1 September 2011 Improved saliency toolbox/Itti model for region of interest extraction
Dong-Jian He, Shang-Wang Liu, Xin-Hong Liang, Cheng Cai
Author Affiliations +
Funded by: National Natural Science Foundation of China, National Science Foundation of China (NSFC)
Abstract
The saliency toolbox (STB)/Itti model is an outstanding computational selective visual attention model. In this paper, we propose an improved STB/Itti model to overcome the drawback of STB/Itti-its output "saliency map" is not large enough for region of interest (ROI) extraction. First, we employ a simplified pulse coupled neural network (PCNN) with a special input image, and more importantly, the PCNN does not require iterations. Subsequently, the PCNN takes the place of the winner-take-all network in STB/Itti. Experimental results show that the improved STB/Itti model works well for ROI extraction, with the mean area under the curve value of 0.8306 and robustness against noise and geometric attacks. The proposed model can greatly enhance the performances of both STB/Itti and PCNN model in image processing.
©(2011) Society of Photo-Optical Instrumentation Engineers (SPIE)
Dong-Jian He, Shang-Wang Liu, Xin-Hong Liang, and Cheng Cai "Improved saliency toolbox/Itti model for region of interest extraction," Optical Engineering 50(9), 097202 (1 September 2011). https://doi.org/10.1117/1.3625422
Published: 1 September 2011
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Neurons

Visual process modeling

Image processing

Visualization

Data modeling

Optical engineering

Image segmentation

RELATED CONTENT


Back to Top