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What is Target Tracking?

Different Impressions Obtained from the Literature:
I A control systems problem to point an antenna towards an

object of interest.
I The prediction of the future state of a dynamical system based

on measurements and models.
I The act of connecting a vehicle’s consecutive positions over

time.
I A problem that was solved by Rudolph E. Kálmán in 1960.
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What is Target Tracking?

Target Tracking Is:
I An aid to reduce the workload of radar operators.
I A process of finding objects of interest where humans couldn’t

discern them.
I An optional part of a radar/sonar system.
I An indispensable part of a radar system.
I A critical part of a missile control system or of a

counter-missile system.
I A trivial connecting of the dots.
I Something that people can do better than the computer.
I Something that the computed can do better than people.
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I An optional part of a radar/sonar system.
I An indispensable part of a radar system.
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counter-missile system.
I A trivial connecting of the dots.
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I Something that the computed can do better than people.

The difficulty and utility of target tracking

methods depend on the application.
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Resources

I Getting started can be difficult.
I No comprehensive textbooks on tracking exist.
I Some useful books:

I (Bar-Shalom, Li, and Kribarajan): Estimation with
Applications to Tracking and Navigation: Theory Algorithms
and Software

I (Crassidis, Junkins) Optimal Estimation of Dynamic Systems
I (Bar-Shalom, Willett, Tian) Tracking and Data Fusion: A

Handbook of Algorithms
I (Blackman, Popoli) Design and Analysis of Modern Tracking

Systems
I (Maybeck) Stochastic Models, Estimation, and Control
I (Stone, Streit, Corwin, Bell) Bayesian Multiple Target Tracking
I (Challa, Moreland, Mušicki, Evans) Fundamentals of Object

Tracking
I (Mahler) Statistical Multisource-Multitarget Information

Fusion
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Resources

I The International Conference on Information Fusion by the
International Society of Information Fusion (ISIF) is the most
relevant to target tracking, especially networked/multistatic
tracking.

I ISIF http://www.isif.org
I Fusion 2018, Cambridge England: http://fusion2018.org

Fusion 2019, Ottawa Canada.
I The Tracker Component Library (TCL) offers over 1,000 free,

commented Matlab routines related to Tracking, Coordinate
Systems, Mathematics, Statistics, Combinatorics, Astronomy,
etc.

I https://github.com/USNavalResearchLaboratory/
TrackerComponentLibrary

I Description of library given in
D. F. Crouse, “The Tracker Component Library: Free Routines for Rapid Prototyping,”

IEEE Aerospace and Electronic Systems Magazine, vol. 32, no. 5, pp. 18-27, May. 2017.
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Overview

1. Mathematical Preliminaries

2. Coordinate Systems (in the unabridged slides)
3. Measurements and Noise

4. Measurement Conversion (in the unabridged slides)
5. Bayes’ Theorem and the Linear Kalman Filter Update

6. Stochastic Calculus and Linear Dynamic Models (in the unabridged slides)
7. The Linear Kalman Filter Prediction

8. Linear Initial State Estimation and the Information Filter

9. Nonlinear Measurement Updates

10. Square Root Filters (in the unabridged slides)
11. Direct Filtering Versus Measurement Conversion

12. Data Association

13. Integrated and Cascaded Logic Trackers

14. Dealing with Beams (in the unabridged slides)
15. Summary
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Mathematical Preliminaries

Useful Mathematical Tools
1. Univariate and Multivariate Taylor Series Expansions

I Given in the unabridged version of the slides.

2. Useful Probability Distributions.
3. Cubature Integration.
4. The Cramér-Rao Lower Bound.

10 / 85

Proc. of SPIE Vol. 10633  106330P-6



U.S.$Naval$Research$Laboratory

Probability Distributions

I The four most prevalent probability distributions in target
tracking tend to be:

1. The Multivariate Gaussian Distribution.
I

Usual assumed noise distribution; discussed in the unabridged

slides.

2. The Central Chi-Square Distribution.
3. The Binomial Distribution.
4. The Poisson Distribution.

I In the TCL, functions relating to these and many other
distributions are given in “Mathematical
Functions/Statistics/Distributions.”

I For the above distributions, see GaussianD, ChiSquareD,
BinomialD, and PoissonD in the TCL.

11 / 85

U.S.$Naval$Research$Laboratory

Probability Distributions:
Chi-Squared

x
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I The central chi-squared distribution with k degrees of freedom
is
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2 �1
e

� x

2

2

k

2
�

�
k

2

� (1)

where � is the gamma function.
I Plotted is �

2
(x, 3).

I Confidence regions of a desired % are easily determined using
Gaussian approximations, Mahalanobis distances, and
chi-squared statistics.
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Probability Distributions:
Chi-Squared

I Given a Gaussian PDF estimate of a target, a point x, is
within the first pth-percentile if

(

ˆx� µ)0⌃�1
(

ˆx� µ) < �

p

(2)

where �

p

depends on p and on d

x

, the dimensionality of x.

Confidence Region p

d

x

0.9 0.99 0.999 0.9999 0.99999
1 2.7055 6.6349 10.8276 15.1367 19.5114
2 4.6052 9.2103 13.8155 18.4207 23.0259
3 6.2514 11.3449 16.2662 21.1075 25.9017
6 10.6446 16.8119 22.4577 27.8563 33.1071
9 14.6837 21.6660 27.8772 33.7199 39.3407

Values of �
p

for p and d

x

.

I Use ChiSquareD.invCDF in the TCL to determine �

p

.
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Probability Distributions:
Chi-Squared

I The chi-squared distribution plays a role in assessing
covariance consistency.

I The covariance is consistent if it realistically models the error.
I The Normalized Estimation Error Squared (NEES) is the

simplest of multiple methods for assessing consistency.

NEES , 1

Nd

x

N

X

i=1

(

ˆx
i

� x
i

)P�1
i

(

ˆx
i

� x
i

) (3)

I
ˆx
i

and P
i

are estimated mean and covariance from ith
random trial.

I x
i

true value from ith random trial.
I If estimator is unbiased, covariance is always correct and errors

truly Gaussian, then the NEES is 1
Nd

x

time a central
chi-squared random variable with Nd

x

degrees of freedom.
I The function calcNEES in the TCL can be useful.
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Probability Distributions:
Binomial

I Consider constant false alarm rate (CFAR) detector with a
given P

FA

per cell, such as the ones given by the CACFAR or
OSCFAR functions in the TCL.

I Grid of N cells (e.g. in range and range-rate).
I Probability of n false alarms is binomially distributed.

Pr{n} =

✓

N

n

◆

P

n

FA

(1� P

FA

)

N�n (4)

with mean
˜

� = NP

FA

(5)

I The binomial distribution is almost never used in trackers.
I It is approximated by a Poisson distribution with the same ˜

�.
I The asymptotic equivalence is derived in the unabridged slides.
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Probability Distributions:
Poisson

Example:

x

Pr{x}

1 3 5 7 9
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Binomial

Poisson

(a) N=10

x

Pr{x}

1 3 5 7 9
0.05

0.1

0.15

0.2

0.25
Binomial

Poisson

(b) N=50

I Both plots, ˜� = 5 for both distributions.
I At N = 1000, the binomial and Poisson plots look the same.
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Cubature Integration

I Many integrals cannot be solved analytically with a finite
number of terms.

I Try to evaluate a Fresnel integral:

C(z) =

Z

z

0
cos

✓

⇡t

2

2

◆

dt (6)

I Quadrature integration is a technique for efficient numerical
evaluation of univariate integrals.

I Cubature integration is multivariate quadrature integration.
I The TCL has many functions related to cubature integration

in “Mathematical Functions/Numerical Integration” and
“Mathematical Functions/Numerical Integration/Cubature
Points.”
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Cubature Integration: Why?

Numerically integrate the function from 0 to 2.

x

f(x)

1 2
0

0.25

0.5

0.75

1

I Evaluate
Z 2

0
f(x) dx =? (7)
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Cubature Integration: Why?
Numerically integrate the function from 0 to 2.

x

f(x)

1 2
0

0.25

0.5

0.75

1

I Basic calculus solution: A Riemann sum:
Z 2

0
f(x) dx ⇡

N�1
X

k=0

f (k�

x

)�

x

where 2 = N�

x

. (8)
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Cubature Integration: Theory

I Riemann sums converge very slowly.
I The idea in quadrature/cubature is the relation

Z

x2S
f(x)w(x) dx =

N

X

i=0

!

i

f(x
i

), (9)

is exact for a particular weighting function w for all

polynomials f up to a certain order and approximate for other
functions f .

I S is a region, such as Rn or the surface of a hypersphere.
I Unlike a Riemann sum, N is finite.
I Cubature weights !

i

and points x
i

depend on w and the order.
I Efficient: For a fifth-order integral with a multivariate Gaussian

weighting function, one can choose points such that N = 12.
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On Solving Integrals

I Many parts of target tracking involve solving difficult
multivariate integrals.

I Many algorithms fall into one of two categories:
1. Use cubature integration for the integrals.
2. Use a Taylor series expansion to turn the problem polynomial

and solvable.
I This comes up again and again.
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The CRLB
I The Cramér-Rao Lower Bound (CRLB) is a lower bound on

the variance (or covariance matrix) of an unbiased estimator.
I The CRLB and a posterior CRLB (PCRLB) are widely used to

asses tracker performance.
I Under certain conditions, the CRLB states

E

�

(x�T(z)) (x�T(z))0
 

� J�1 (10)
I A matrix inequality refers to sorted eigenvalues.
I x is the quantity being estimated.
I T(z) is the best unbiased estimator.
I J is the Fisher information matrix.
I The expectation is taken over the conditional PDF p(z|x) if x

is deterministic.
I The Fisher information matrix has two equivalent formulations:

JB

=� E

�

rxr0
x ln (p(z|x))

 

(11)
=E

�

(rx ln (p(z|x))) (rx ln (p(z|x)))0
 

(12)
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Measurements and Noise

x

y

I Are these points false alarms or a possible track over time?
I Are they accurate measurements that are far apart?
I Are false alarms very unlikely or highly likely?
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Measurements and Noise

x

y

I Are these points false alarms or a possible track over time?
I These are the same points as before at a different scale.
I Measurements are inherently noisy.
I Knowledge of measurement noise level determines scale.
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Measurements and Noise

x

y

I The blue line is “connect-the-dots.” The orange line just adds
interpolation.

I The blue/orange lines are only good if the points are very
accurate.

I The green line is much more reasonable if the points are
inaccurate.

I The noise level determines the best fit.
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Bayes’ Theorem

I Given a PDF p(x) representing the target state estimate at a
particular time.

I Given a measurement z and a conditional PDF of the
measurement p(z|x).

I Bayes’ theorem states that
posterior

distribution

z }| {

p(x|z) =

measurement

distribution

z }| {

p(z|x)

prior

distribution

z}|{

p(x)

p(z)
|{z}

normalizing constant

(13)

I The value p(z) is essentially a normalizing constant.

p(z) =

Z

x2S
p(z|x)p(x) dx (14)

where S is whatever space x is in (For discrete variables, the
integral becomes a sum).
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Bayes’ Theorem and Joint
Distributions

I Bayes’ theorem underlies all rigorous measurement update
algorithms in tracking.

I The Kalman filter measurement update is just Bayes’ theorem
applied to a linear/Gaussian measurement model assuming a
Gaussian prior.

I Notation change for standard tracking:
I The “prior” subscript will be replaced by “k|k � 1” to indicate

that one has an estimate of a current (step k) state given prior
(step k � 1) information.

I The “posterior” subscript will be replaced by “k|k” to indicate
that one has an estimate of a current state given current
information.
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Bayes’ Theorem: Linear
Gaussian Distributions
Prior Prediction
ˆx
k|k�1,Pk|k�1

Measurement
z
k

,R
k

Measurement Prediction
ˆz
k|k�1 = H

k

ˆx
k|k�1

Innovation
⌫
k

= z
k

� ˆz
k|k�1

Innovation Covariance
Pzz

k|k�1 = R
k

+H
k

P
k|k�1H

0
k

Cross Covariance
Pxz

k|k�1 = P
k|k�1H

0
k

Filter Gain

W
k

= Pxz

k|k�1

⇣

Pzz

k|k�1

⌘�1

Updated Covariance
P

k|k = (I�W
k

H
k

) (I�W
k

H
k

)

0
+W

k

R
k

W0
k

Updated State Estimate
ˆx
k|k = ˆx

k|k�1 +W
k

⌫
k

I The discrete measurement update step of the Kalman filter
with common notation/terminology.

I The updated covariance estimate has been reformulated in
Joseph’s form for numerical stability.

I See KalmanUpdate in “Dynamic Estimation/Measurement
Update” in the TCL.
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Bayes’ Theorem: Why Use
Approximations?

I The Kalman filter update is optimal for measurements that are
linear combinations of the target state.

I However, why not just apply Bayes’ theorem more precisely?
I Bayes’ theorem is again:

p(x|z) = p(z|x)p(x)
p(z)

(15)

I Just multiply two known functions and normalize the result.
I Bayes’ theorem is trivial. Why not always do it optimally?
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Bayes’ Theorem: Why Use
Approximations?

I Bayes’ theorem is just normalized multiplication. Why not just
discretize space and do everything almost optimally on a grid?

I Simplest “optimal” Bayesian filter:
1. Discretize the entire estimation space
2. Evaluate probabilities on a discrete grid for given distributions
3. Multiply matrices of probabilities to get posterior; normalize

I It is simple.
I With parallelization over GPUs, couldn’t it be done quickly?
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Bayes’ Theorem: Why Use
Approximations?

I Why the brute-force grid approach is seldom done:
I One target 3D position and velocity in 50 km cube all directions about

sensor, speed in any direction to Mach 4 (1372,m/s), discretized to 5m
and 1m/s.

I Grid for single probability density function (PDF) is more than 2⇥ 10

22

in size (we need two).
I As floating doubles, one grid requires more than 82 zettabytes of RAM

(1 ZB=1 trillion GB).
I

64GB RAM stick ⇡ $255 so cost ⇡ $330 trillion ($660 trillion for two
grids, US GDP ⇡ $53 trillion).

I Computing power to multiply two grids in 1ms is ⇡ 20 exaflops.
I Most powerful supercomputer (Tianhe-2, China) 33.85 petaflops. We

need 612 of them.
I A smarter approach would be to use some type of adaptive grid or set of

points.
I This is the basis of particle filters (to be discussed later).

I The Kalman filter is much faster than the most efficient particle filter.
33 / 85

THE LINEAR KALMAN FILTER
PREDICTION
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The Linear Kalman Filter
Prediction Summary

Prior Values
ˆx
k�1|k�1,Pk�1|k�1

State Prediction
ˆx
k|k�1 = F

k

ˆx
k�1|k�1

Covariance Prediction
P

k|k�1 = Q
k

+ F
k

P
k|k�1F

0
k

I The stochastic dynamic models describe prediction when the
initial state x is deterministic.

I The prediction step of the standard Kalman filter is derived in
the unabridged slides and handles random x.

I See the discKalPred function in the TCL.
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LINEAR INITIAL STATE ESTIMATION AND
THE INFORMATION FILTER
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Linear Initial State Estimation

Two common approaches to starting the filter are
1. One-point initiation.

I See the functions in “Dynamic Models/One-Point
Initialization” in the TCL.

2. Using an information filter.
I See infoFilterUpdate and infoFilterDiscPred in the TCL.
I This is discussed in the unabridged slides.
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Linear Initial State Estimation
I One-point initiation is the simplest approach:

I The initial state and covariance matrix are

ˆ

x0|0 =

"
ˆ

z

Cart

0

d

x

�d

z

#
(16)

ˆ

P0|0 =

"
R

Cart

0

d

z

,d

x

�d

z

0

d

x

�d

z

,d

z

diag([�

2
1 ,�

2
2 , . . . ,�

2
d

x

�d

z

])

#
(17)

where
I

d

x

and d

z

are the dimensionalities of the state and the

Cartesian-converted measurement.

I
�

2
1 , . . . ,�

2
d

x

�d

z

are large variances based on the maximum

velocity, acceleration, etc of the target.

I Known position, other components “uninformative”.
I Updates and predictions can then be done using the standard

Kalman filter.
I A rule of thumb for �

i

is to use the maximum value of the
value of the moment divided by 2 or 3.
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Nonlinear Measurement
Updates

Single Model
Estimation Algorithms

Batch
Estimation

Recursive
EstimationGaussian Filters Particle Filters

Maximum Likelihood
Algorithms

Particle Filters

Stochastic
Particle Filters

Deterministic
Particle Filters

Gaussian
Mixture Filters

No Bias
Compensation

Bias
Compensation

Consider Extended
Kalman Filter

Consider Cubature
Kalman Filter

Extended Kalman Filter
Cubature Kalman Filter
Pure Propagation Filter

Progressive Gaussian Filter

Quasi-Monte Carlo Filter

Ensemble Kalman Filter
Central Difference Kalman Filter
Divided Difference Kalman Filter

Bootstrap PF

Auxiliary PF

PF with Kalman Filter Proposal

Box PF
Instrument Variable PF

Homotopy PF

I Measurement updates are possible without Cartesian conversion.
I Major nonlinear filtering algorithms shown.
I We focus on the Extended Kalman Filter and variants of the cubature

Kalman filter (which include the “unscented” KF).
I See EKFUpdate and cubKalUpdate in the TCL.
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Nonlinear Measurement
Updates

I The Kalman filter arose from a Bayesian update given that a
linear measurement and the state are jointly Gaussian.

I Approximating a nonlinear measurement

z = h(x) +w (18)

where w is Gaussian, as jointly Gaussian with the state, one
still has the same basic update equations as the Kalman filter

ˆx
k|k =

ˆx
k|k�1 +Pxz

k|k�1

⇣

Pzz

k|k�1

⌘�1
�

z� ˆz
k|k�1

�

(19)

P|̨k =P
k|k�1 �Pxz

k|k�1

⇣

Pzz

k|k�1

⌘�1
Pzx

k|k�1 (20)

but the quantities ˆz
k|k�1, Pzz

k|k�1, P
xz

k|k�1 are now integrals.
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Nonlinear Measurement
Updates: CKF

Predicted Estimates

x̂

k|k�1

P

k|k�1

Measurement Prediction

ẑ

k|k�1 =
P

N

c

i=1 !

i

z̃

(i)
p

Innovation

⌫
k

= z

k

� ẑ

k|k�1

Updated State Estimate

x̂

k|k = x̂

k|k�1 + W

k

⌫
k

Predicted Cubature State Points

x̃

(i)
p

= x̂

k|k�1 + P

1
2
k|k�1

⇠
i

Predicted Cubature Measurement Points

z̃

(i)
p

= h

⇣
x̃

(i)
p

⌘

Filter Gain

W

k

= P

xz

k|k�1

⇣
P

zz

k|k�1

⌘�1

Updated State Covariance

P

k|k =
⇣
X̃

p

� W

k

Z̃

p

⌘⇣
X̃

p

� W

k

Z̃

p

⌘0
+ W

k

R

k

W

0
k

Base Cubature Points and Weights

Choose d

x

-dimensional cubature points {⇠
i

} and weights

{!
i

}.

Centered, Predicted Cubature Point Matrix

X̃

p

=
hp

!1(x̃
(1)
p

�x̂

k|k�1), . . . ,
p
!

N

c

(x̃(N
c

)
p

�x̂

k|k�1)
i

Centered, Predicted Cubature Measurement Point Matrix
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Innovation Covariance

P

zz
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0
p

Cross Covariance
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xz

k|k�1 = X̃

p

Z̃

0
p

Measurement

z

k

,R

k

I The simplest solution to the nonlinear integrals is to use
cubature integration, shown above.

I The square root is a lower-triangular Cholesky decomposition.
I The vector formulation above requires all cubature weights be

positive, but allows for Joseph’s form to be used.
I A Joseph’s formulation supporting negative cubature weights

is probably impossible.
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Nonlinear Measurement
Updates: EKF
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⌫
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I An alternative approach is to use a Taylor series expansion of
the nonlinear function.

I The result is the extended Kalman filter (EKF), shown above.
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DIRECT FILTERING VERSUS
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Filtering Versus Measurement
Conversion

I Two common approaches for basic tracking exist:
1. Cartesian converting measurements (and covariances) and

using a linear filter.
2. Directly using measurements in a nonlinear filter.

I These shall be compared in a simple example.

45 / 85

U.S.$Naval$Research$Laboratory

Filtering Versus Measurement
Conversion

z

x

�40�202040

200

20

�20

Ship 1

Ship 2Ship 3

Ship 4

Target

I A flat Earth.
I All ships on the surface traveling

�10m/s in the negative z

direction.
I The target initially at an altitude

of 7 km going 100m/s.
I Radars on ships pointed 15

� up
from the horizontal.

I
q̃ = 0.4802m2

/s3

I Measurements every T = 0.5 s.
I Tracks initialized via an

information filter with 2

converted measurements.
I R

1
2
= diag([10m, 10

�2
, 10

�2
]).
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Filtering Versus Measurement
Conversion: RMSE
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(a) Converted Measurements,

RMSE
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(b) EKF, RMSE
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(c) CKF, RMSE

I The positional RMSE error of three different tracking
algorithms. The CKF used 5th order points.

I The CKF has the best RMSE performance.
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Filtering Versus Measurement
Conversion: NEES
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(c) CKF, NEES

I The NEES of three different tracking algorithms.
I The EKF is bad; the CKF is the best over time; converted

measurements are initially the best.
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Data Association

Data Association
Algorithms Multiple ScanSingle Scan

With Integrated
Track Management

Without Integrated
Track Management

Continuity
Over Time

No Continuity
Over Time

Random Finite
Set Based
Methods

Traditional
Hypothesis-

Based Methods

PMHT MHT
Track Before

Detect

Continuity
Over Time

No Continuity
Over Time

Global Nearest Neighbor

Naïve Nearest Neighbor

JPDA
JPDA*

GNN-JPDA
CJPDA
CJPDA*

Set JPDA
JIPDA
JIPDA*

GNN-JIPDA
Labeled Multi-
Bernoulli Filter

PHD
CPHD

Track-Oriented
MHT

Hypothesis-Oriented
MHT

ML-PDAF
ML-PMHT

Hough
Transform

Dynamic
Programming

I Common algorithms for assigning measurements to targets
shown.

I We focus on non random finite set (RFS)-based single scan
approaches.
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Data Association

Topics considered are:
1. The Likelihood Function.
2. Naïve Nearest Neighbor, the Score Function, and Global

Nearest Neighbor (GNN)
3. Probabilistic Data Association (PDA) and Joint Probabilistic

Data Association (JPDA) variants
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The Likelihood Function

I Consider one known target with a Gaussian prediction ˆx
k|k�1,

P
k|k�1 with a 100% detection probability and with N

M

measurements present.
I Which measurement should be assigned to the target?
I Single-scan data association algorithms make this decision

based only on the current state prediction ˆx
k|k�1, Pk|k�1.

I Multiple scan data association look at multiple sets of
measurements.
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The Likelihood Function
I Let Hp be a matrix so Hpx

extracts the position
components of a Cartesian state.

I Given Cartesian-converted
measurements zCart

1 , . . . , zCart

N

M

one might assign the ith one
such that

i = argmin

i

�

�

�

Hpx� zCart

i

�

�

�

2

(21)I This is usually bad:
I Measurements are more accurate in range than cross range.

I
Cross-range becomes worse farther away from sensor, as

illustrated (monostatic).

I The shape of the uncertainty region of the state can matter.
I

Target ellipse crosses multiple range cells in image.
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The Likelihood Function

I One cannot convert the state to the measurement coordinate
system and use a similar l2 norm.

I Mixing units (e.g. range, angle, and even range rate) makes no
sense.

I Valid distance measures can be derived from likelihood
functions and likelihood ratios.

I Another reason that measurement covariance matrices matter.
I Let Zk�1 be the set of all measurements up to discrete time

k � 1 and ⇥k�1 be the information of which measurements
are assigned to the track up to time k � 1.

I A valid cost function is the likelihood p(z|Zk�1
,⇥k�1

).
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The Likelihood Function
I Written out, the likelihood of the ith measurement:

p(z

i

|Zk�1
,⇥

k�1
) ,˜

⇤

⇣
✓

i

⌘
=

���2⇡Pzz,i

k|k�1

���
� 1

2
e

� 1
2 (z�ẑ

k|k�1)
0⇣

P

zz,i

k|k�1

⌘�1
(

z�ẑ

k|k�1)
(22)

I Pzz,i

k|k�1 depends on the covariance matrix R
i

of the ith
measurement.

I Taking the negative logarithm of the likelihood and dropping
the normalizing constant terms and 1/2 scale factor one has a
Mahalanobis distance:

� log

⇣

˜

⇤

�

✓

i

�

⌘

/
�

z� ˆz
k|k�1

�0
⇣

Pzz,i

k|k�1

⌘�1
�

z� ˆz
k|k�1

�

(23)

I From the mathematics section, we know that Mahalanobis
distances can be used for chi-squared testing to determine
whether measurements can even be considered valid.

I The exclusion of measurements from possible assignments is
gating.
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Naïve Nearest Neighbor

t1

t2

m1

m2

I For multiple targets, one is tempted to assign the highest
likelihood measurement to each target.

I In the above scenario, both targets would be assigned to
measurement m1.

I Naïve nearest neighbor leads to track coalescence and
ultimately, needless track loss.

I A practical algorithm must assign measurements jointly across
targets, accounting for missed detections.

I Naïve nearest neighbor is one of the options in
singleScanUpdate in the TCL.
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The Score Function

I We want to derive a cost function (a score function) that can
be used for multiple target assignment.

I The exponential of the score function derived in the unabridged
slides here is computed in makeStandardLRMatHyps and
makeStandardCartOnlyLRMatHyps in the TCL.
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The Score Function

I Under many standard assumptions, the marginal change in the
log-likelihood for assigning a measurement is

�⇤

t,i

=

8

>

>

<

>

>

:

ln

0

@

P

t

D

N
n

z
i

,

ˆzt
k|k�1,P

zz,i,t

k|k�1

o

�

1

A if i 6= 0

ln(1� P

t

D

) if i = 0

(24)

I
ˆzt
k|k�1 is the predicted measurement from the tth target,

I Pzz,i,t

k|k�1 is the innovation covariance the for ith measurement
and tth target.

I The term �⇤

t,i

is the marginal score function for single-frame
assignment.

I Summing the marginals for a full target-measurement
assignment, one forms the full score function ⇤(✓) for a scan.
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The Score Function

I When using a converted measurement filter, the units of
N
n

z
i

,

ˆzt
k|k�1,P

zz,i,t

k|k�1

o

are in Cartesian coordinates, but the
units of � are usually in the radar’s local coordinates.

I The proper conversion of � to Cartesian coordinates yields a
different � at every point.

I Cartesian � is higher closer to the sensor.
I The Cartesian version of � given � in the measurement

coordinate system is

�

x

=

1

|J(y)|�y

(25)

I In the TCL, necessary Jacobians are in “Coordinate
Systems/Jacobians/Converted Jacobians” and include
calcRuvConvJacob and calcPolarConvJacob, among others.
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GNN Assignment

I One could assign measurements to targets and false alarms by
choosing the assignment ✓ that maximizes the score function.

I How many valid assignments are there for m measurement and
N

T

targets?

N

hyp

=

min(m,N

T

)
X

l=0
| {z }

Sum over the number

of targets observed

Choose which targets

are observed

z }| {

✓

N

T

l

◆ ✓

m

l

◆

| {z }

Choose which measurements

are not false alarms

Assign the measurements

to the targets

z}|{

l! (26)

I Suppose there are 3000 measurements and targets, and no
false alarms or missed detections.

I There are 3000! ⇡ 4.14⇥ 10

9130 hypotheses.
I This is about one googol (10100) raised to 91.3.

60 / 85

Proc. of SPIE Vol. 10633  106330P-31



U.S.$Naval$Research$Laboratory

GNN Assignment

I There are 3000! ⇡ 4.14⇥ 10

9130 hypotheses, but only
3000

2
= 9⇥ 10

6 marginal hypotheses (values of �⇤

t,i

).
I The efficient solution is formulated as a GNN assignment (2D

assignment) problem:

x

⇤
= argmax

x

N

RX

i=1

N

CX

j=1

�⇤

i,j

x

i,j

(27)

subject to

N

CX

j=1

x

i,j

= 1 8i Every target is assigned

to an event.

(28)

N

RX

i=1

x

i,j

 1 8j Not every event is

assigned to a target.

(29)

x

i,j

2 {0, 1} 8x
i,j

Equivalent to

x

i,j

� 0 8x
i,j

(30)

I
N

R

= N

T

and N

C

= N

T

+m, number of measurements plus
missed detection hypotheses.
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GNN Assignment

I Each target gets its own missed detection hypotheses; costs
for other targets’ hypotheses are �1.

I To use the algorithm note that the cost matrix takes the form

Assignment

Costs

z }| {

Missed Detection

Costs

z }| {

C
l

,

2

6

6

6

6

4

�⇤1,1 . . . �⇤1,m �⇤1,0 �1 . . . �1
�⇤2,1 . . . �⇤2,m �1 �⇤2,0 . . . �1

... . . . ...
...

... . . . ...
�⇤

N

T

,1 . . .�⇤

N

T

,m

�1 �1 . . .�⇤

N

T

,0

3

7

7

7

7

5

.

(31)
I 2D assignment is a binary integer programming problem.
I A polynomial time solution is implemented as assign2D and

kBest2DAssign in the TCL
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The PDA and JPDA Algorithms

I The GNN algorithm is a maximum-likelihood approach.
I An alternative is to use the expected value over all possible

target-measurement assignments.
I For a single target, the expected value and the covariance of

the estimate are called probabilistic data association (PDA).
I For multiple targets, it is called Joint Probabilistic Data

Association (JPDA).
I Variants of the PDA and JPDA are implemented in

singleScanUpdate in the TCL.

63 / 85

U.S.$Naval$Research$Laboratory

The PDA and JPDA Algorithms

I For the tth target, the JPDA update is

xt

k|k =E

�

xt

k

|Z, I
p

 

=

m

X

i=0

�

i,t

ˆxt,i

k|k (32)
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� ˆxt

k|k
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xt,i
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� ˆxt

k|k
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(34)

I
�

i,t

is the probability of assigning measurement i to target t (0
is a missed detection).

I Superscripts of i and t indicate measurement and target
hypotheses.

I
I

p

is information on the (assumed Gaussian) prior estimates.
I The literature often uses a simpler expression for Pt

k|k that is
not quadratic in form and subject to finite precision errors.
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The PDA and JPDA Algorithms

I Assumptions going into the PDA/JPDA are that the prior
distributions on all targets are Gaussian.

I The covariance cross terms between targets are not zero, but
are omitted.

I The hardest part of the PDA/JPDA is the computation of the
� values.
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The PDA and JPDA Algorithms

t1

t2

t3

t4m1
m2

m3

m4

m6
m5

m7

m8

I Gating and clustering are important parts of a large-scale
JPDA implementation.

I In the above figure, measurements are said to gate with a
target if in the ellipse overlaps them.

I In practice, use a chi-squared test on the Mahalanobis distance.
I There are three clusters of targets and measurements.

1. Target t1 is in a cluster with m4.
2. Targets t2 and t3 (linked by m2) cluster with m1, m2, and m3.
3. Target t4 is in a cluster with m6.
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The PDA and JPDA Algorithms:
Gating and Clustering

I Brute-force gating and likelihood evaluation is implemented in
the TCL via the makeStandardLRMatHyps and
makeStandardCartOnlyLRMatHyps functions.

I Clustering can be computationally efficiently performed using
disjoint sets, an obscure Computer Science data structure.

I Disjoint sets for clustering are implemented in the
DisjointSetM and DisjointSet classes in the TCL; DisjointSet
keeps track of only targets in clusters; DisjointSetM keeps
track of targets and measurements in clusters.
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The PDA and JPDA Algorithms:
Gating and Clustering

Outputs

Inputs

Outputs

Inputs

P1 P2 . . .

P

g

Perform Gating and Clustering

Initial Estimates
x̂t

k|k�1,P
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k|k�1
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z
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Combine Cluster Estimates
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t

k|k

Processing Group P
g

Calculate
�

i,t

8(i, t) 2 G
g
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x̂i,t

k|k,P
i,t

k|k 8(i, t) 2 G
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Clustered Targets
x̂t

k|k�1 P
t

k|k�1 8(t) 2 G
g

Gated Observations
z
i

8(i) 2 G
g

Calculate
x̂t
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t

k|k 8(i, t) 2 G
g

I An illustration go how separate clusters can be processed
independently.

I G
g

is the set of targets and measurements in the gth cluster.
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The PDA and JPDA Algorithms:
Computing �

I When the � terms must be computed exactly, two approaches
shall be considered:

1. Via brute-force evaluation of all joint association events.
2. Via matrix permanents.

I The matrix permanent approach is faster, but brute force is
necessary to derive some JPDAF variants.
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The PDA and JPDA Algorithms:
Computing �

I Consider a matrix of likelihoods with �

˜

⇤

t,i

= e

�⇤
t,i ,

non-normalized assignment probabilities:
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(35)
I The normalized expression for the � terms can be rewritten

directly in terms of likelihoods using elements of C:
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(36)
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The PDA and JPDA Algorithms:
Computing �

I The expression simplifies to

�

j,k

= �

˜

⇤

j,k

perm

�

¯C
j,k

�

perm (C)

(37)

where ¯C
j,k

is the matrix C after removing row j and column
k.

I The matrix permanent cannot be evaluated in polynomial time
unless P=NP.

I Efficient exponential complexity algorithms exist. In the TCL,
the function perm implements an efficient algorithm.
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The PDA and JPDA Algorithms

I Functions to explicitly compute the � values are implemented
in the calc2DAssignmentProbs function in the TCL.

I Many techniques to approximate � values exist and are
implemented in calc2DAssignmentProbsApprox in the TCL.

I Methods to do the complete PDA and JPDA update are given
in singleScanUpdate in the TCL.

I However, one usually uses a variant of the JPDA algorithm
rather than the JPDA algorithm itself.
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The JPDA Algorithm:
Coalescence

I Consider two targets whose states consist only of scalar
position and have been stacked.

I Suppose that the joint PDF for the two targets is

p(x) =
1

2

�

 

x�
"

1

�1

#!

+

1

2

�

 

x�
"

� 1

1

#!

(38)

I One target is located at +1 and one target is located at �1,
but we do not know which.

I
E {x} = 0, where no target is located.

I Identity uncertainty causes track coalescence!
I Coalescence is not a “bias”.
I Coalescence is the result of using the expected value given

uncertain identity.
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The JPDA Algorithm:
Coalescence

I The Set JPDAF, the GNN-JPDA and the JPDA* can reduce
coalescence.

I The GNN-JPDA is simple:
1. Determine the measurement to use with a GNN filter, giving

ˆx
k|k.

2. Compute P
k|k as in the JPDA, using the GNN estimate as the

mean ˆx
k|k.

I The hard assignment avoids coalescence.
I Computing P

k|k as a MSE matrix improves covariance
consistency/reduces track loss.

I Available as an option in singleScanUpdate in the TCL with
exact and approximate �s.
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The JPDA Algorithm:
Coalescence

I The brute-force computation of the �s had loops:
1. Choose how many targets are observed.
2. Choose which targets are observed.
3. Choose which measurements originated from targets.
4. Permute all associations of observed targets to

target-originated measurements.
I The JPDA* is the same as the JPDA except in the innermost

loop, only the maximum likelihood permutation is used.
I Has the smoothing of the expected value.
I The hard decision gets rid of identity uncertainty: Resistant to

coalescence.
I Use calcStarBetasBF for the �s in the TCL. Available as an

option in singleScanUpdate in the TCL.
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The JPDA Algorithm: Example
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4 True and Estimated Trajectories

I A 2D example of the JPDA* including gating and clustering is
given in demo2DDataAssociation in “Sample Code/Basic
Tracking Example" in the TCL.

I A sample run is shown above. Tracks were started from two
cued measurements.

I Estimated tracks: Red. True track: Dashed black. Detections:
Blue. Very resistant to false alarms.

76 / 85

Proc. of SPIE Vol. 10633  106330P-39



CASCADED LOGIC AND INTEGRATED
TRACKERS
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Cascaded Logic and Integrated
Trackers

I The GNN and JPDA algorithms only update established tracks.
I Most practical systems require the ability to start and

terminate tracks.
I Two main categories of algorithms exist for single-scan data

association approaches:
I Cascaded Logic Trackers

I
Confirmed-tracks, pre-tracks and hard decisions for initiation

and termination.

I Integrated Trackers
I

Lots of targets, each with a probability of existing.
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A Cascaded Logic Tracker
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Predicted States, Scores
ˆxt,p
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k|k�1,⇤
t,p

Candidate Tracks

Determine GNN
Assignment

on Candidate Tracks
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Candidate Tracks Based

on the SPRT
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Cumulative Scores ⇤

t
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on Candidate Tracks
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and Initial Score

for New Candidate Tracks

Unassigned Measurements

Unassigned Measurements
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I
Multiple Types of

cascaded logic trackers

exist.

I
There are confirmed

tracks and candidate

tracks.

I
Sometimes

pre-tracks too.

I
Scores usually updated

via GNN assignments.

I
Measurements not in

GNN assignments go

on to the next stage.

I
Creation, promotion

and deletion of tracks

in purple-outlined

boxes.
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An Integrated Tracker
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I
Integrated trackers maintain a probability of target existence with each

possible target.

I
Usually, a track is not considered firm until its existence probability

exceeds a threshold.

I
A track is not terminated until its existence probability goes below a

lower threshold.

I
Measurement update implemented in the

singleScanUpdateWithExistence function in the TCL.
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An Integrated Tracker
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10
4 True and Estimated Trajectories

I A rigorous derivation of the
JIPDA class of filters is usually
done using finite set statistics.

I A proper coverage of finite set
statistics is beyond the scope of
this presentation.

I An example of a minimal end-to-end GNN-JIPDAF in 2D is
given in demo2DIntegratedDataAssociation in “Sample
Code/Basic Tracking Examples” in the TCL.

I A plot of a run of the sample code with the detections and
found tracks (green) and true tracks (red) is shown above for
the simple two-target scenario.

81 / 85

SUMMARY

82 / 85

Proc. of SPIE Vol. 10633  106330P-42



U.S.$Naval$Research$Laboratory

Summary I

I Gaussian approximations and Poisson clutter are widely used.
I Tracking algorithms need consistent measurement covariance

matrices. Cross terms between range and range rate can
matter.

I The Kalman filter comes from a Bayesian update of a linear
dynamic model and a linear measurement.

I The EKF and CKF use Taylor series and cubature
approximations to solve difficult integrals in an approximate
nonlinear Kalman filter.

I Approaches to measurement conversion with consistent
covariances include using Taylor series and cubature
approximations to solve difficult integrals.
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Summary II

I The GNN filter is a maximum likelihood filter for data
association.

I The JPDA is an MMSE (expected value) filter for data
association.

I One typically uses a variant of the JPDA, because the
expected value is undesirable given target identity uncertainty.

I Cascaded logic and integrated additions to GNN and JPDA
filter variants allow for track initiation and termination.

I Lots of free, commented Matlab code for tracking can be
found at https://github.com/USNavalResearchLaboratory/
TrackerComponentLibrary which is also
http://www.trackercomponentlibrary.com
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