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ABSTRACT

Advanced geometric optics has been traditionally presented to students as subjects of great
mathematical complexity. In addition, there is confusion and misunderstanding about the nature
of aberrations. We show here how to improve understanding and make the material more
enjoyable through the use of the following pedagogic devices:

(1) A matrix approach to paraxial optics.
(2) A numerical treatment of non-paraxial optics and aberrations.

1. PARAXIAL MATRIX OPTICS

In many books' , the elementary lens equations are derived by starting with an object in front of
a lens, locating the image produced at the first surface, and using this image as an object for the
second surface. The algebra involved in this procedure is confusing, as are the typical sign
conventions. We give a much simpler derivation of all of paraxial optics using matrices. Figure
1 shows a ray of light leaving point P on an object, striking the first surface of a lens at P1 and
refracted there. Snell's law for small angles, with sinO approximated by 0, is n101 = n'10'1,
which is the paraxial ("close to the axis") form. Using O = a + 4, O' + 4, where 4 can be
specified paraxially as x1/r1 in place of the tangent, converts Snell's law to

Fjgure 1

Combining this with the trivial relation x1 = x'1 gives

(1)
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where the translation matrix T21 is
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The equation which combines a refraction, a translation, and a second refraction is then

390 / SPIE VoL 1603 Education in Optics (1991)

(6)

(2)

where the constant k1 is the refracting power of surface 1 and is defined as k1 = (n'1 - n1)/r1.
The square matrix is the refraction matrix R1 for surface 1 , written as

(3)

For the ray traveling from surface 1 to surface 2 (Figure 2), the distance from the axis becomes
(again paraxially)

x2 = + t'1cc'1 (4)

Another approximation is to regard t'1 as being equal to the distance between the lens vertices
V1 and V2. Combining this with another trivial identity a = a2 gives the matrix equation

Figure 2 x
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This process can obviously be extended to any number of refracting (or reflecting) surfaces.
The product S21 of the three square matrices is the system matrix and is also written as

( b -a\
R2 T21 R1 = -d c)

(8)

where the Gaussian constants a, b, c, and d can be obtained by combining the above equations
to obtain

kkt'
1 2 I I gnl nl

and

kt' kt'b=1— 21, c=1— (10)nl nl

For an object at t and an image at t' , we can connect the initial and final rays with the equation

(n'2&2\ _ ( 1 o(b —a( 1 0'fna\ (11)
" xl I

—
(t'/n'2 1)—d c)(,t/fl1 i)' X I

where the three 2 x 2 matrices on the right-hand side combine as an object-image matrix S

b--- -a
nlg - (12)p 4-,-d+ c--4.

This matrix implies that the value of the magnification m = x'/x will depend on a1, which leads
to an imperfect image. This means the lower left-hand element in the matrix must vanish, so that

= d - ct/n1 (13)
fl'2 b - at/n1

and, in addition, m = c - at'/n'2. The positions of the unit planes H and H', the locations for
which object and image are identical, are found be letting m = 1. Then

= 1H n'2(c — 1)/a (14)
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with a similar expression for l. The focal point F' is located by letting x' = 0, so that l' =
n'2c/a, and similarly for l. The focal lengths f and f' are defined as the distances between the
respective focal and unit points. It then follows that 1/a = f' = 4. Let a ray leave a point on
the axis at an angle a and emerge at an angle a'2. Since x = 0 at the starting point, then n'2a'2
= n1aI/m, where a'2/a1 is the angular magnification j, so that = 1/rn in air. The respective
locations of the object and image for unit angular magnification are the nodal points N and N'.
The six points F, F', H, H', N, N' comprise the cardinal points. The equal angle condition
shows that the nodal point locations are

(n'2/n1) - b
(15)

nl a

and

= C - (n1/n'2)
(16)

n2 a

The sign conventions used (and summarized by O'Neill3) are mostly the familiar Cartesian rules;
to these are added the stipulations that a surface opening to the right(left) has a positive(negative)
curvature and that a reversal of direction due to a reflection reverses the index.

The power of paraxial matrix optics is indicated by combining the definition of a, or 1/f' , in (9)
with the definitions of k1 and k2 to obtain

—IT = (nil _ 1) — .2:_ + ''i, 1) t'1 (17)f r1 r2 n 1r1r2

which is the lensmakers' equation. This derivation is far more direct than usually found, and
can easily be extended to an arbitrary combination of components. As another example of the
ease of use of matrices, an object is 15 units to the left of a converging thin lens of focal length
10 units. For such a lens, with t'1 negligable, (9) and (10) show that a = 1/f' , b = c = 1 , d
= 0. A concave mirror, with radius of 16 units, is 20 units to the right of the lens. The
Gaussian constants are then obtained by matrix multiplication. The cardinal points follow from
the equations above, and are located to scale in Figure 3. We find the image by ray tracing.

Figure 3 I
I—.. 1+-• -+sf 4' Vy
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A ray from P is extended backwards to the unit plane H must then proceed to the right (the
positive direction) and parallel to the axis. The converse of this is a ray extended backwards
and parallel until it reaches H'; it then passes through F' and the two rays intersect at P'. A
check is provided by a third ray from P to N; it emerges at N' and goes to P' while remaining
parallel to its original direction. The values of t and t' shown are confirmed by the matrix
calculations. This situation can be readily extended to an arbitrary number of thick lenses.

Yet another example, and a truly remarkable one, is the Schwarzschild reflecting microscope
objective, which has of two concentric mirrors of radii r1 = -(V'5 + 1) and r2 = -(V'5 + 1)
(Figure 4). An object on the axis at a distance w = 1 from the common center will send a
parallel beam up the tube. This may be confirmed by multiplying the two translation and two
refraction (actually, reflection) matrices involved and then using the fact that if the intitial
position and the final angle are zero, the upper left-hand corner of this product matrix must
vanish. Although this is a paraxial calculation, it is found that when the exact ray tracing is
done by the method given below, the angle of acceptance can be of the order of 25° (Figure 5).

Figure 4

When the paraxial approximation is no longer valid, then the concepts of Part 1 lose their
meaning, and we can no longer use terms such as cardinal points, focal length, and
magnification. Instead, we must go to exact ray tracing. Figure 6 shows an object point P and
a ray traveling to the first surface of a lens. A meridional ray leaves the object point P and
strikes surface 1 at the point P1. The translation is taken as a vector T1, direction cosines L, M
and N with respect to the x, y and z axes (note that OZ is taken as the symmetry axis). The
direction cosines L and N are defined in terms of the components of T1 as
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2. MERIDIONAL NON-PARAXTAL OPTICS



L = T1X/T1, N= T1Z/T1 (18)

The location of the object point P and the intersection point P1 are also designated as vectors,
and the three vectors shown in the figure are related by

R1=R+T1 (19)

Taking the dot or scalar product of each side with itself, we obtain

R = R2 + T + 2T1(zN + xL)

The equation of a circle in the coordinate system we are using may be written as

+ x = 2z1(r1 + v1)
— v - 2v1r1 = R

Combining this with equation (20) and eliminating z1 gives

T + 2T1[N(z—r1—v1) + Lx] + (z—v1)2 + x2 + 2r1(v1—z) = 0

Using the curvature c1 = 1/r1, this quadratic equation becomes

T F
1 —

-E + /E2 - c1F

where

E=3c1/2=c1[(z-v1)N+xL]-N (24)

Figure 6 x
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(22)

(23)

and

F= Cc1 = c1[(z-v1)2 + x2] — 2(z-v1) (25)

(Full details of the derivation have been given previously.) It is customary to shift the origin
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after each translation, so that

and the other equation is

z + T1N —
V1 (26)

x1 = x + T1L (27)

Since the angles or the direction cosines remain unchanged
equations can be put into matrix form as

( n1N'1( 1

z1+v1)
—

T1/n1 i) )

(n1L ( 1 n1L

x1)T1/n1 1)

during a translation, these two

(28)

and

(29)

The 2x2 matrix in these equations is the non-paraxial or exact translation matrix. The form of
the exact refraction matrices can be obtained from Figure 7, which shows the incoming ray at
surface 1. This ray is taken to be a vector n1 with magnitude equal to the index of refraction on
the left. Then the refracted ray is designated as n1' in a similar way.

Figure 7

x
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Define a quantity K1, the refracting power or skew power, in terms of these two rays by the
relation

= c1(n1 — fl'1)

where s1 is a unit normal vector at the surface. The scalar product of both sides of this equation
with this vector gives

(30)
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K1 = c1(n cos0 - n1 cos01) (31)

We can express the scalar product of the incoming ray and the normal in two ways; these are

and

______ x1= + = n1N1 + n1L1—

= cos (1800 - 01) = -n1 cog

(32)

(33)

Combining these equations and using the direction cosines for the unit normal as indicated by
the figure, we obtain

cos 0 = N1(1 - c1z1) - L1x1c1 (34)

where z1 is measured from V1, as mentioned just above. Having found
can find the angle after refraction with Snell's law, obtaining

K1 - Cl[flWi(flh/fl1i)2(1 - cos2 01) - n1cos 0]

Write (30) as the two scalar equations in matrix form
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the incident angle, we

(35)

nN-K1/c1 _ (1 -Ki'(fl1N1
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x ¼0 lAxi

and

These equations show that
generalizations of the

Figure 8

(36)

(37)

the non-paraxial translation and refraction matrices are
reduce for small



The procedure just developed has been applied to parallel meridional rays going through a
double convex lens with radii of 50 units, thickness of 15 units, and an index of 1.5. The
graphics capability of the language QuickBASIC 4.5 is demonstrated by Figure 8, which shows
the point
defect called spherical aberration, with the associated caustic surface and circle of least
confusion. This figure emphasizes that spherical aberration isihe failure of meridional rays to
obey the paraxial approximation, a definition unlike like what most optics books use'. This
program has been extended5 to show how spherical aberration can be reduced by altering the
radii while holding the thickness, index and focal length constant, a process called bending the
Lciis. It clearly demonstrates the advantage of numerical modeling, since the experiment cannot
be done on an optical bench.

3. NON-MERIDIONAL NON-PARAXIAL OPTICS

By adding a term yM to (24) and a term y2 to (25), as well as -M1L1c1 to (34), the above
meridional procedure can be applied to non-meridional or skew rays. These changes imply the
existence of three translation and three refraction matrices, one pair for each of the corrdinates.
A straightforward way of observing the aberration associated with skew rays is to consider a
cylinder of rays concentric to the axis and striking the first surface of a lens; it will form a sharp
image on axis somewhere to the left of the paraxial focus. Now incline this cyliner at an angle
so that the rays strike the original circle on the surface, which means that the cyclinder will have
an elliptical cross-section. The top and bottom rays, which are meridional, will define an image
plane. All the other rays, which are skew, will produce two approximately circular images, not
quite coincident. This effect can be demonstrated using the ray tracing procedure just developed
and is shown in Figure 9. One circle in each pair is produced by incident rays covering either

Figure 9 Figure 10

the left-hand or the right-hand half of the circle on the first surface of the lens. The combination
of the two image patterns produces cardiod patterns, as shown in Figure 10, which represents
coma as it should occur for an uncorrected system. Hence, we define coma--in parallel with our
definition of spherical aberration--as the failure of skew rays to obey the paraxial approximation.
This definition contradicts the customary one' and the patterns of Figure 10 are not found in the
standard texts. However, this effect is known to professional photographers6. Let us now
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assume that an optical system has been corrected both for spherical aberration and for coma.
There is no guarantee that these separate corrections will bring the meridional rays and the skew
rays from an off-axis point to a common focus. We thus see the source of astigmatism, which
is the failure of the two corrections to agree. This explains the classical illustration of this
aberration, found in all textbooks'. A meridional fan of rays leaving an off-axis object point
forms a sharp image. A second fan, at right angles to the first one, then represents one which
is completely non-meridional (except for a single, central ray) and it also forms a sharp, but
separate, image. The blur between these two points would be eliminated if they could be made
identical.

4. SECOND-ORDER ASPHERIC SURFACES

Aspheric surfaces have been regarded as beyond the scope of undergraduate optics courses, and
they are treated by Smith1 with complicated iterative procedures. Restricting ourselves to
second-order surfaces (paraboloids, ellipsoids, and hyperboloids), the above procedure can be
extended easily once more by replacing the equation of the sphere--the three-dimensional form
of (21)-with the conic section equation in the form

C(x2+y2—Sz2) -z=O (38)

where C is the vertex curvature and S is a shape factor which is negative for ellipsoids (S = -1
specifies a sphere), zero for paraboloids, and positive for hyperboloids. As a typical example,
consider the design of an arc furnace composed of two parabolic mirrors of radius 100 units.
The contaminating arc is at one focus and the sample to be heated is at the second focus, which
can be placed at an arbitrary distance. The program which does the ray tracing is given below
as an appendix and Figure 11 shows the resulting graphics. All the other examples given in this
paper were handled with this program, or simplified versions for meridional or non-meridional
spherical surfaces.

Figure 11
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Other examples which students find interesting (and for which listings are available from the
authors) are a keyboard-interactive lens-bending program (Figure 12), the formation of a virtual
image by a double concave lens (Figure 13), and the Hubble Space Telescope (Figure 14); this
instrument uses two hyperbolic mirrors, and its parameters were taken from a popular article.
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APPENDIX: ASPHERIC SKEW RAY TRACING

Parabolic Mirrors File A-PAR2 20 Oct 90 ]

I Setwindow

1 CLS : SCREEN 9
WL-18O:WR8O:WD——6O:WU—WD
WINDOW (WL, WD)-(WR WU)

I Specify constants

T(1) 50: T(2) = —200: T(3) — 50
C(1) — —.01: C(2) — .01: C(3) — 0
N(1) = 1: N(2) = —1: N(3) = 1
NP(l) —1: NP(2) — 1: NP(3) — 1
S(1) = 0: S(2) = 0: S(3) — 0

[ Ray tracing

ELO=-.8
10 X = 0: Y = 0: Z — 0
Zl — Z: Xl = X: Ti = 0
EL — ELO: EM = 0: EN — SQR(1 - EL * EL - EM * EN)
FOR J — 1 TO 3
zv = z - T(J)
D — 1 — (S(J) + 1) *EN * EN
E — C(J) * (X * EL + Y * EN - S(J) * ZV • EN) - EN
F — C(J) * (X * X + Y * Y — S(J) • ZV * ZV) — 2 • ZV
SD — F I (SQR(E * E - D * F • C(J)) - E)
x — x + SD * EL
Y = Y + SD * EM
z — z + SD * EN — T(J)
Ti = Ti + T(J)
Z2 = Z 9- Ti: X2 = X

LINE (Zi, X1)—(Z2, X2), 9
zi — Z2: Xi X2
OP — 1 + S(J) * C(J) * Z
SQ = SQR((X * X + Y * fl • C(J) * C(J) + OP * OP)
COSTHETA — (EN * OP - C(J) * (EL * X + EM • Y)) / SQ
BC — N(J) * N(J) * (1 - COSTHETA * COSTHETA) I NP(J) I NP(J)
KOVERC NP(J) * SQR(1 - BC) - N(J) * COSTHETA
K — C(J) * KOVERC
EL — (N(J) * EL - K * X / SQ) / NP(J)
EM — (N(J) * EM - K * Y / SQ) / NP(J)
EN (N(J) * EN + KOVERC * p / SQ) / NP(J)
NEXT J
ELO ELO + .1
IF ELO < .7 THEN 10

I Show mirrors

Ti — 0
FOR Q = 1 TO 3
Ti Ti + T(Q)
X8 — 0: Z8 — Ti
FOR H — 1 TO 30
X — X8 + 3: Z — X * X * C(Q) / (1 + SQR(C(Q) * C(Q) * S(Q) * X * X + 1))
X9 X: Z9 — Z + Ti
LINE (Z8, X8)—(Z9, X9)
X8 — X9: ZR — Z9
NEXT H
X8 — 0: Z8 — Ti
FOR H — 1 TO 30
X — X8 — 3: Z = X * X * C(Q) / (1 + SQR(C(Q) * C(Q) * S(Q) * X * X + 1))
X9 — X: Z9 — Z + Ti
LINE (18, X8)—(Z9, X9)
X8 X9: Z8 — Z9
NEXT H
NEXT Q
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