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The holo-diagram is a diagram originally designed as a tool for teaching the making and evaluation
of holograms. It was soon found to include much more general uses than first expected. During the 20
years since its introduction we have applied this diagram to explain many different fields such as
holography, interferometry, diffraction. Fermat’s principle, light-in-flight recordings, three-
dimensional measurements with ultrashort lightpulses and the special theory of relativity.

1. HOLOGRAPHY

The set up of Fig. 1 can be used to produce a hologram. When a photographic plate is placed where the
two beams intersect the interference fringes will be recorded, but only if the difference in pathlength
for the beams is shorter than the coherence length of the laser light.  After that the plate is processed
it is placed back in the previous position and illuminated by just one of the two beams. By diffraction
the recorded interference fringes will deflect part of the beam so that also the other beam is formed.

The described experiment is a simple example of a holographic process. During exposure we can for
example designate the left and the right beam the reference respectively the object beam. Later on we
reconstruct the object beam by illuminating the hologram plate with the reference beam which is now
designated the reconstruction beam.

The reconstruction could perhaps be explained in the following way. As the reconstruction beam passes
through the hologram plate it gets shadowed at every place where a dark fringe was formed. The
beam can not distinguish these shadows from the interference fringes and accordingly leaves the plate
in the form of two beams with exactly that angle which would have produced those dark fringes.

The holographic process works even if there are many object beams that arrive at different angles.
The object beam can even consist of all the millions of lightrays arriving from a diffusely reflecting
object. In that case the interference fringes will look extremely complicated but still the reconstruction
beam can sort them all up, like “unscrambling scrambled eggs”. It is, however, important that the
reference beam is stronger than the sum of all the object beams because otherwise they start to
reconstruct each other.

2. THE HOLO-DIAGRAM

Take a string that is about one meter long and make at one end a knot with a small loop. Make another
knot some twenty centimeter from the other end. Nail the two knots, with a horizontal separation of
about fifty centimeters, to a vertical drawingboard. Tighten the string with the tip of a horizontal
pencil and move the pencil around. It will then draw an ellipse with the two nails as focal points.
Fig. 2.

Let the left focal point, which we name A, represent a pointsource of light, while the right one, B,
represents the center of a hologram plate. If two small mirrors are placed anywhere on the periphery
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of the ellipse, and parallel to it, they will both reflect the light from A to B. What is more, the
pathlengths will both be equal to the stringlength and thus the pathlength difference will be close to
zero. Therefore interference fringes are formed, and a hologram is produced at B, even if the coherence
length of the light is very short.

Now make two more knots, one on each side of the original right knot. The separation of the three
knots should be the coherence length, which could be some fifteen centimeters. Put a nail through the
right of the three knots and draw with the pencil a new ellipse, which accordingly becomes larger
than the original one. Finally nail the other knot and draw a smaller ellipse.

If we remove one of the mirrors from the original ellipse to anywhere on any of the two new ellipses,
there will still be produced a hologram at B, because in no case will the pathlength difference be
larger than the coherence length. Accordingly any object of any shape can be holographed as long as it
can be positioned in between the two outermost ellipses, while the reference mirror is placed at the
center ellipse.

If a set of ellipses are drawn with a pathlength difference of one coherence length between adjacent
ellipses the holo-diagram of Fig. 3 is formed. To make the situation more clear every second area
between the ellipses is painted black. Finally we make the holo-diagram of Fig. 4 where one set of
ellipses is drawn and also one set of arcs of circles the meaning of which we will explain later. If the
reference mirror is placed on one ellipse, everything within those adjacent ellipses can be recorded.

Finally it should be pointed out that what we have described here is only a two-dimensional section
of the real three-dimensional world. If there existed a three-dimensional drawingboard, then we
could instead move the pencil in three dimensions all the time keeping the string tight, thus producing
rotational symmetric ellipsoids.

Using the method of Fig. 4 we have succeeded to make hologram so objects more than two meters
“deep” in spite of a coherence length of only 15 cm. (Ref. 1) As far as we know a world record at the
time it was made. Another example Fig. 5 shows how a two meters high vertical milling machine was
placed within the coherence ellipsoids. The reference mirror was placed on the middle of three broken
lines representing the ellipsoids. The laser and the hologram plate were both placed about five meters
to the left of the machine. Fig. 6 shows the resulting hologram. Almost the whole machine is recorded,
only those parts are missing that were sticking out of the coherent area as seen in fig. 5. The fringes
reveal a deformation as described later.

3. HOLOGRAPHIC INTERFEROMETRY

In Fig 4 two adjacent ellipses represent a pathlength difference of one coherence length. If they instead
represented one wavelength, then the holo-diagram could be used to visualize and to evaluate
interference fringes. If an object point is moved from one ellipsoid half way to an adjacent one, then the
phase at B will change by 180 degrees, which means that the interference pattern at B moves half a
fringe separation.

The result will be, that if we make a double exposure with such an object motion in between the two
exposures, then the fringes will be wiped out at B, and the corresponding object point appears dark.
Consequently, if an object is fixed to one end and the other end is moved so that it crosses say five
ellipsoids, then the object will be covered by five fringes in the reconstructed holographic image.

A movement parallel to one ellipsoid causes no pathlength difference and therefore no fringes while a

SPIE Vol. 1603 Education in Optics (1991) / 191



movement perpendicular to the ellipsoids causes most fringes. Thus the latter represents the
sensitivity direction for the fringeforming process.

We designate the separation as k times the wavelength. The numerical value of k is one over cosine

half the angle ACB where C is an object point somewhere in the diagram as seen in Fig. 4. The
perpherical angle on a circle segment is constant and therefore also the k-value is constant along arcs of
circles that pass through A and B. Thus we have in the diagram printed the k-value where these
circles cross the Y-axis. When the position in the holo-diagram is known for a studied object point, then
the sensitivity is known both to amplitude and direction. The displacement perpendicular to the
ellipsoids is calculated as the number of fringes seen on the object multiplied by k times half the
wavelength. In this way the holo-diagram can be used to simplify the planning of the holographic set
up and to evaluate the displacement from the number of fringes.

By the use of the holo-diagram we have managed to lower the sensitivity of holographic
interferometry so much that a movement of 2 mm caused only two fringes. This value should be
compared to the ordinary high sensitivity of one fringe for a movement of 0.3 thousandth of a
millimeter. We also made an interferometer the “interferoscope” in which the sensitivity could be
changed from one micrometer to 5 micrometers per fringe just by changing the k-value. Thus, a greater k-
value caused by more grazing incidence of the light rays works just as if there was a longer wavelength
or a red-shift  of the light.

4. MOIRE ANALOGY TO THE HOLO-DIAGRAM

There exists another very different pathway towards the understanding of the holo-diagram, see Fig.
7. As before, A is the pointsource of coherent light, thus A can be visualized as a point that is the center
of concentric equally spaced circles, which move outwards with the speed of light.

As before, B is the point of observation which only reacts to coherent light, thus B can be visualized as
a point that is int he center of concentric equally spaced circles, which with the speed of light move
inwards, Where the two sets of circles interact, a moiré pattern forms one set of hyperbolas and one set
of ellipses. If the spacing between the circles were half a wavelength the hyperbolas would be
identical to Youngs Fringes, the interference fringe pattern caused by illumination from two
pointsources of coherent light. Their spacing would also represent the diffraction limited resolution of
a lens that we can almost visualize as positioned with its diameter touching A and B.

To make the situation more clear let us study Fig. 3 again where the ellipses are drawn in such a way
that the pathlength difference between the middle of a bright fringes respective a dark fringe is half
a wavelength.

The ellipses are identical to the ellipses of the holo-diagram and thus represent the interference
limited resolution of a set up where A is the light source and B is the point of observation.

The ellipsoids will everywhere reflect light from A to B, and, what is very important, the angles and
the separations are such that all the reflected lightrays arrive in phase at B. It is said that the Bragg
conditions are everywhere fulfilled by the ellipsoids.

A glass surface that is introduced anywhere among the ellipsoids will deflect light from A to B by

diffraction, if it were covered with one grove for each ellipsoid that is intersected. Depending on the
position of the glass either a transmission (E) or a reflection (F) grating is formed.
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Fermat’s Principle says that light reflected from a mirror of any shape always chooses the fastest
pathway. Let the circle at D in Fig. 3 represent a soapbubble. Apparently the principle is right, a
reflection will form where the bubble tangents, and thus is parallel to, an ellipsoid. At the front
surface of the bubble this point certainly represents the shortest pathlength because it is the only point
reached by the string used to draw tat tangential ellipsoid. But Fermat’s Principle has to be extended,
the back surface of the bubble also reflects light to B, and it represents the longest pathlength. Using
the holo-diagram it has been possible to introduce another modification so that the Principle besides
reflections also includes diffractions. (Ref. 2)

If A and B both are lightsources, then the ellipses move with a speed faster than light, while the
hyperbolas will be stationary. This is why we can record fringes and holograms and measure the phase
with high accuracy even with slow detectors in spite of the fact that the frequency of light is
enormously high, some ten to the 14 cycles per second.

If a is a lightsource and B is a point of observation, then the hyperbolas will move with a speed faster
than light, while the ellipses are stationary. This explains why we can make holographic recordings
even with long exposure time of the wavefronts themselves in spite of the extremely high velocity of
light, some 300 00 km per second.

5. MOIRE ANALOGY TO HOLOGRAPHIC INTERFEROMETRY

Now that we have found moiré analogies to interferometry and to the holo-diagram there are good
reasons to believe that there should also exist a simple moiré analogy to the interference fringes
formed on the image in a double exposed hologram. If the object between the exposures has made a rigid
motion and if the point of illumination and the point of observation are close together and far from the
studied object, in that case the fringe pattern will be made up of straight lines and thus simple and
easy to understand. However, in other situations the pattern might become quite complicated and in
that case a moiré analogy would be very useful to visualize the interference process.

It did take us quite a long time until we suddenly understood how very simple the moiré analogy was.
Let us make two transparent copies of Fig. 3 and place one on top of the other so that they exactly
coincide.

What would the fringepattern be on any object displaced between the two exposures parallel to the x-
axis of the holo-diagram? To find out move one of the transparencies slowly in that direction. When
the displacement is a quarter of a wavelength all the x-axis outside A and B becomes dark. After a
motion of another quarter it becomes bright again and so on. This effect represents the sensitivity of an
ordinary interferometer or of holographic interferometry for objects placed at the x-axis. Everywhere
else the fringes arrive later because the sensitivity to the introduced movement is lower. The fringes
that are formed on the transparencies are everywhere analogous to the fringes formed on objects placed
at corresponding position in the space of the holo-diagram. The maximum sensitivity to fringe
formation is where the motion is perpendicular to the ellipses and where these are most closely
spaced.

6. LIGHT-IN-FLIGHT RECORDING BY HOLOGRAPHY

Now that we have spoken so much about the importance to holography of the ellipsoids it would be
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interesting to actually see them. There is one rather simple way to do that. If you remember, the holo-
diagram was invented to overcome the problems and limitations of a short coherence length. In a
hologram there is recorded only what is within the space of two ellipsoids. Therefore, if the coherence
is very short and we try to make a holographic image of a flat screen, then the recording would consist
of only an elliptical line representing the intersection of the screen by one of the ellipsoids. As before,
one focalpoint is the point source of illumination while the other is the point of observation. Thus in
this way we really can see intersections of the ellipsoids of the holo-diagram. By moving the eye
behind the plate during observation, the elliptic line will move over the screen because the eye
represents one focal point of the ellipsoids. (Ref. 3)

We know that light from a point source expands int he form of spherical waves, so why do we see
intersections of ellipsoids? One obvious reason is that through one point on the hologram plate we see
only that scattered light which has travelled the same time and thus the same pathlength as the
reference beam. Another way to explain the same thing is that it does not only take time for the light
to move to the screen, it also takes time for the light to move from the screen to the hologram plate. If
different parts of the screen are at different distances from the plate, then there will be different
delays in the observation and consequently different parts of the screen are observed at different points
of time . However, if we place the screen at a large distance and perpendicular to our line of sight, then
the distance from every point of the screen to the point of observation will be about equal. It can be
proved that for that configuration the intersections of the ellipsoids are identical to those of spheres.
See Fig. 7. Along circles around B the intersections of the ellipses are identical to the intersections of
the circles around A. Therefore the bright line we see on the screen represents the spherical waves
themselves without distortions. Because of the already mentioned analogy between light of short
coherence length and short pulse length we will in the following only discuss short pulses, and show
how the described method can be used to study ultrashort pulses of light as they fly by.

The holographic plate records a hologram only when-it is illuminated by the object beam and
simultaneously by the reference beam. If therefore the latter consists of a picosecond pulse the object
will be recorded only during that picosecond, which represents a lightpath of about 0.3 mm. If the
reference pulse illuminates the plate almost parallel to its surface e.g. from the left then the left part
of the plate will record what happens first to the object, while the right part records what happens
last. The time span recorded will be the time it takes for the light to move from one edge of the plate to
the other. Thus the picosecond reference pulse works like a light-shutter which with the speed of
light, or even faster, moves over the plate. When the plate is studied during reconstruction. a motion of
the eye along the plate results in a continuous change of time at the recorded object.

Using this technique it has been possible to produce continuous frameless moving pictures of light
reflected by a mirror. Fig. 8, focused by a lens Fig. 9 and many other situations where light is reflected,
refracted or diffracted.

When a more general three-dimensional light-in-flight recording is evaluated one has to compensate

for the apparent distortions of the wavefronts. For this purpose the following general rule derived
from the holo-diagram can be applied:

A wavefront recorded by any ultra highspeed method appears transformed into a mirror surface that
would reflect the light from the point of illumination to the eye of the observer.

Thus, a spherical wave appears distorted into one of the ellipsoids of the holo-diagram. A flat
wavefront that passes by appears to the first approximation to be tilted fortyfive degrees, at a closer
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study it is found to be distorted into a paraboloid, the focalpoint of which is the eye of the observer.

The pulse appears to move perpendicular to the ellipsoid or the paraboloid and therefore the pulse
length and the pulse speed both appear to be multiplied by the k-value of the holodiagram. As k is
larger than one, the velocity of the pulse appears to be faster then light.

This phenomena of superluminous velocity can be studied in quite another field, astronomy. Instead of
using ultrashort recording time to study pulses of light, we can use an ordinary time scale and study
ultralong distances. Thus, in 1988 there was found visible lightechoes from the explosion of a supernova
at a distance of some fifty thousand lightyears. About one thousand lightyears from earth was a dusty
cloud, the Large Magellanic Cloud, that scattered the light and therefore the lightpulse from the
supernova was seen as a ring around the star that expanded at about ten times the speed of light.
Explained by the holodiagram this means that the cloud which was between A and B intersected one
ellipsoid where the k-value was about ten.

7. RELATIVITY

The whole reason for the design of the holo-diagram is the separation of the point of observation B
from the point of illumination A. Had this separation been zero then all the ellipsoids of Figs. 2, 3 and
4 would have been spheres. The intersections by flat surfaces would have been Fresnel zone-plates and
their moiré patterns simply straight fringes. It is the separation of A from B that distorts a spherical
wavefront into an ellipsoid, and a flat wavefront into a paraboloid.

Thus all the described distortions are caused by the separation of A from B. When we make
measurements with holography or any type of interferometry or radar we would make large errors if
we do not compensate for those distortions. One very important fact is that exactly the same
compensations are needed whether this separation between A and B is static, like in holography, or
dynamic, e.g. the experimenter sits on a train and makes measurements with A and B being at the same
point at the train. (Ref. 4 and 5) If the train is moving fast and the stationary world outside is
measured then A and B will in relation to that world be separated because of the motion of the train
during the time between illumination and observation. Because the speed of light always appears to be
the same independent of the velocity of light source or observer, the compensations have to be identical
to those of a static separation.

Thus the holodiagram can be used to understand the theory of special relativity and all the first and
second order apparent distortions caused by a relative motion between experimenter and object can in a
graphical way be derived from the holo-diagram. In this way it is found that the Lorentz contraction
is just one of a number of apparent elongations and contractions of fast moving objects. Objects moving
towards the observer appear elongated, while those moving away appear shortened, only those just
passing by appear Lorentz contracted. Time behaves in a similar way. Clocks moving towards us
appear faster, blueshifted, those moving away appear slower, redshifted, and those just passing by
appear to have the ordinary relativistic time dilation or, transversal redshift.
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The laser beam passes through a beamsplitter (A) and half of it is reflected by the
mirror (B) towards a screen (C). The other half is reflected by the beamsplitter to

the same spot on the screen. Dark interference fringes are seen where the two beams

intersect only if the distance between (A) and (B) is shorter than the coherence
length of the laser light.
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Fig. 2

Two nails are pinned down at (A) and (B), and a string with three knots is fixed to
the nails. The separation of the knots is L. A pencil is moved around while the string
is kept stretched. Because the stringlength is constant, the result is an ellipse with
its focalpoints at the nails. Three ellipses are drawn. Between the making of each
ellipse the string length is changed by fixing different knots to the nail (B).

(A) represents the pointsource of 1ight with the coherence length of L, (B)
represents the middle of the hologram plate.

If areference mirror is placed on the middle ellipse every object positioned between

the two outer ellipses can be holographed because they will be within the coherence
length.
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Fig. 5

Holographing an almost 2 m high milling machine using a laser with a
coherence length of less than 15 cm. Most of the machine could be positioned
between the coherence limiting ellipsoidal shells (Q) and (S). The
displacement needed to produce one fringe is represented by d (which is of
cource greatly exaggerated). h represents the coherence length. R is the
ellipse on to which the reference mirror was placed, while (F) represents
the static load causing the deformation.

Fig. 6

The milling machine was holographed twice, first without, then with the
static load (F) of Fig. S. Those parts of the machine are missing that were
sticking out of the coherence ellipsoids of Fig. 5. Every fringe represents a
displacement of about 0,3 mu normal to the plane of the photograph. Straight
fringes represent a tilt around an axis parallel to the fringes. Curved fringes
represent deformation. A fixed reference surface is seen at lower right
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Fig. 7
(A) and (B) are the centres of two sets of concentric circles in a bipolar coordinate
system. The moiré fringes form one set of ellipses and one set of hyperbolas. To

emphasize these patterns every second rhomboid area has been painted black except for
one quarter of the diagram where just one single ellipse and one hyperbola have been

marked.
(c)

Fig. 8 (a) (b)

a) A spherical wavefront from an argon laser enters at the left, illuminating a white
painted flat surface at an oblique angel. The lower left end of a tilted mirror is just
reached. b) The wavefront has reached the middle of the mirror, the normal of which is
inclined at 40 degrees to the horizontal. The light is reflected upwards and to the left.
C) All the reflected 1ight is separating from the main wavefront which has just passed
the mirror. d) The two components of the light have separated completely, the
reflected light leaving a black hole in the spherical wavefront, which exits to the
right.

(d)
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Fig. 9

A spherical wavefront enters from the left. The light that passes through the
focusing lens is delayed because the speed of lighht is lower in glass than in
air As the lens is thicker in the middle the convex wavefront becomes concave
and moves towards focus. The image is a composite of five different photographs
taken through different parts of the same hologramn. The pulselength is some
10 picoseconds which is equal to about 3 mm. The time separation between
different photographed wavefronts is about 200 picoseconds.
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A number of ellipses have been drawn with a pathlength difference representing half a wave-
length. Evey second area between ellipses is painted black. Any glass surfacee.g. E or F of any
shape with a groove for each intersection by an ellipse will diffract light from (A) to (B). The
circle at (D) is a soap bubble which reflects light from (A) to (B) where it tangents the ellipses.
The number of fringes seen between a fixed point and a displaced point studied by holographic
inter- ferometry is a measure of the number of ellipses crossed by the displaced point.

Fig. 4
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The holo-diagram used tq utilize the coherence length. If the object (C) is positioned on the
same ellipse as the reference mirror (M) almost no coherence length is needed. If the
coherence length of the light is 15 cm, the object at (D) could not be recorded because the
pathlength difference is more than 15 cm. A slight tiit of the object to the position (E) de-
creases the difference to less than 15 cm so that a holographic recording can be made. If the
pathlength difference between adjacent ellipses represents one wavelength, one interference
fringe would form for an object motion from one ellipse to the next. The separation of the
ellipses varies over the diagram, but is constant along arcs of circles named k-circles.
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