23 December 2016 Comprehensive study of methods for automatic choice of regularization parameter for diffuse optical tomography
Zhonghua Sun, Yaqi Wang, Kebin Jia, Jinchao Feng
Author Affiliations +
Funded by: NSFC, Natural Science Foundation of China, Beijing Natural Science Foundation, BNSF, Beijing Nova Program, BNP, STPBMEC, Science Technology Project of Beijing Municipal Education Commission, Postdoctoral Science Foundation of China, PSFC, BJUT, Basic Research Fund of Beijing University of Technology
Abstract
The image reconstruction in diffuse optical tomography (DOT) is a typical inverse problem; therefore, regularization techniques are essential to obtain a reliable solution. The most general form of regularization is Tikhonov regularization. With any Tikhonov regularized reconstruction algorithm, one of the crucial issues is the selection of the regularization parameter that controls the trade-off between the regularized solution and fidelity to the given sets of data. Automatic methods such as L-curve, generalized cross-validation, minimal residual method, projection error method, and model function method have been introduced to select the regularization parameter over the years. However, little investigation of comparison of all the algorithms has been reported in DOT. The performance of the five methods for choosing regularization parameter is comprehensively compared, and advantages and limitations are discussed.
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2016/$25.00 © 2016 SPIE
Zhonghua Sun, Yaqi Wang, Kebin Jia, and Jinchao Feng "Comprehensive study of methods for automatic choice of regularization parameter for diffuse optical tomography," Optical Engineering 56(4), 041310 (23 December 2016). https://doi.org/10.1117/1.OE.56.4.041310
Received: 10 October 2016; Accepted: 5 December 2016; Published: 23 December 2016
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Absorption

Multiphoton fluorescence microscopy

Image quality

Inverse problems

Diffuse optical tomography

Optical properties

Optical engineering

Back to Top