Open Access
13 March 2019 Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography
Author Affiliations +
Abstract
Optical coherence tomography angiography (OCTA) has been widely used for en face visualization of the microvasculature, but is challenged for real three-dimensional (3-D) topologic imaging due to the “tail” artifacts that appear below large vessels. Further, OCTA is generally incapable of differentiating descending arterioles from ascending venules. We introduce a normalized field autocorrelation function-based OCTA (g1-OCTA), which minimizes the tail artifacts and is capable of distinguishing penetrating arterioles from venules in the 3-D image. g1   (  τ  )   is calculated from repeated optical coherence tomography (OCT) acquisitions for each spatial location. The decay amplitude of g1   (  τ  )   is retrieved to represent the dynamics for each voxel. To account for the small g1   (  τ  )   decay in capillaries where red blood cells are flowing slowly and discontinuously, Intralipid is injected to enhance the OCT signal. We demonstrate that the proposed technique realizes 3-D OCTA with negligible tail projections and the penetrating arteries are readily identified. In addition, compared to regular OCTA, the proposed g1-OCTA largely increased the depth-of-field. This technique provides a more accurate rendering of the vascular 3-D anatomy and has the potential for more quantitative characterization of vascular networks.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Jianbo Tang, Sefik Evren Erdener, Smrithi Sunil, and David A. Boas "Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography," Journal of Biomedical Optics 24(3), 036005 (13 March 2019). https://doi.org/10.1117/1.JBO.24.3.036005
Received: 7 November 2018; Accepted: 6 February 2019; Published: 13 March 2019
Lens.org Logo
CITATIONS
Cited by 21 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Optical coherence tomography

3D image processing

Angiography

Signal to noise ratio

Capillaries

Scattering

Blood vessels

Back to Top