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ABSTRACT 

As a structured abstraction method for objects and their interactions in visual scene, scene graph captures entities in the 

scene and the relationships between the entity pairs, and helps in understanding the visual scene better. Currently, scene 

graphs in most research works are generated by modeling using context information among targets, focusing only on the 

inference process but ignoring the integrity of the input target information and the impact of the global information of the 

targets on relationship inference. Therefore, a new scene graph generation method based on global embedding and 

contextual fusion (GECF) is proposed in this paper. In this method, richer entity information is obtained by embedding 

global information into the entity features, while more robust inference of entity interaction information and more 

reasonable relationship fusion are acquired by combining the attention weighting module and the context inference module 

as a joint inference module, and merging the obtained entity features according to their discrepancy. The experiment on 

Visual Genome dataset shows that GECF method performs better than the existing methods in scene graph visual 

relationship detection. 
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1. INTRODUCTION 

Most common computational tasks in scene understanding for computer vision are mainly image classification1, target 

recognition2, and semantic segmentation3. With the continuous development of various data-driven based modeling 

methods in recent years, the accuracy of most of the above tasks has surpassed the manual identification level, except for 

some complex tasks such as scene semantic understanding4. Therefore, the concept of scene graph5 is proposed for the 

representation of semantic information by abstracting the images in a structured form based on the instance relationships 

in scenes. 

A scene graph is a high-level graph structured representation of the content in an image, consisting of nodes and connecting 

edges. Nodes are the entities in the image and edges are the relationships among the entities. As shown in Figure 1, the 

entities in the scene and the relationships between entities pairs are captured. 

At present, a two-stage strategy is adopted in most of the scene graph generation missions: First stage is the entity 

recognition detection by target detection methods like Faster-RCNN2, YOLO6 on scene graph; Second stage is the 

generation of a graph with triplet of subject-predicate-object by jointly reasoning the generated target information. 

Compared to image understanding tasks such as single target detection, the scene graph contains richer and more abstract 

semantic information, which can be widely used in visual task applications like image retrieval5 (retrieving related images 

by key high-dimensional semantic information of an image), visual question and answer (VQA) based on image 

information7, 8, and has also demonstrated its potential in image generation9 and scene description10. With the development 
of applications in more directions, in order to improve the accuracy of scene graph generation and the robustness of model, 

some research works focus mainly on two directions: the problem of long-tail distribution in the presence of datasets and 

modeling based on target information. 

Bias effects in the dataset long-tail distribution influence greatly on the diversity of relationship detection. Using common 

sense knowledge as priori guidance, references11-13 have improved the detection accuracy of multiple relationships, 

weakened the bias effects, and made the generation of relationships in a more consistent way with human’s basic judgment. 
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Although there is an improvement in recall rates, it still contradicts with the idea that visual scene graph should focus more 

on vision.  When common sense knowledge is added to guide the relationship generation, the influence of visual features 

on the relationship space is weakened, which is still a tricky problem for visually integrated common sense inference. 
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(a) Target detection graph (b) Graph structure representation generated by the target 

Figure 1. Scene graph example. 

Besides, the main direction of current research is establishing information transfer model between targets on the aspect of 
relationship modeling of information14-18. Currently, the relationship representation of nodes and edges is mainly obtained 

by context information interaction14, 17, 18 and message passing15, 16. In the two methods, the nodes and edges are set with 

the same weights, but the importance differences of the primary and secondary targets for scene understanding are ignored 

to show flexibly the visual content the image expressing. Due to the separate representation of nodes and edges, and only 

the information between nodes contextually interconnected, the global structural features of the image can not be fully 

obtained. Thus it challenges for us to establish a model encoding the global information with model inference. 

To solve the modeling problem of common sense weakening visual features and target interaction information, this paper 

proposes a method incorporating each of the target feature into the raw image visual information based on Neural Motifs18. 

The convolution features of the image are fused with the entity information of the proposed network, which enhances the 

comprehensive expression ability of the model on the relationships between targets and scenes, so that the model can 

comprehensively learn the interactive information features of nodes. The long-range dependence among targets is obtained 
by a non-local weighting operation. Structure decoding the embedding information of categories with attention mechanism 

reduces the redundant information of each node and raises the focus on the main targets in the scene during model 

inference. And during the decoding relationship generation process, the global information and weighted information are 

fused for the relationship features with information differences in subject and object semantics, thus the accuracy of 

relationships gets improved. 

2. SCENE GRAPH GENERATION METHOD 

With the continuous iterations of scene graph generation methods, researchers have proposed a scene graph generation 

model based on Recurrent Neural Networks (RNNs)12, 15, 16, 19 and a context inference model13, 14, 17. 

The RNNs-based message passing model15 lists all possible entity pairs and proceeds relationship inference using dynamic 

planning for iterative messaging, and the flexibility of GRU units eliminates the limitations of RNNs training, but also 

increases the complexity of the model at the same time. A visual phrase-guided messaging structure with a specific 

messaging flow is proposed in19, and the fixed path of message exchange during phrase detection is changed by string-

parallel combination. Although the broadcast information is aggregated through the flow mechanism, the target information 

is incomplete in relationship phrase inference and lacks relative location information. In reference16, the non-maximum 

suppression method is adopted to filter overlapping phrase regions and all target pairs are introduced together into a 

spatially weighted message passing inference model. In this study, the number of nodes is reduced by merging subgraphs 

but the global information is ignored at the same time. 
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Figure 2. The structure of the scene graph generation model based on global embedding and contextual fusion. 

Since the scene as a whole is composed of multiple entities and contexts, the scene graph generation can be represented as 

a fusion inference of context information. And in most of the inference models, the information is updated mainly on the 

nodes and edges of the candidate scene graph, and the entity visual features, semantic information and spatial information 

are taken as the main information for fusion inference. In scene graph generation models, context relationship detection is 

the major inference. In14, the obtained entity pairs are filtered in the way from dense to sparse, and then the attention 

mechanism driven graph convolutional network is applied for context information transfer.  

In partial relationship inference, the generation of interrelationships between targets can be guided by introducing 

additional knowledge. The statistical target co-occurrence information for graph neural networks is used to learn the target 
context feature inference and relationship inference to build graph structures in reference12. Introducing the external 

knowledge base as common sense13 solves the problem of data set bias to some extent, but also weakens the influence of 

the overall visual information on relationship inference. Zhang et al.17 detect the visual relationship based on complete 

image information using a fully connected end-to-end relationship inference architecture. In their study, transformation 

vectors are taken as the relationship representations in the low-dimensional space after mapping of entity features. 

Although there is an improvement in accuracy, context and global information are both ignored. 

Different with most of the existing studies, this paper incorporates global visual features and uses an attention-based 

mechanism for inference. The global visual feature is introduced when we extract the target information, and the abstract 

visual information of the scene is taken as the feature of relationship inference and embedded into the information space 

of each target. The long-range dependence information generated by the attention mechanism is fused with the information 

of the context model. Then the subject-object relationship space is obtained, and the information difference between the 

subject and object is used for the relationship inference between the targets. 

3. GLOBAL EMBEDDING AND CONTEXTUAL FUSION (GECF) MODEL 

The scene graph generation framework in this paper contains three sub-modules: visual information generation module, 

relationship fusion module, and relationship inference module as shown in Figure 2. And the proposed model aims to 

generate graph structure representations of images, get the entity information during the target detection stage, and 

incorporate global image high-level features for richer entity features, on which a global weighting module combined with 

an attention mechanism in a long-range dependency module is used. Then the global context interaction information is 

captured and the differences of the fused information is pointed to the relationship inference. 

3.1 Problem definition 

In scene graph generation tasks, images are transformed to graph structures by I →G. G, the scene graph structure, is used 

to describe the target nodes in the scene graph and the predicate relationships between the target nodes, which contain the 

candidate target box B={b1, b2, …, bn}, bi
 . The category collection corresponding to the target box is O={o1, o2, …, 

on}, oiC151, where C151 is the candidate category collection truth set. The triadic relationship set between nodes is R={r1, 

r2, …, rm}, where rk is the subject-predicate-object triplet, with subject node (bi, oi), (bj, oj)∈B×O; predicate node pi→jP51, 

P51 as the candidate relationship truth set. Therefore, the scene graph generation process containing image I to graph 
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structure G, and target box B, target category O and subject-object relationship R can be expressed by the following 

factorization model: 

         ( ) ( ) ( ) ( )| | | , | , ,=r r r rP G I P B I P O B I P R O B I                                                 (1) 

where ( )|rP B I  is the probability of the entity candidate box obtained by the target detection model (section 3.2); 

( )| ,rP O B I  is the probability distribution of the entity box categories in target detection; ( )| , ,rP R B O I  is the probabilities 

of the inference fusion relationship among image I, category O and candidate target box B (sections 3.3 and 3.4). 

3.2 Visual information generation module 

For a given image, we use the target detection method for the targets and the convolutional neural networks for the image’s 

advanced feature IF , I   n w hF  . The alignable fused visual feature O  nF   can be obtained by mean-pooling 

mapping on IF , and can be calculated by 

                            
O I( )=F AVG F                                                                   (2) 

where AVG takes the mean sampling of the feature IF  with size of w×h and transforms them to 1×1. To match with the 

size of the feature fusion, the matrix n×512×1×1 is dimensionally compressed and finally OF  is obtained by flattening 

operation on features mapping. 

The proposed target visual features V={v1, v2, …, vn}, vi
4096 are obtained through the target detection module, where each 

target i corresponds to a bounding box bi, and the candidate bounding box collection B={b1, b2, …, bn}, bi=(xi1, yi1, yi2, yi2). 

Since the obtained entity information is regional, it cannot reflect the size relationship between targets.  

We try to recompute the bounding box features and construct the following encoding way: 

( ) ( )1 2 1 2

1 2 1 2: : :
2 2

 + + 
= −  −   

  
i

i i i i

b i i i i i

x x y y
pos fc b y y x x                                      (3) 

where “:” and fc  are used as splicing and full connection operations. In order to align the input fusion features and the 

extensive information space, equation (3) has full connection adjustment on the code information and then 


i

n

bpos  is 

obtained, and so as the spatial relative size of each target.  

Lastly, we take all the above information into consideration and get the overall visual information 
in

iF  of the ith node as 

follows: 

O: : : = i

in

i i oi b iF v S pos F                                                                 (4)  

where 
O

iF  is the visual information of the ith node, and the category embedding feature Soi is obtained by embedding 

words into GloVe20. 

3.3 Relationship inference module 

The relationship inference module in GECF model contains two sub-modules: attention structure based context module 

and long and short-term memory networks based context module. The two sub-modules map the target information in 

different ways using the before-and-after information of sequence data to the relationship space in parallel, so that the 

information transferring among nodes and edges can be sufficiently proceeded and the long-range dependence between 

the targets can be captured. 

3.3.1 Attention Structure Based Context Module. In the area of context information modeling, Cao et al.21 propose a 

simplified GC (Global Context) module as shown in Figure 3a. The excessive operation volume caused by nonlocal 

weighting structures drops using the GC module22, which also solves the problem of the insufficient effectiveness of the 

channel attention mechanism on global context modeling23. 
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Figure 3. Attention-based global context module. 

Inspired by the Non-local22 and SENet23 methods, this paper also introduces a global context method into relationship 

inference and constructs a global weighting module as shown in Figure 3b, in which the long-range dependency 

relationship between targets is captured after using the multiple target features in an image to iteratively update the 

adjacency information of a single target feature. 

The fused information in equation (4) is encoded using the global weighting module in Figure 3b, among which the single 

weighting module is calculated as follows: 

1 ( )( )= in in TC WF HF                                                               (5) 

2 1( ( ))= +in inC F fc C UF                                                               (6) 

where σ is the SoftMax function; W, H, U are learnable parameters for the fully connected layer; fc is the fully connected 

operation. 

3.3.2. Long Short-Term Memory Networks Based Context Module. Based on the bidirectional LSTM network, context 

information transfer in MOTIFS18 is carried out. But the study ignores the important information in the key nodes and 
edges, and the generated scene graph is with ambiguous main relationships and unclear key targets. BiLSTM-Attention 

network is applied to improve the relationship inference in this paper inspired by the relation extraction in natural language 

processing24, 25. Attention mechanism based model focuses more on the primary relationship between the targets and 

obtains the information representation of key nodes by following the hidden layer information of the neighboring target 

nodes. The hidden layer feature information is as follows: 

1 BiLSTM( )= inA F                                                              (7) 

where 
1A  is the hidden layer feature information of the target node after encoding. The target information 2A  in the 

context of each node feature is  

2 1 1(tanh( ) )=A A KA Q                                                           (8) 

where Q and K are randomly initialized trainable parameters, and tanh is the activation function. To weigh the importance 

of a node, Q is used as a similarity measure represented by advanced query representation. The context relationship 

information space is obtained by multiplying 
1A  with the normalized weight matrix. 

3.4 Relationship fusion module 

We decode the relational spatial information of the inference module by the bidirectional LSTM and get the context features 

of the edges: 
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                     2 2[ : ] BiLSTM( ([ : ]))=o sE E fc C A                                                   (9) 

where oE  and sE are the semantic features of the subject and object, 
4096, o sE E . Subject and object features are 

included in the obtained context space. In previous studies, the probability of relationship classification is mainly obtained 

by multiplying the separated subject and object features. We can see from reference26 that nonlinear projection on fusing 

visual feature x and problematic feature y to measure the difference between them. The equation is followed: 

             
2ReLU( ) ( ) = + − −x y x yx y W x W y W x W y                                                  (10) 

where ReLU is the activation function; Wx, Wy are learnable parameters. Similarly in this paper, we take different 

information of the subject and object to measure the probability distribution of their corresponding predicate relations, 

which is called Ri and calculated as follows: 

                   
2max( ) ( )= + − −i o s o sR E E E E                                                        (11) 

4. EXPERIMENTS AND RESULTS 

The effectiveness of the GECF model is verified based on Visual Genome dataset. And contrast and ablation analysis for 

the modules in the model are proceeded. The inference results of the model are evaluated based on three subtasks of 

predicate classification PredCls, scene graph classification SGCls and scene graph generation SGGen, respectively. 

4.1 Dataset and evaluation indicators 

In this paper, we use the same dataset Visual Genome and evaluation indicators as references14, 18, 27, 28. Specifically, 

considering the influence of long-tail distribution, 150 common object categories and 50 relationship categories are 

selected for evaluation. After the dataset pre-processing, the scene graph for each image has an average of 11.6 objects and 

6.2 relationships. For the comparison with existing methods, the dataset is separated into a training set, a validation set, 

and a test set. The training set contains 75651 images, in which 5000 images are in the validation set, and rest of the 32422 

images are in the test set. Three subtasks are set to evaluate the effect of the scene graph generation model: 

PredCls (Predicate Classification): set the bounding borders and labels of the correct location of entities; classify 

relationships between the targets; 

SGCls (Scene Graph Classification): set the bounding borders of the targets; predict the labels of the targets in the border, 

and then classify the relationships between the target pairs; 

SGGen (Scene Graph Generation): take only one original image; detect the targets in the image for their bounding border 

information and labels; classify the relationship between the target pairs. 

In this paper, we use the recall rate Top-K as evaluation indicator, denoted as Recall@K, which represents the proportion 

of correctly predicted classifications in the first K predicted relationships and K is set to 20, 50 and 100 respectively. 

4.2 Experimental setting 

A two-stage training method is applied in the scene graph generation in this paper. We use the Faster-RCNN target detection 

model pre-trained by VGG1629 for entity detection. Images are all with a uniform size of 592 × 592, and normalized with 

mean and variance. When we get the global information, the abstract visual feature map is obtained by mean-pooling and 

full connection on VGG16 output. The GloVe20 model is used to convert the categories into word vectors at the time of 

category embedding, and a fully connected layer with an output dimension of 256 is applied for the fusion of the output 

features of the self-attentive structure and the bidirectional LSTM. The stochastic gradient descent (SGD) is set as the 

convergence algorithm, with the parameter batch set to 1, the base learning rate to 0.001, the weight decay to 0.0001, and 

the momentum to 0.9. The model is trained on RTX-2080tiGPU based on PyTorch framework for single card training. 

4.3 Quantitative analysis 

As shown in table 1, the method proposed in this paper containing three subtasks on Visual Genome dataset are compared 

with the scene graph generation methods of IMP15, AE30, TFR31, G-RCNN14, and MOTIFS18. We use the same target 

detection pre-trained model for each method. The experiment results show that the GFCF model in this paper performs 

better in handling the three subtasks than the other methods. As to PredCls, the recall rates of Recall@20\50\100 are 61.6%
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，66.9% and 68.4% respectively, with an improvement of more than 1%. This certifies that the model has a good 

performance on relationship prediction classification, especially in SGCLs. 

Table 1. Recall rates of GECF and the existing models. 

Model 
PredCls Recall@ SGCls Recall@ SGGen Recall@ 

20 50 100 20 50 100 20 50 100 

IMP+15, 18 52.7 59.3 61.3 31.7 34.6 35.4 14.6 20.7 24.5 

AE30 47.9 54，1 55.4 18.2 21.8 22.6 6.5 8.1 8.2 

TFR31 40.1 51.9 58.3 19.6 24.3 26.6 3.4 4.8 6.0 

GRCNN14  54.2 59.1  29.6 31.6  11.4 13.7 

MOTIFS18 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3 

GECF 61.6 66.9 68.4 37.9 40.6 41.3 22.3 27.7 30.5 

4.4 Ablation experiments 

In order to obtain the specific impact of the method proposed in this paper on scene graph generation, we design ablation 

experiments on embedding global information, introducing attention mechanisms and the fusion way in the final 

relationship inference respectively. 

4.4.1 Global Embedding Module Analysis. In order to verify the overall impact of global information on scene graph 

generation, the attention mechanism based network structure is adopted as the model benchmark, and the global 

information is embedded with multiples of 1, 1.5 and 2, and the importance is weighted before information fusion. The 

influence of global information with different weights on relationship classification are shown in table 2. We compare the 

performances of four weights on PredCls and certify that the weight of global information has a certain impact on the final 

result. With no global information embedding (V=0) as the benchmark, we enlarge the weight gradually. When V=2, the 

main influence of the target on relationship inference is reduced due to the model over-fitting visual information. The 

experiments show that the best performance is achieved when V=1.5, and a moderate amount of information embedding 

is helpful for the relationship classification and able to integrate environmental information into inference at the time the 

target information dissemination. The overall results show that the embedding of global information contributes to 

improving the correct rate of relationship prediction. 

Table 2. Recall rates of the global information with different weight values. 

V 
PredCls Recall@ 

20 50 100 

0 59.7 64.7 66.3 

1 60.4 65.8 67.4 

1.5 61.6 66.9 68.4 

2 59.4 64.4 65.9 

4.4.2 Relationship Fusion Inference Module. Table 3 shows the comparison result of the attention mechanism structure 

(BiLSTM+A) based method in this paper and the benchmark model BiLSTM18. Since the target category and bounding 
box are determined at the time of relationship classification, during information transmission, the attention mechanism 

structure does not act well in extracting the relationship features, especially the visual and category-embedded features but 

does improve slightly in relationship classification accuracy. But for the scene classification task, several evaluation 

indicators are improved by more than 3%. Only entity bounding boxes are generated in the target detection stage, and the 

target classification probabilities are obtained by combining neighboring target features when the model performs 

information inference, making the target classification more fault-tolerant and extensive. Moreover, attention mechanism 
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structure makes it possible to obtain key semantic information when discriminating target classification and then facilitate 

scene classification. 

Table 3. Recall rates of BiLSTM and BiLSTM+A. 

Method 
PredCls Recall@ SGCls Recall@ 

20 50 100 20 50 100 

BiLSTM18 58.5 65.2 67.1 32.9 35.8 36.5 

BiLSTM+A 60.6 65.1 67.6 35.9 38.5 39.2 

We proceed different combinations of context inference (CI) and global weight (GW) modules for the verification of 

feature concatenate (Cat) and feature summary (Sum). Mul and ReLU are the two computing methods of element-by-

element multiplication of the subject and object, and nonlinear activation during relationship inference. In this paper, we 

verify the performance of subtask PredCls and the results are shown in Table 4. 

In Table 4, compared with the benchmark context inference model, the embedded global weighting module helps in 

improving the accuracy greatly by enriching semantic features. The influence of different connection methods of feature 

information on the accuracy is acquired by the comparison of two fusion methods: concatenate and summary. The 

experimental results show that the summary makes the relationship classification accuracy decrease, and the accuracy is 

higher with the concatenate. It verifies that with the increase of features contributes to the relationship classification. 
Besides, for the way of subject-object fusion during relationship classification inference, the experimental results show 

that the accuracy is higher using nonlinear activation. 

Table 4. Recall rates of different modules. 

Exp 
Module FuMethod Connect PredClsRecall@ 

CI GW Mul ReLU Cat Su

m 
50 100 

1       65.1 67.6 

2       66.6 68.0 

3       65.6 67.6 

GECF       66.9 68.4 

4.5 Qualitative results 

To qualitatively validate the constructed scene graph and visual relationship model, we put some examples of visualizations 

in the VG dataset based on the SGCls subtask in Figure 4. In the scene images in Figure 4, the green bounding box is the 

correct prediction zone and matches with the correct label, and the orange bounding box is the correct bounding box 

without a match. In the scene graphs, the black edge represents the correct predicate classification, the orange includes not 

only the negation of detected correct predicate, but also negation of relationships between targets that exist but are not 

detected, while the red represents the wrong predicate prediction classification. For example, in Figure 4a, several different 

types of targets are correctly detected and relationships are correctly predicted, where the unlabeled <bus-has-window>, 

<windshield-on-bus> conforming to common sense relationships are also predicted. For targets that cannot be accurately 

predicted, their associated relationships cannot be predicted either, such as <person-wearing-shirt>, <girl-near-woman> in 

Figure 4e. Besides, we find that there are conflicting predictions on some targets with accurate predictions, like <table-

with-chair> and its correct relationship <chair-near-table> shown in Figure 4b and also wrong prediction on non-significant 
relationship between targets. There are false relationship detections from the model proposed in this paper, most of which 

are caused by target detector failure and incorrect detection, like <sign-behind-tree> in Figure 4d. On the premise of 

accurately detecting the targets, the relationship prediction model in this paper still performs good. 

To validate the improvement of the model in this paper on qualitative results, the scene graph generation is visualized and 

compared with part of the qualitative results of Neural18 method in the SGCls subtask. As shown in Figure 5, green boxes 

are the correctly predicted target classifications while the red boxes are the incorrectly predicted target classifications, with 
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the correct classification in brackets. Green edges are the correct relationship predictions of the while the red edges are the 

wrong relationship predictions, with the correct relationship in brackets. In Figure 5, although there are errors in single 

target and relationships, the overall target detection results and relationship Recognition performance are better than those 

of the neural method. 
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Figure 4. Scene graph visualization. 
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Figure 5. Comparisons of graph structure visualization between GECF and Neural methods. 
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5. CONCLUSIONS 

We propose a new scene graph generation method based on global embedding and contextual fusion, incorporating the 

high-level features of images into entity information, capturing global context interaction information between nodes by a 

global weighting module and a long-range dependency model combining an attention mechanism, and lastly inferencing 

the relationship representations by the difference in fused information.  An extensive comparison and ablation experiments 

are conducted with the Visual Genome dataset. And the results show that our method performs better than the existing 

methods for scene graph generation and the effectiveness of our model is also certified. 

  REFERENCES 

[1] Krizhevsky, A., Sutskever, I. and Hinton, G. E., “Imagenet classification with deep convolutional neural networks,” NIPS, 25, 

(2012). 
[2] Ren, S. Q., He, K. M., Girshick, R. M. and Sun, J., “Faster R-CNN: Towards real-time object detection with region proposal 

networks,” IEEE Trans on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149(2016). 
[3] Chen, L. C., Zhu, Y. K., Papandreou, G., Schroff, F. and Adam, H., “Encoder-decoder with atrous separable convolution for 

semantic image segmentation,” Proceedings of the European Conference on Computer Vision (ECCV), 801-818(2018). 
[4] Ramanathan, V., Li, C. C., Deng, J., Han, W., Li, Z., Gu, K., Song, Y., Bengio, S., Rosenberg, C. and Li, F., “Learning semantic 

relationships for better action retrieval in images,” Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 1100-1109(2015). 

[5] Johnson, J., Ranjay, K., Michael, S., Li, L. J., David, S., Michael, B. and Li, F., “Image retrieval using scene graphs,” 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3668-3678(2015). 

[6] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., “You only look once: Unified, real-time object detection,” Proceedings 
of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 779-788(2016). 

[7] Tang, K. H., Zhang, H. W., Wu, B. Y., Luo, W. and Liu, W., “Learning to compose dynamic tree structures for visual contexts,” 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6619-6628(2019). 

[8] Teney, D., Liu, L. and Hengel, A. V. D., “Graph-structured representations for visual question answering,” Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1-9(2017).  

[9] Johnson, J., Gupta, A. and Li, F. F., “Image generation from scene graphs,” Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 1219-1228(2018). 

[10] Yang, X., Tang, K. H., Zhang, H. W. and Cai, J. F., “Auto-encoding scene graphs for image captioning,” Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10685-10694(2019).  

[11] Lu, C. W., Krishna, R., Bernstein, M. and Li, F., F., “Visual relationship detection with language priors,” Proceedings of the 
European Conference on Computer Vision (ECCV), 852-869(2016). 

[12] Chen, T. S., Yu, W. H., Chen, R. Q. and Lin, L., “Knowledge-embedded routing network for scene graph generation,” 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6163-6171(2019). 

[13] Gu, J., Zhao, H. D., Lin, Z., Li, S., Cai, J. F. and Ling, M. Y., “Scene graph generation with external knowledge and image 

reconstruction,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1969-
1978(2019). 

[14] Yang, J. W., Lu, J. S., Lee, S., Batra, D. and Parikh, D., “Graph R-CNN for scene graph generation,” Proceedings of the 
European Conference on Computer Vision (ECCV), 670-685(2018). 

[15] Xu, D. F., Zhu, Y. K., Choy, C. B. and Li, F. F., “Scene graph generation by iterative message passing,” Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5410-5419(2017). 

[16] Li, Y. K., Ouyang, W. L., Zhou, B. L., Shi, J. P., Zhang, C. and Wang, X. G., “Factorizable net: An efficient subgraph-based 
framework for scene graph generation,” Proceedings of the European Conference on Computer Vision (ECCV), 335-

351(2018). 
[17] Zhang, H. W., Kyaw, Z., Chang, S. F. and Chua, T. S., “Visual translation embedding network for visual relation detection,” 

IEEE conference on Computer Vision and Pattern Recognition (CVPR), 5532-5540(2017). 
[18] Zellers, R., Yatskar, M., Thomson, S. and Choi, Y. J., “Neural Motifs: Scene graph parsing with global context,” Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5831-5840(2018). 
[19] Li, Y. K., Ouyang, W. L., Wang, X. G. and Tang, X. O., “VIP-CNN: Visual phrase guided convolutional neural network,” 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1347-1356(2017). 
[20] Pennington, J., Socher, R. and Manning, C. D., “Glove: Global vectors for word representation,” Proceedings of the 2014 

Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543(2014). 
[21] Cao, Y., Xu, J. R., Lin, S., Wei, F. Y. and Hu, H., “GCNet: Non-local networks meet squeeze-excitation networks and beyond,” 

Proceedings of the IEEE/CVF International conference on computer vision workshop (ICCVW) (IEEE), 0-0(2019). 
[22] Wang, X. L., Girshick, R., Gupta, A. and He, K. M., “Non-local neural networks,” Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), (2018). 
[23] Hu, J., Shen, L. and Sun, G., “Squeeze-and-excitation networks,” Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). 7132-7141(2018). 

Proc. of SPIE Vol. 12506  125063O-10



[24] Zhou, P., Shi, W., Tian, J., Qi, Z. Y., Li, B. C., Hao, H. W. and Xu, B., “Attention-based bidirectional long short-term memory 
networks for relation classification,” Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 
207-212(2016).  

[25] Yang, Z. Z., Yang, D., Dyer, C., He, X. D., Smola, A. and Hovy, E., “Hierarchical attention networks for document 
classification,” Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, 1480-1489(2016). 
[26] Zhang, Y., Hare, J. and Prügel-Bennett, A., “Learning to count objects in natural images for visual question answering,” arXiv 

Preprint arXiv:1802.05766, (2018). 
[27] Li, Y. K., Ouyang, W. L., Zhou, B. L., Wang, K. and Wang, X. G., “Scene graph generation from objects, phrases and region 

captions,” Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1261-1270(2017).  
[28] Chen, L., Zhang, H. W., Xiao, J., He, X. N., Pu, S. L. and Chang, S. F., “Counterfactual critic multi-agent training for scene 

graph generation,” Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 4613-4623(2019). 
[29] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image recognition,” Computer Science, 

(2014). 
[30] Newell, A. and Deng, J., “Pixels to graphs by associative embedding,” NIPS 30, (2017). 
[31] Hwang, S. J., Ravi, S. N., Tao, Z. R., Kim, H. J., Collins, M. D. and Singh, V., “Tensorize, factorize and regularize: Robust 

visual relationship learning,” Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition (CVPR), 
1014-1023(2018). 

Proc. of SPIE Vol. 12506  125063O-11


