Open Access
23 March 2015 Modeling physical optics phenomena by complex ray tracing
Author Affiliations +
Abstract
Physical optics modeling requires propagating optical wave fields from a specific radiometric source through complex systems of apertures and reflective or refractive optical components, or even complete instruments or devices, usually to a focal plane or sensor. The model must accurately include the interference and diffraction effects allowed by the polarization and coherence characteristics of both the initial optical wave field and the components and media through which it passes. Like a spherical wave and a plane wave, a Gaussian spherical wave (or Gaussian beam) is also a solution to the paraxial wave equation and does not change its fundamental form during propagation. The propagation of a Gaussian beam is well understood and easily characterized by a few simple parameters. Furthermore, a paraxial Gaussian beam can be propagated through optical systems using geometrical ray-trace methods. The decomposition of arbitrary propagating wave fields into a superposition of Gaussian beamlets is, thus, an alternative to the classical methods of propagating optical wave fields. This decomposition into Gaussian beamlets has been exploited to significant advantage in the modeling of a wide range of physical optics phenomena.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
James E. Harvey, Ryan G. Irvin, and Richard N. Pfisterer "Modeling physical optics phenomena by complex ray tracing," Optical Engineering 54(3), 035105 (23 March 2015). https://doi.org/10.1117/1.OE.54.3.035105
Published: 23 March 2015
Lens.org Logo
CITATIONS
Cited by 39 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Ray tracing

Gaussian beams

Wave propagation

Geometrical optics

Superposition

Beam propagation method

Diffraction

RELATED CONTENT


Back to Top