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ABSTRACT 

In this work, the tracking problem for permanent magnetic synchronous linear motor systems is studied. We develop a 

novel barrier Lyapunov function-based adaptive control scheme for linear motor systems with system constraints. The 

filtering-error is constrained by using a new type BLF so as to simplify design, which is different from the existing 

results. The time-varying boundary layer technique is introduced to reduce the difficulty of choosing the barrier 

parameter. Also, a neural network is adopted for dealing with nonparametric uncertainties. In the end, a simulation 
example is presented to demonstrate the effectiveness of our barrier adaptive control algorithm against traditional 

barrier-free adaptive control algorithm.  
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1. INTRODUCTION 

The rapid progress of adaptive control technology has been made during the past decades1-3. A great number of adaptive 

control algorithms have been proposed for parametric uncertain systems. However, in many cases, the unknown 

nonlinearities cannot be linearly parameterizable. There often are two strategies to handle these uncertainties. Firstly, for 
a certain nonparametric uncertainty, robust control may be used to develop a feedback compensation according to the 

upper bound of uncertainty4. Secondly, with neural networks5 and fuzzy logic systems6 constructed, adaptive control 

based on neural networks or fuzzy logic systems are effective in dealing with nonparametric uncertainties.  

In real situations, the controlled objects are inevitable to meet with various system constraints, which has a large or small 

impact on the stability and performance of systems. In the past decade, the research on barrier adaptive control 

approaches has attracted increasing interests, with various barrier Lyapunov functions constructed to solve the 

trajectory-tracking problems under system constraints7,8. In the controller design of barrier Lyapunov function-based 

(BLF-based) adaptive control, the constrained objects are the system output, the system state, or the output tracking error. 

The BLF-based adaptive control strategy is effective to improve the robustness and the safety of systems9. 

Permanent magnetic synchronous linear motors (PMSLMs) possess some distinctive characteristics10, that is, they have 

simpler structure, bigger thrust force and higher precision than common rotational motors. Due to these merits, PMSLMs 
have been widely applied in numerous cases. The adaptive control for PMSLM systems has been studied for long11,12. So 

far, some related results on the adaptive control for permanent magnetic with state/output constraints13 have been 

proposed, focusing on backstepping technique together with barrier Lyapunov functions. There are still some problems 

that need to be further studied. For one thing, it is not very convenient to design the virtual control laws according to 

backstepping technique. For another, while applying these BLF-based adaptive control algorithms, how to set the value 

of the barrier parameter in barrier Lyapunov function is not an easy job, since the closed-loop system cannot work 

properly whether the barrier parameter is chosen too small or too large.  

To solve these above-mentioned problems, in this work, we develop a BLF-based adaptive control scheme. Through 

constructing a new type BLF, the filtering-error is constrained. The time-varying boundary layer technique is introduced 

to reduce the difficulty of choosing the barrier parameter. Also, a neural network is adopted for approximating 

nonparametric uncertainties. 

 
* hanlr@zjweu.edu.cn 

Third International Conference on Computer Science and Communication Technology (ICCSCT 2022)
edited by Yingfa Lu, Changbo Cheng, Proc. of SPIE Vol. 12506, 125065A 

© 2022 SPIE · 0277-786X · doi: 10.1117/12.2661961

Proc. of SPIE Vol. 12506  125065A-1



2. PROBLEM FORMULATION 

The system dynamic model of a class of PMSLMs may be described by 

    

( ) ( )

( ) m f r u

s t v t

Mv t = F - D (t)- D (t)- D (t)

=

                              

(1)

 

where t is time, s is the displacement, v is the speed, M denotes the total mass of mover and load, and Fm is the driving 

force of motor. 
fD (t) , 

rD (t)  and 
uD (t)  represent unknown friction, force ripple, and external disturbance, 

respectively. 

Let x1=s, x2=v, u=Fm. Then, the system model of linear motor in the kth iteration cycle may be obtained as  
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 where
1

a
M

= . The reference trajectory is yd(t). Our control objective is to design a proper controller u, so that y(t) can 

accurately track yd(t), as well as to constrain the system states during system operation. In the following of this paper, the 

arguments of functions are often omitted for brevity. 

3. CONTROLLER DESIGN 

Let us define 1, 1 2, 2,  k d k de x y e x y= − = −  and 
1 2 ,s ce e= + where 0c   is a design parameter. From equation 

(2), we have 
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Let us construct a time-varying boundary layer as sat( ),  | (0) | e ,ts
s s s 
  


−= − = where 0  and 

ˆ ˆif  | |<1
ˆsat( )

ˆ ˆsgn( ) if  | | 1

a a
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a a
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Let us choose a candidate barrier Lyapunov function 

2

2 2
,

2 ( )s
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V

a b s





=
−

                                       (4)  

with 0.sb   Then, we can get V  as  

           
1 1

2[ ]f r u dV s a ce u D +D +D a y − −= + + −
,                          

(5)
  

with 
2

2 2( )
s

s

b

b s
 =

−
. To compensate for the uncertainties, an RBF neural network is introduced to approximate 

f r uD +D +D  as follows: 

             ( )T

f r uD +D +D w h z = +                                     (6) 

where  is the bounded approximation error,  
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Here,  

1 2, 1 2[ , , ]Tz x x e e= , 0,jb 

 

1,2,..., ,j m=
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Substituding equation (6) into equation (5), we have 

1 1

2[ ( ) ] [ ( ) ]T T T

dV s a ce u w h z a y s w h z u     − −= + + + − = + + +
，                

(7)
 

where 
1 1

2[ , ] ,  [ , ] .T T

da c a e y − −= − =  

Then, we design the following control law and adaptive laws as 

2 2 ˆ ˆ( ) ( )T T

su b s s s w h z   = − − − − −  ,                          (8) 

1 1
ˆ ˆs k   = −

,                                         
(9)

 

2 2
ˆ ˆ( )w s h z l w = −

,                                       
(10)

         

 where
1 20, 0, 0, 0, 0, 0.k l          

Remark 1. In traditional BLF-based adaptive control algorithms, how to set the barrier parameter eb in 

2

2 2
ln e

e

b
V

b e
=

−
 

is not easy. eb  should be set properly so that 2 2(0) 0eb e−  . However, if the value of eb  is set too big, the 

effectiveness of BLF-adaptive control algorithms is fewer. In our design, ( ) 0s t =  holds, so the above-mentioned 

difficulty is overcome. 

4. CONVERGENCE ANALYSIS 

Theorem 1: For the closed-loop system consisting of system model (1), control law (8) and adaptive laws (9)-(0). All 

signals are bounded, ss b   is guaranteed and  

2

1

2
lim | ( ) |t s

a
s t b




→  .                                (11)

 

Proof: 

Substituting equation (8) into equation (7), we have 

[ ( ) ]T TV s w h z u   = + + +
                             

(12)
 

Then, we define another Lyapunov function  

1 22 2

T Tw w
L V

 

 
= + +
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(13)
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By using equations (9) and (10), we can take the time derivative of L as 

2
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Note that 
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Substituting equations (15) and (16) into equation (14), we have 
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By using Young’s inequality, we have 

2 2 21

4
s s    


 +                                    (18) 

Combining equation (17) with equation (18), we obtain 
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in which, 2

1 1 2 2

1 1 1
min(2 , , ), sup( ).

2 2 4

T Ta k l k lw w       


= = + +  By Lemma B.5 in Reference5, from equation 

(19), we have  

1 1 1
t
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2
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( )  e (0) + e e [ (0) ] +t t tL t L d L     
 

 
− − − −  −                       (20) 

Since (0)L  is bounded, from equation (20), we can see that ( )L t  is bounded for 0t  . Then, due to the fact that 

V L holds, i.e., 

2

2 2

( )
,  t>0.

2 ( ( ))s

s t
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



 
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Therefore, | ( ) | ss t b  holds for 0.t  Further, from equation (20), we can conclude  

12 2 2 2
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ss t ab L


 

 
− −  

and 

2

1
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a
s t b




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By this and the definition of s , we obtain  

2

1

2
lim | ( ) |t s

a
s t b




→  . 

In our control scheme, the filtering error is constrained. Comparing to the backstepping based adaptive control with error 

constraints, our control algorithm is easier for implementation.        

5. NUMERICAL SIMULATION 

Considering the system (1) whose parameters are set as follows: 2 = 5kg mM  , B=0.27, 

1 2 22 0.5sin(2 ) (0.25 0.2 )sgn( ) 3sin(3 )f r uD +D +D t x x x t = + + + + . We take the adaptive ILC algorithms (18)-(20) for 

simulation, with 
1 2 s5, 5, 15, 15, 0.1, 0.1, 0.4k l b   = =     = . The reference signal is 1, cos(0.4 )dx t=

 and 

2, 0.4 sin(0.4 )dx t =− .The position tracking profile and velocity tracking profile are shown in Figures 1 and 2, 

respectively. The profiles tracking error are given in Figures 3 and 4. Figure 5 show the value of control input. We can 

see the control input signal is smooth is smooth along the time axis. The profile of | ( ) |s t is provided in Figure 6, from 

which we can see that | ( ) | ss t b   holds for 0t  . For comparison, we take a barrier-free adaptive control algorithm for 

simulation as follows: 

ˆ ˆ ( )T Tu s w h z= − −  ,                                   (8) 

1 1
ˆ ˆs k   = −

,                                      
(9)

 

2 2
ˆ ˆ( )w s h z l w = −

,                                   
(10)
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Figure 1. Position trajectory 1x  (barrier ILC). Figure 2. Velocity trajectory 2x (barrier ILC). 

  

Figure 3. position error 1e (barrier ILC). Figure 4. velocity error 2e (barrier ILC). 

 

Figure 5. Control input (barrier ILC). 

The profile of | ( ) |s t  in barrier-free adaptive control algorithm is illustrated in figure 7, from which we can see that 

| ( ) | ss t b  is violated. Comparing Figure 6 with Figure 7, the effectiveness of our proposed adaptive control is 

demonstrated. 
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Figure 6. | ( ) |s t
(barrier ILC). 

 

Figure 7. | ( ) |s t
(barrier-free ILC). 

6. CONCLUSION 

This paper discusses the trajectory tracking problem for linear motor systems with system constraints. 

A novel barrier Lyapunov function is constructed to develop the adaptive control scheme, such that the filtering-error 

during each iteration is constrained in the presented range. The time-varying boundary layer technique is used to simplify 

the complexity of controller design, with neural network used to approximate nonparametric uncertainties.  
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