1 July 1993 Predictive vector quantization using a neural network approach
Author Affiliations +
Abstract
A new predictive vector quantization (PVQ) technique capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks (vectors) of pixels is introduced. The two components of the PVQ scheme, the vector predictor and the vector quantizer, are implemented by two different classes of neural networks. A multilayer perceptron is used for the predictive cornponent and Kohonen self-organizing feature maps are used to design the codebook for the vector quantizer. The multilayer perceptron uses the nonlinearity condition associated with its processing units to perform a nonlinear vector prediction. The second component of the PVQ scheme vector quantizes the residual vector that is formed by subtracting the output of the perceptron from the original input vector. The joint-optimization task of designing the two components of the PVQ scheme is also achieved. Simulation results are presented for still images with high visual quality.
Nader Mohsenian, Syed A. Rizvi, and Nasser M. Nasrabadi "Predictive vector quantization using a neural network approach," Optical Engineering 32(7), (1 July 1993). https://doi.org/10.1117/12.141678
Published: 1 July 1993
Lens.org Logo
CITATIONS
Cited by 28 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantization

Neural networks

Image compression

Matrices

Computer programming

Image processing

Optical engineering

RELATED CONTENT

Design of a multifunction video decoder based on a motion...
Proceedings of SPIE (September 01 1990)
Adaptive Schemes For Motion-Compensated Coding
Proceedings of SPIE (October 25 1988)
Fast codebook search algorithm in vector quantization
Proceedings of SPIE (September 01 1990)

Back to Top