26 December 2019 Un-VDNet: unsupervised network for visual odometry and depth estimation
Xuyang Meng, Chunxiao Fan, Yue Ming, Yuan Shen, Hui Yu
Author Affiliations +
Funded by: Beijing Natural Science Foundation of China, Fund for Beijing University of Posts and Telecommunications
Abstract

Monocular visual odometry and depth estimation play an important role in augmented reality and robot applications. Recently, deep learning technologies have been widely used in these areas. However, most existing works utilize supervised learning, which requires large amounts of labeled data and assumes that the scene is static. We propose a framework, called Un-VDNet, based on unsupervised convolutional neural networks to predict camera ego-motion and depth maps from image sequences. The framework includes three subnetworks (PoseNet, DepthNet, and FlowNet) and learns temporal motion and spatial association information in an end-to-end network. We propose a pose-consistency loss to penalize errors about the translation and rotation drifts of the pose estimated from the PoseNet. Furthermore, a geometric consistency loss, between the structure flow and scene flow learned from the FlowNet, is proposed to deal with dynamic objects in the real-world scene, which is combined with spatial and temporal photometric consistency constraints. Extensive experiments on the KITTI and TUM datasets demonstrate that our proposed Un-VDNet outperforms the state-of-the-art methods for visual odometry and depth estimation in dealing with dynamic objects of outdoor and indoor scenes.

© 2019 SPIE and IS&T 1017-9909/2019/$28.00 © 2019 SPIE and IS&T
Xuyang Meng, Chunxiao Fan, Yue Ming, Yuan Shen, and Hui Yu "Un-VDNet: unsupervised network for visual odometry and depth estimation," Journal of Electronic Imaging 28(6), 063015 (26 December 2019). https://doi.org/10.1117/1.JEI.28.6.063015
Received: 1 August 2019; Accepted: 2 December 2019; Published: 26 December 2019
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Visualization

Cameras

Error analysis

Optical flow

Networks

Atomic force microscopy

Convolutional neural networks

RELATED CONTENT


Back to Top