Miniaturized laser spectroscopy capable of in situ and real-time ppb-level trace gas sensing is of fundamental importance for numerous applications, including environment monitoring, industry process control, and biomedical diagnosis. Benchtop laser spectroscopy systems based on direct absorption, photoacoustic, and Raman effects exhibit high sensitivity but face challenges for in situ and real-time gas sensing due to their bulky size, slow response, and offline sampling. We demonstrate a microscale high-performance all-fiber photoacoustic spectrometer integrating the key components, i.e., the photoacoustic gas cell and the optical microphone, into a single optical fiber tip with a diameter of |
Staring arrays
Carbon monoxide
Photoacoustic spectroscopy
Acoustics
Acoustic waves
Blood
In situ remote sensing