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ABSTRACT 

The load of user level integrated energy system changes rapidly and it is difficult to predict accurately. Therefore, a day 

ahead load forecasting method of integrated energy system based on multi-model combination was proposed. Firstly, the 

long short-term memory (LSTM) network model, convolutional neural network (CNN) model and harmony search (HS) 

optimized light gradient boosting machine (LightGBM) model were established. Then, the inverse root mean square 

error method (IRMSE) was used to combine the forecasting results of the three models to obtain the final forecasting 
value. The effectiveness of the proposed method was verified by the actual data of an integrated energy system. The 

results show that the proposed method is superior to the single prediction model and the simple average combination 

model, and has the best prediction accuracy for electric, cooling and heat loads. 
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1. INTRODUCTION 

Integrated energy system (IES) can diversify energy supply, effectively improve the comprehensive utilization efficiency 

of all kinds of energy, and play a positive role in environmental protection. Load forecasting is the premise to ensure the 

reliable and economic operation of energy system. There is a certain coupling relationship between multi-energy loads in 

IES, and the user level loads of IES change frequently. Consequently higher requirements are put forward for IES multi-

energy load forecasting (MELF). 

With the acceleration of energy transformation process, the research on MELF is gradually increasing. At present, the 

research of MELF mainly belongs to deterministic forecasting, which can be divided into two categories according to the 

number of forecasting models used. The first category is single model prediction. This kind of method usually uses 

Copula theory1, Pearson coefficient2, grey correlation analysis3 and other methods for correlation analysis, extracts the 

influencing factors with great correlation with MELF. These factors construct the original feature set of forecasting 

models. On this basis, convolutional neural network (CNN)2, encoder-decoder model based on long short-term memory 

(LSTM) network4, gated recurrent unit (GRU)5 are utilized to further extract features. Traditional machine learning 

algorithms widely used in power load forecasting are also used in MELF, such as generalized regression neural network2, 

support vector regression (SVR)2, gradient boosting decision tree (GBDT)4, extreme learning machine (ELM)5, least 

square support vector machine (LSSVM)6. In recent years, deep learning has been more and more applied in MELF with 

its good learning performance and generalization ability, including deep belief network (DBN)7, LSTM network8. The 
second category is the combined forecasting method. These methods mostly use decomposition algorithms, such as 

wavelet packet9 and quadratic mode decomposition10, to decompose multi-energy loads of IES into different 

components. Then different methods, such as recurrent neural network (RNN)9, deep bidirectional LSTM (DBiLSTM) 

network and multiple linear regression (MLR)10, are adopted to predict components respectively. 
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To sum up, considerable achievements have been made in the research of MELF, in which the prediction accuracy of 

combined forecasting model is generally higher than that of single forecasting model. Light gradient boosting machine 

(LightGBM) has good performance in power load forecasting11. Therefore, this paper constructs a weighted combination 

forecasting method with LSTM network, CNN model and LightGBM model optimized by harmony search (HS)12. 

Different features composed of load data, meteorological information and calendar information are input into these 
models. The weight coefficients are determined by inverse root mean square error (IRMSE), and the weighted 

combination of the predicted loads of the three models is the final MELF values. The experimental results show that the 

presented model is better than the single models and surpasses the simple average combination model. 

2. MELF BASED ON LSTM NETWORK 

2.1. LSTM network 

LSTM network is an improved RNN13, which can learn the long-term dependence information of sequences and 

overcome the gradient disappearance and explosion problems of traditional RNN. The structure of LSTM cell is shown 

in Figure 1. t is current time. 
tf , 

ti , 
to , 

tg and 
tc  represent forgetting gate, input gate, output gate, the candidate value 

of cell state and cell state at time t respectively. 
tx  is current input. 

1t−h  represents the output at time t-1.   is Sigmoid 

function.  represents the product of the corresponding elements of two vectors. 

 
Figure 1. The structure of LSTM cell. 

2.2. Construction of forecasting model based on LSTM 

For LSTM forecasting model, its input and output data should be set first. Assuming that the IES load (electric, cooling 

and heat load) at time t on day d is predicted, the input data are composed of the 16-dimensional features of time t on the 

previous 7 days (d-7, …, d-1). The features include IES load, meteorological information and calendar information, as 

shown in Table 1. DNI, DHI and GHI are abbreviation for direct normal irradiance, diffuse horizontal irradiance and 

global horizontal irradiance. Therefore, the input sequence length of LSTM network is 7 and the feature dimension of 
each time is 16. For the working day type in Table 1, the working day is 1, otherwise it is 0. For the holiday type, the 

holiday is taken as 1, otherwise it is taken as 0.  

The feature values of different dimensions vary dramatically. Therefore, the normalization operation is carried out as 

follows: 

min
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x
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where 
ix and 

norm

ix represent the values before and after normalization. 
max

ix  and 
min

ix  are the maximum and minimum 

values of the ith feature respectively.  

LSTM network structure can be described as follows: the normalized input sequence data are sent to the input layer, then 

cascade multiple hidden layers, and finally the electric, cooling and heat load are predicted through the fully connected 

layer. 
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Table 1. Feature set of LSTM. 

Feature number Feature name 

1-3 Electric/cooling/heat load  

4-6 DNI/DHI/GHI 

7-10 Dew point/wind speed/humidity/temperature 

11 Time t (1-24) 

12 Working day type 

13 Holiday type 

14 Day (1-31) 

15 Day in a week (1-7) 

16 Month (1-12) 

3. MELF BASED ON CNN MODEL 

3.1. CNN model 

CNN is a special feedforward neural network14. Its structure is similar to that of multi-layer perceptron (MLP). It has the 

advantages of equivalent representation, sparse interaction and parameter sharing. CNN usually consists of three parts: 

convolution layer, pooling layer and full connection layer. Among them, the convolution layer generally convolves with 

input data with multiple kernels, and then adopts nonlinear activation function to extract features. The dimension of the 

pooling layer is reduced by down sampling. Then the features are flattened into one-dimensional vector and sent to the 

fully connected layer for prediction. 

3.2. Construction of forecasting model based on CNN 

The input structure of CNN model is slightly different from that of LSTM network. The 16-dimensional features of 

LSTM network input data are arranged into 4×4 matrix, taking the input sequence length as the number of channels. The 

output is the same as that of LSTM network. 

4. MELF BASED ON LIGHTGBM 

4.1. LightGBM model 

LightGBM is an efficient GBDT model based on histogram11. It adopts gradient based single-sided sampling and leaf 

growth strategy with depth limit, makes it have better training speed, less memory consumption and higher accuracy. 

LightGBM constructs one regression tree at a time by fitting the residual of the previous regression tree. LightGBM 

combines weak learners into a single strong learner in the iterative process by minimizing the loss function, as shown in 

equation (2).  

 
1
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n

i
i

f f
=

=x x      (2) 

where x  is the input feature vector, ( )f x  denotes the final predicted value and ( )if x  accounts for the output of the ith 

regression tree. 

4.2. Construction of forecasting model based on LightGBM 

4.2.1. Determination of input and output data. The input and output of LightGBM model are different from LSTM 

network. The IES load (electric, cooling or heat load) at time t on day d is predicted, and the input data is 25-dimensional 
features. The input features include the electric, cooling and heat load at time t and t-1 on day d-1 and d-7, weather 

forecast information and calendar information at time t on day d as shown in Table 1. The output is the load at time t on 
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day d, and the dimension is 1. That is, the prediction model based on LightGBM needs to be established for electric, 

cooling and heat loads respectively. 

4.2.2. Hyper Parameter Optimization Based on Harmony Search. When building LightGBM model, it is necessary to 

determine its hyper parameters, among which the most important parameters are the number of regression trees 
treeN  

and the maximum number of leaves per tree leafN . Therefore, harmony search (HS)12 algorithm is used to optimize these 

two hyper parameters. HS algorithm is inspired by the improvisation process of musicians. In the process of music 

creation, musicians will repeatedly adjust the tones of various instruments to find the best harmony (hyper parameters).  

5. COMBINED FORECASTING MODEL 

After the predicted values of electric, cooling and heat loads are obtained by LSTM network, CNN model and 

LightGBM model respectively. IRMSE method15 is adopted to determine the weights of the three models. The 

calculation process is as follows: 
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where 
cbf  is the final predicted value of electric, cooling or heat load. 

if  is the predicted value of the ith model. 
i

RMSEI  

represents the RMSE of the ith model. 
iw  represents the weight of the ith model and 

modN  is the number of models, 

which is 3 in this paper. 
ky  and 

ky  are the actual and predicted electric, cooling or heat load of the kth sample point. 

vN  is the number of samples in the validation set. It can be seen from equation (4) that the model with smaller error has 

larger weight coefficient, which can reduce the error of the combined model and improve the prediction accuracy. 

The framework of the proposed method is shown in Figure 2. 

IES load data meteorological data calendar data

feature construction

LSTM CNN HS optimized LightGBM

Combined by IRMSE

forecasted result
 

Figure 2. The framework of the proposed method. 
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6. CASE STUDY 

6.1. Experimental data and platform 

The user level IES multi-energy load data is from Tempe campus of Arizona State University16. Meteorological data are 

from the National Renewable Energy Laboratory of the United States17. 

The data from May 25, 2017 to August 31, 2019 are selected as the experimental data, and the sampling interval is 1 

hour. The data from August 25 to August 31, 2019 constitute the test set, and the other data are randomly divided into 

training set and validation set according to 4:1. 

The experimental hardware is configured with Intel Core i5-4200 CPU and 8G memory. Python language is used for 

programming, and each model is implemented by calling PyTorch and scikit-learn libraries respectively. 

6.2. Evaluation indices 

In order to comprehensively evaluate the performance of MELF methods, mean absolute percentage error (MAPE) and 

RMSE indicators are selected to evaluate the effect of single load and integrated load forecasting. MAPE is defined as:  
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where m is the number of samples in the test set. 
j

MAPEI  denote MAPE for class j load. 
MAPEW  is the integrated MAPE of 

IES loads, which represents the overall performance of MELF. j  is the importance ratio of class j load (electric, 

cooling or heat load). 

6.3. Model parameter setting 

The parameter setting has a great impact on MELF performance of each model. In this paper, the grid search method is 

used to obtain the optimal hyper parameters of LSTM network and CNN model. 

The LSTM network is provided with a hidden layer with 16 neurons. Two convolution layers are set in CNN model, the 

number of convolution kernel is 8 and 16 respectively, and the size of convolution kernel is 2×2. There is no pooling 
layer, two fully connected layers are set, the number of neurons is 10 and 3 respectively, and the activation function is 

ReLU. Both LSTM network and CNN model are optimized by Adam algorithm, the learning rate is 0.01, the training 

batch size is set to 24, and epochs are 100.  

In order to evaluate the performance of the combined method (denoted as IRMSE-LCL) in MELF, it is compared with 

SVR and MLP. The hyper parameters of LightGBM, SVR and MLP are optimized by HS algorithm. The relevant 

parameter settings of HS are shown in Table 2. 

Table 2. Parameter setting of HS. 

Parameter name Parameter value 

HMS 30 

HMCR 0.8 

PAR 0.3 

maxT  100 

The inputs of SVR and MLP are the same as that of LightGBM model. Similar to the LightGBM model, the output of the 

SVR model is one-dimensional, so it is necessary to train the SVR model for electric, cooling and heat loads 

respectively. The output of MLP model is 3-dimensional, so only one MLP model needs to be trained to predict the 

electric, cooling and heat loads at the same time. The SVR model adopts Gaussian kernel function, and the hyper 
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parameters optimized by HS include insensitive loss parameter, penalty coefficient and kernel function parameter. For 

the MLP model, the hyper parameters optimized by HS include the number of hidden layer neurons and L2 norm penalty 

parameter. The activation function also selects ReLU. The optimization algorithm is Adam, with adaptive learning rate 

and 500 iterations. 

6.4. Result analysis  

IRMSE-LCL model is compared with single LSTM network, CNN, LightGBM, SVR and MLP, and with the simple 

average combination model of LSTM, CNN and LightGBM (represented by Avg-LCL). The MAPE, RMSE and 

integrated MAPE of day ahead MELF on the test set are shown in Tables 3 and 4. When calculating the integrated 

MAPE, the importance ratios of electric, cooling and heat load are set to 0.4, 0.4 and 0.2 respectively3.  

From Tables 3 and 4, we can conclude that: 

(1) The forecasting accuracy of any single model is no better than other models in all types of load. 

(2) The single models have different prediction accuracy for different types of load. MLP and LightGBM have better 

prediction accuracy on electric load. LSTM network and CNN have the best prediction performance on cooling load. 

LSTM network, CNN and LightGBM have less prediction error on heat load. 

Table 3. MAPE comparison of different models. 

Model MAPE/% (electric/cooling/heat) Integrated MAPE/% 

LSTM 5.25/5.90/3.54 5.17 

CNN 5.61/5.79/3.87 5.33 

LightGBM 4.28/7.30/3.87 5.41 

SVR 4.41/7.84/5.66 6.03 

MLP 4.24/8.38/4.25 5.90 

Avg-LCL 4.49/5.77/2.66 4.64 

IRMSE-LCL 4.08/5.60/2.55 4.38 

Table 4. RMSE comparison of different models. 

Model Electric load (kW) Cooling load (tons) Heat load (mmBTU) 

LSTM 1836.85 1289.82 0.23 

CNN 1921.97 1251.45 0.27 

LightGBM 1581.61 1555.98 0.25 

SVR 1628.05 1540.96 0.37 

MLP 1631.00 1716.54 0.28 

Avg-LCL 1584.66 1244.11 0.18 

IRMSE-LCL 1495.18 1180.99 0.17 

(3) LSTM network, CNN and LightGBM have smaller integrated MAPE, that is, their overall prediction performance is 

the best. 

(4) The two combination models outperform all the single models. The IRMSE-LCL method not only has the best overall 

prediction performance, but also has the highest prediction accuracy for all types of load.  

The proposed method combines LSTM network, CNN and LightGBM, which can effectively combine the respective 

advantages of each model and learn from each other. It can not only enhance the model’s perception of timing 
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information, but also fully mine the characteristic information of discontinuous data. Giving more weight to the model 

with higher prediction accuracy can effectively improve the overall prediction performance. 

7. CONCLUSION 

In this paper, a combined MELF method based on LSTM network, CNN and model is proposed. The inverse root mean 

square error method is used to weighted combine the prediction results of the three models to obtain the final prediction 

values. Compared with the single models and the simple average combination model, the proposed model has better 

prediction accuracy. The next step is to study the load decomposition algorithm to further improve the prediction 

performance of IES loads. 
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