Open Access
12 December 2022 Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study
Alexander B. Konovalov, Vitaly V. Vlasov, Sergei I. Samarin, Ilya D. Soloviev, Alexander P. Savitsky, Valery V. Tuchin
Author Affiliations +
Abstract

Significance

Fluorescence molecular lifetime tomography (FMLT) plays an increasingly important role in experimental oncology. The article presents and experimentally verifies an original method of mesoscopic time domain FMLT, based on an asymptotic approximation to the fluorescence source function, which is valid for early arriving photons.

Aim

The aim was to justify the efficiency of the method by experimental scanning and reconstruction of a phantom with a fluorophore. The experimental facility included the TCSPC system, the pulsed supercontinuum Fianium laser, and a three-channel fiber probe. Phantom scanning was done in mesoscopic regime for three-dimensional (3D) reflectance geometry.

Approach

The sensitivity functions were simulated with a Monte Carlo method. A compressed-sensing-like reconstruction algorithm was used to solve the inverse problem for the fluorescence parameter distribution function, which included the fluorophore absorption coefficient and fluorescence lifetime distributions. The distributions were separated directly in the time domain with the QR-factorization least square method.

Results

3D tomograms of fluorescence parameters were obtained and analyzed using two strategies for the formation of measurement data arrays and sensitivity matrices. An algorithm is developed for the flexible choice of optimal strategy in view of attaining better reconstruction quality. Variants on how to improve the method are proposed, specifically, through stepped extraction and further use of a posteriori information about the object.

Conclusions

Even if measurement data are limited, the proposed method is capable of giving adequate reconstructions but their quality depends on available a priori (or a posteriori) information. Further research aims to improve the method by implementing the variants proposed.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Alexander B. Konovalov, Vitaly V. Vlasov, Sergei I. Samarin, Ilya D. Soloviev, Alexander P. Savitsky, and Valery V. Tuchin "Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study," Journal of Biomedical Optics 27(12), 126001 (12 December 2022). https://doi.org/10.1117/1.JBO.27.12.126001
Received: 27 August 2022; Accepted: 18 November 2022; Published: 12 December 2022
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
KEYWORDS
Fluorescence

Fluorophores

Picosecond phenomena

Reconstruction algorithms

Light absorption

Absorption

Matrices

Back to Top