input data in abstract form. Finally, a soft-max
layer performs the final classification task based on this
representation.

The proposed CNN model, shown in Fig. 3, has a struc-
ture similar to that used in AlexNet. The network contains
five convolutional layers, two FC layers, and a soft-max
layer. Each convolutional layer is followed by an ReLU
and a max-pooling layer. The ReLU is a nonlinear function
expressed as fðxÞ ¼ maxð0; xÞ. It is applied as an activation
function after the convolutions. Max-pooling following the
ReLU passes on the maximum value in each 2 × 2 block.
The first convolutional layer takes the 224 × 224 × 3
image and applies 1285 × 5 filters. Through an ReLU and
a 2 × 2 max-pooling layer, the volume of the original
image becomes 110 × 110 × 128. The next two convolu-
tional layers both have 1283 × 3 filters and are followed
by an ReLU and 2 × 2 max-pooling, resulting in a 26 × 26 ×
128 image volume. The resulting volume is fed into the

Fig. 2 The effect of spectral subtraction on the vibration signal: (a) the time-domain waveform of the
knocking signal after noise reduction and (b) the spectrogram of the knocking signal after noise reduction.
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following two layers, each of which consists of 643 × 3
filters, an ReLU, and a 2 × 2 max-pooling layer. After all
convolution and pooling, the 4 × 4 × 64 image volume is
flattened into a 1024 × 1 vector. The first and second FC
layers reduce the size of the feature vector to 256 and 4
in turn, and then the soft-max classifier takes the 4 × 1 vector
and outputs the final result.

2.3 Support Vector Machine

SVM15 has advantages in the small sample, nonlinear, and
high-dimensional expression and is widely used in pattern
recognition. Its basic idea is that there is always an optimal
hyperplane to separate a binary dataset through the support
vector. Assuming that the givenN-classes training sample set
is inseparable in the low-dimensional space, it is expressed
as ðxi; yiÞ, where i ¼ 1;2; : : : ; n, n is the training sample
number, xi represents the input training samples, and yi rep-
resents the class markers of data samples. The input samples
are projected using nonlinear mapping onto a high-dimen-
sional space Rn to construct an optimal hyperplane as

EQ-TARGET;temp:intralink-;e007;63;329fðxÞ ¼ sign

�X
s

wT · Kðxi; xÞ þ b

�
; (7)

where sign means two-value functions, w is a normal vector
to the hyperplane, Kðxi; xÞ is the kernel function, b is the
hyperplane position, and s is the support vector.

In the binary classification problem, classification results
are determined by the symbol value after data samples to be
measured are input to the classification function. To deal
with N-classes classification problems (where N > 2), the
combinatorial classifier is often used. This type of classifier
is a combination of all possible binary subclassifiers, which
are NðN − 1Þ∕2 in total. Subsequently, the voting method is
used to determine the class with the most votes, which is
used as the class of the input data sample.

3 Experimental Setup
The experimental system shown in Fig. 4 uses a narrow line-
width erbium-doped laser with a wavelength of 1550 nm,
a linewidth of 0.1 kHz, and an output power of 40 mW.
The continuous light emitted by the laser is modulated by
an acousto-optic modulator and a function generator into
pulsed light with a pulse width of 200 ns and a frequency

of 5 kHz. Then, the pulse light is amplified by an
erbium-doped fiber amplifier (EDFA) and launched into
a single-mode sensing fiber with a total length of 40 km
by a circulator. The backscattered Rayleigh light generated
from the sensing fiber is amplified by the EDFA again and
finally converted into an electrical signal by a photodetector.
The received signal traces are sampled by a data acquisition
card with a 25-MHz sampling rate. Monitoring software
was developed for data processing and alarm display.

4 Experimental Procedure

4.1 Algorithm Execution Process

The flowchart of vibration signal identification in distributed
optical fiber sensing system is shown in Fig. 5.

First, a differential operation and a normalization opera-
tion are performed on each data sample as a preprocessing
step to obtain the normalized vibration waveform without
DC offset. Subsequently, we apply spectral subtraction to
reduce the noise in the vibration signals. The denoised

Fig. 3 Visual depiction of the Image Network architecture (the soft-
max classifier is not pictured).

Fig. 4 The experimental setup of a φ-OTDR system: NLL, narrow
linewidth laser; AOM, acousto-optic modulator; PD, photodetector;
FG, function generator; EDFA, erbium-doped fiber amplifier; and
DAQ, data acquisition card.

Fig. 5 The classification algorithm flowchart.
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signals are transformed into spectrograms by STFT. And
then all spectrograms are randomly divided into a training
set and a testing set, the proportion of which are 75% and
25%, respectively. Next, the proposed CNN is trained on
the training set. In the training process, spectrograms are flat-
tened into feature vectors after all convolutional, pooling,
and FC layers. There are three following methods used
for classification:

1. A soft-max layer performs the classification task, the
input of which is the output of the FC layer.

2. Replace the soft-max classifier with an SVM, the input
of which is still the output of the FC layer.

3. Replace the soft-max classifier with an SVM, the input
of which is the input of the FC layer.

4.2 Vibration Event Simulation Experiments

A segment of a 300-m-long optical fiber, led out in the vibra-
tion position of 20 km in the sensing fiber, was buried in the
shallow soil of 10-cm depth. Striking the ground above the
buried sensing fiber with shovels simulated digging events.
Walking on the same position simulated walking events.
Driving a car through this position simulated vehicle-passing
events. Shaking the sensing fiber exposed on the ground
simulated fiber-damage events.

Two hundred trials were carried out in each of the four
vibration modes in the vibration position and around the
vibration position, and data samples collected in the nearest
five consecutive position nodes were stored. Through this
method, 4000 data samples were obtained after all trials.
Considering the fact that the system should respond to vibra-
tion events within 3 s, the duration and the total sampling
point number of a single data sample were set as 2.4 s
and 4800, respectively.

4.3 Time-Frequency Analysis

We used spectral subtraction to reduce the noise in the vibra-
tion signals with the estimated noise power spectrums
that were estimated by the average power spectrums of the
optical signals within the last 0.6 s before the occurrence of
vibration events in the corresponding position nodes. Then
the denoised vibration signal waveforms were transformed
into spectrograms by STFT. During the STFT, both the
length of window function and the number of FFT point
were 128, and the overlapping rate was 50%. The resolution
of spectrograms was 224 × 224, and the transformation

process was encoded in Python and takes 0.3 s for each
spectrogram. The typical spectrograms of all types of vibra-
tion signals after noise reduction are shown in Fig. 6.

4.4 Network Training

Two separate datasets comprised of 4000 spectrograms from
original signals and 4000 spectrograms from denoised sig-
nals, respectively. Each dataset was assigned into a training
set and a testing set. For each vibration mode, 750 spectro-
grams generated in 150 trials were selected as part of the
training set and other 250 sets were taken as testing data.

We used training sets from two datasets to train two
CNNs. The training processes were performed in Caffe, run-
ning on NVIDIA GTX TITAN X Pascal GPU with 12-GB
onboard memory. Each training process was an iterative
process. With every iteration, the loss and accuracy were
obtained, and the hyperparameters were changed to optimize
for the next training. We set the batch size, the dropout value,
and the initial learning rate as 100, 0.5, and 0.001, respec-
tively, and run the training process for 40 epochs. Each
network was tested on the testing phase every 20 iterations.
The training took around 40 min on each dataset.

Figure 7 shows the train loss and test accuracy curves of
two CNNs trained by different datasets. The CNN1 was
trained and tested on the dataset in which spectrogram
samples were transformed from original vibration signals,

Fig. 6 The typical spectrograms of all types of denoised vibration signals: (a) the digging signal, (b) the
walking signal, (c) the vehicle-passing signal, and (d) the damaging signal.

Fig. 7 The train loss and test accuracy curves for CNN1 and CNN2,
which were trained by original spectrograms and enhanced spectro-
grams after noise reduction, respectively.
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while the CNN2 was trained and tested on spectrograms of
denoised vibration signals. In CNN1 training process, the
training loss, which represented the network error, decreased
slowly until hovering around 0.65 after 25 epochs, and the
best testing accuracy was only 55%. On the contrary, the test
accuracy of the CCN2 grew up to 88%, and a training loss of
0.30 was achieved after 30 epochs. The figure indicates that
the noise reduction process on vibration signals based on the
spectral subtraction improved remarkably the classification
performance of the CNN2.

5 Experimental Result

5.1 Classification Based on Convolutional Neural
Network

The CNN2 trained on spectrograms generated from denoised
vibration signals was proved to have a good performance
on vibration event recognition for distributed optical fiber
sensing systems. The results of the CNN2 on the test set
are shown in Table 1.

Each row in Table 1 represents the recognition outcomes
of each type of vibration signals on the testing set from the
CNN2. It can be seen that the CNN2 classified four types of
vibration signals with 97.2%, 96.0%, 74.0%, 84.8% accu-
racy on the testing set, respectively. These results indicate
that this type of CNNs can be trained to classify very differ-
ent types of vibration events, especially distinguish between
instantaneous effects (digging and walking) and long-time
effects (vehicle passing and damaging), but have a difficulty
in accurately recognizing the vehicle signals. Though using
a CNN is a more complicated way of carrying out this
classification, these results demonstrate that this method
successfully yields better results than other methods8–9 and
avoids manual feature selection that takes much more time
in new application scenarios.

5.2 Classification Based on Convolutional Neural
Network and Support Vector Machine

In the RCNN proposed by Girshick et al.,16 an SVM
classifier is applied to replace the soft-max classifier in
the CNN. Girshick et al. extracted a 4096-dimensional fea-
ture vector extracted from each mean-subtracted 227 × 227
RGB image using a CNN containing five convolutional
layers and two connected layers, and then performed
classification with an SVM classifier comprised of a set of
category-specific linear SVMs. This method improved mean
average precision by more than 30% compared to the perfor-
mance of traditional CNN approach on object recognition.
It have been proved that an SVM has a better performance

than a soft-max classifier, especially in solving problems of
small sample size.

We first extracted the output vectors of the last FC layer
in the CNN2 as feature vectors in the SVM classifier.
Considering that each feature vector only had a size of
4 × 1, we used the radial basis function as the kernel function
in the SVM classifier. The classification results are shown in
Table 2. From Tables 1 and 2, we can see that classification
results of the soft-max classifier and the nonlinear SVM
classifier were approximately the same, except that the
recognition rate of vehicle signals rose up to 79.2%. This
was because the outputs of the last FC layer in a CNN
were highly abstracted and reflected the classification results
to a great degree. Thus, it was inefficient to replace the soft-
max classifier with a complex classifier.

Then, we extracted the input vectors of the first FC layer
in the CNN2 as feature vectors in the SVM classifier. The
number of feature parameters was 1600, more than the sam-
ple number of each type of vibration events. Thus, we chose
the linear kernel function as the SVM’s kernel function.
Table 3 shows the classification performance of the linear
SVM classifier. It indicates that this classification method
achieved a classification accuracy of 93.3%, much better
than other methods. Meanwhile, the successful application
of a linear SVM proved that the input vectors of the first
FC layer had a good expression on spectrogram features.
And we only needed to optimize the parameter C when
using a linear SVM.

6 Conclusion
Aiming at the problem of vibration identification in distrib-
uted optical fiber sensing systems, a pattern recognition
method based on time-frequency analysis and CNN is pro-
posed in this paper.

Vibration signals are enhanced by spectral subtraction to
weaken the influence of the noise signal on vibration signal

Table 1 Recognition accuracy of vibration signals using the CNN2.

Digging (%) Walking (%) Vehicle (%) Damaging (%)

Digging 97.2 0.8 2.0 0.0

Walking 1.6 96.0. 2.4 0.0

Vehicle 2.4 5.2 74.0 18.4

Damaging 0.4 0.8 14.0 84.8

Table 2 Recognition accuracy of vibration signals using a nonlinear
SVM classifier.

Digging (%) Walking (%) Vehicle (%) Damaging (%)

Digging 98.0 1.2 0.8 0.0

Walking 0.4 96.0 2.4 1.2

Vehicle 2.4 5.2 79.2 13.2

Damaging 0.8 3.2 12.8 83.2

Table 3 Recognition accuracy of vibration signals using a linear SVM
classifier.

Digging (%) Walking (%) Vehicle (%) Damaging (%)

Digging 100.0 0.0 0.0 0.0

Walking 0.0 97.6. 1.6 0.8

Vehicle 1.2 5.6 85.6 7.6

Damaging 1.2 0.8 8.0 90.0
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features and then represented as spectrograms that act as
the input to CNNs. The CNN model comprising of five con-
volutional and two FC layers extracts features from these
spectrograms generated from different types of vibration
events. The soft-max classifier and the SVM classifiers are
used to classify these features.

To examine the algorithm performance, a set of experi-
ments were carried out. Two CNNs were trained on the
original spectrogram dataset and the enhanced spectrogram
dataset, respectively, which were generated from four
different types of vibration signals collected in a φ-OTDR
distributed optical fiber sensing system. The CNN trained on
enhanced spectrograms had a better classification accuracy
of 88%. By replacing the soft-max classifier in the CNN
with a nonlinear SVM classifier or a linear SVM classifier,
the classification accuracy of the proposed algorithm rose up
to 89.1% and 93.3%, respectively. The total time of time-
frequency analysis and classification process was below
0.6 s. Experimental results show that this method greatly
improved the recognition accuracy of φ-OTDR systems
under a complex noise environment especially when a linear
SVM was applied and would be able to work in real time.
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