In the fiber optic gyroscope (FOG) single-axis rotation inertial navigation system (SRINS), the <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:mi<Z</mml:mi<
</mml:mrow<
</mml:math<
</inline-formula<-axis gyro drift (<inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:msub<
<mml:mi<ϵ</mml:mi<
<mml:mi<z</mml:mi<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula<) dramatically limits its navigation precision and the <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:mi<Z</mml:mi<
</mml:mrow<
</mml:math<
</inline-formula<-axis gyro scale factor error (<inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:mi<δ</mml:mi<
<mml:msub<
<mml:mi<K</mml:mi<
<mml:mrow<
<mml:mi<G</mml:mi<
<mml:mi<z</mml:mi<
</mml:mrow<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula<) can cause greater navigation error because of the rotation process compared with the strap-down inertial navigation system. Hence, identification and compensation for the <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:msub<
<mml:mi<ϵ</mml:mi<
<mml:mi<z</mml:mi<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula< and <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:mi<δ</mml:mi<
<mml:msub<
<mml:mi<K</mml:mi<
<mml:mrow<
<mml:mi<G</mml:mi<
<mml:mi<z</mml:mi<
</mml:mrow<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula< are important in SRINS. An approach based on the azimuth error model of open-loop algorithm is proposed. This approach considers azimuth angle as a measurement and uses a least recursive square algorithm for identifying the <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:msub<
<mml:mi<ϵ</mml:mi<
<mml:mi<z</mml:mi<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula< and <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:mi<δ</mml:mi<
<mml:msub<
<mml:mi<K</mml:mi<
<mml:mrow<
<mml:mi<G</mml:mi<
<mml:mi<z</mml:mi<
</mml:mrow<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula<. Compared with the traditional method, which takes velocity and position errors as measurements, the time required for identifying <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:msub<
<mml:mi<ϵ</mml:mi<
<mml:mi<z</mml:mi<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula< with the proposed method is only approximately 10 min, while the traditional method requires 6 h to 12 h. Experimental results from an SRINS with FOGs demonstrate that the accuracy of identifying the <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:msub<
<mml:mi<ϵ</mml:mi<
<mml:mi<z</mml:mi<
</mml:msub<
</mml:mrow<
</mml:math<
</inline-formula< reaches 0.002°/h and that of the <inline-formula<
<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"<
<mml:mrow<
<mml:mi<δ</mml:mi<
<mml:msub<
<mml:mi<K</mml:mi<
<mml:mrow<
<mml:mi<G</mml:mi<
<mml:mi<z</mml:mi<
</mml:mrow<
</mml:msub<
</mml:mrow<
|