1 April 2009 Engineering study of extreme ultraviolet interferometric lithography
Author Affiliations +
Abstract
Extreme ultraviolet interferometric lithography (EUV-IL) is a powerful nanopatterning technique, exploiting the interference of two beams of short-wavelength radiation (λ≈13 nm) to form high-accuracy fringe patterns. Transmission diffraction gratings of appropriate period (40−100 nm) are used to form the beams; the substrate is located in the region of overlap to expose the photoresist material, recording 20−50 nm interference fringe patterns. Although the physics of EUV-IL is simple, its actual implementation is not and requires attention to detail in order to fully exploit the power of the technique. In order to understand the impact of realistic physical conditions on the performance of EUV-IL, we have developed a set of accurate numerical models based on the Rayleigh-Sommerfeld diffraction theory. These modeling tools are then applied to generate a complete and accurate analysis of EUV-IL, taking into account all the relevant physical processes, from finite extent of the gratings to the partial coherence of the source, and including detailed physical structure of the mask. The results are used to guide the design and implementation of EUV-IL exposure systems, down to the sub-11-nm range.
©(2009) Society of Photo-Optical Instrumentation Engineers (SPIE)
Jiang Fan, Yang-Chun Cheng, Artak Isoyan, and Franco Cerrina "Engineering study of extreme ultraviolet interferometric lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS 8(2), 021203 (1 April 2009). https://doi.org/10.1117/1.3112006
Published: 1 April 2009
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Modulation

Diffraction gratings

Photomasks

Diffraction

Lithography

Extreme ultraviolet lithography

Extreme ultraviolet

Back to Top