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ABSTRACT 

The task of imaging is to gather spatiotemporal information which can be organized into a coherent map.  Tomographic 
imaging in particular involves the use of multiple projections, or other interactions of a probe (light, sound, etc.) with a 
body, in order to determine cross-sectional information.  Though the probes and the corresponding imaging modalities 
may vary, and though the methodology of particular imaging approaches is in constant ferment, the conceptual 
underpinnings of tomographic imaging have in many ways remained fixed for many decades.  Recent advances in 
applied mathematics, however, have begun to roil this intellectual landscape.  The advent of compressed sensing, 
anticipated in various algorithms dating back many years but unleashed in full theoretical force in the last decade, has 
changed the way imagers have begun to think about data acquisition and image reconstruction.  The power of incoherent 
sampling and sparsity-enforcing reconstruction has been demonstrated in various contexts and, when combined with 
other modern fast imaging techniques, has enabled unprecedented increases in imaging efficiency.  Perhaps more 
importantly, however, such approaches have spurred a shift in perspective, prompting us to focus less on nominal data 
sufficiency than on information content.  Beginning with examples from MRI, then proceeding through selected other 
modalities such as CT and PET, as well as multimodality combinations, this paper explores the potential of newly 
evolving acquisition and reconstruction paradigms to change the way we do imaging in the lab and in the clinic.  
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“There is in this Earth no maneuver more unnerving than the Spin.  Just when one thinks to have advanced into the 
twilight, Dawn comes round again.”    –  Samuel Bowditch 

1. INTRODUCTION
In imaging, we are all spies.  Like true intelligence agents or their glamorized counterparts onscreen, imaging 

scientists and practitioners are charged with gathering critical information in space and time.  We employ the latest 
technology to acquire encoded signals, and deploy laboriously optimized algorithms to decode them.  We do what is 
necessary, piercing the veil of the skin, the skull, the cell, or whatever stands in our way, in order to see what was once 
invisible.   

How did all this undercover work get started?  And how is it poised to change in the next few years? 

2. BACKGROUND

2.1 A brief history of imaging 

The need to resolve both structure and dynamics is a connecting theme across diverse areas of endeavor spanning 
multiple orders of magnitude in space and time.  Examples in the field of biomedical research include visualization of 
the function and dysfunction of moving organs; characterization of changes in the tumor microenvironment in response 
to therapy; evaluation of the shifting organization of cellular ensembles during development or disease; tracking of cell 
membrane permeability changes in response to molecular signals; or exploration of the conformational changes of 
individual biomolecules upon ligand binding.   Increasingly, fields of inquiry ranging from biophysics to genetics to 
population health all rely upon key technologies for spatiotemporal mapping, display, and interpretation. 
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Of course, the development of certain fundamental tools for imaging occurred long before humans arrived on the 
scene to pursue these kinds of inquiries.  The development of a functional eye conferred a notable survival advantage for 
early organisms such as the trilobite.  Note that the trilobite compound eye was already a highly parallel device, capable 
of extremely rapid imaging.  The human eye, with its own parallel photodetector design, evolved together with 
remarkable reserves of neural processing power.  In many ways, the artificial imaging devices devised by humans 
continue to follow this general model, though they allow us now to see far beyond the limits of our natural senses.  The 
history of biomedical imaging devices, in particular, may be organized according to the characteristic probes used to 
interact with the body:  visible light (augmenting the eye with microscopes, cameras, optical transillumination and 
tomography devices, etc.), X-rays (ranging from Roentgen’s projections in 1896 to X-ray CT in the 1970s), radiotracers 
(e.g. gamma cameras, SPECT, and PET), electromagnetic fields (e.g. electrical impedance tomography and MRI), 
mechanical displacements (e.g. ultrasound) ‒ the list goes on.    

For the purposes of this report, we shall focus on the tomographic imaging modalities, i.e. the modalities that 
produce cross-sectional images from sets of acquired projections.  When looked at from the right perspective, many of 
these modalities, such as MRI and CT, are fundamentally alike in their basic principles.  Once one has accounted for 
differences in probe characteristics and scanner engineering, one might be tempted to ask what is new under the sun.   

2.2 A brief history of rapid imaging 

One facet of imaging that seems always to be on the advance is the speed of image acquisition.  In fact, one might 
argue that there is a natural evolutionary tendency for imaging modalities to get faster over time.  This tendency is 
certainly driven by the inherent inventiveness of those who use imaging devices.  It is also driven by a particular 
selection pressure – namely, the need for speed.  In the context of biomedical imaging, this need is obvious and 
multifold.  First of all, patients and organs move, and fast images are required to image moving structures such as the 
beating heart.  Injected contrast agents used to highlight particular internal structures also move, and catching the 
contrast on its way through the vascular system requires speed.  Second, patients get restless.  Due to underlying disease 
or understandable agitation, subjects often cannot sustain long breath-holds, and long total examination times can be 
challenging.  Third, time is money.  Scanner throughput, and workflow in general, becomes an important practical 
consideration in an era like ours of intense cost-consciousness, in which the premium on efficiency is high.  Finally, and 
perhaps most importantly, time is information.  Greater imaging efficiency enables the acquisition of more information 
per unit time, which enhances the value of imaging studies, both for clinical evaluation and for basic research.   

 
Figure 1. A brief history of rapid MRI and CT. 

When viewed through the lens of imaging speed, MRI and CT underwent a strikingly similar evolution since their 
inception in the 1970s.  Figure 1 summarizes this evolution.  Various hardware developments, such as strong and fast-
switching magnetic field gradients in MR and rapidly moving gantries in CT, enabled progressively more rapid 
transitions between sequentially acquired data points.  Meanwhile, changes to the acquisition sequence ‒ including rapid 
MR pulse sequences incorporating rectangular raster patterns (Echo Planar Imaging) or spiral trajectories, and helical 
acquisitions in CT ‒ further accelerated sequential scanning.  It was not until the 1990s that multidetector systems 
(arrays of RF coils in MR and multiple detector rows in CT) were employed in practice to gather multiple data points 
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simultaneously, rather than in the traditional sequential fashion.  This use of parallelism, which harks back, of course, to 
the massively parallel configuration of our eyes, enabled further advances in imaging speed beyond previous hardware 
and software limits.  The next decade saw a race to incorporate ever larger numbers of detectors, until this trend, too, 
began to mature and new practical limits of acceleration began to be reached.     

Suddenly, in the middle of the last decade, the landscape of rapid imaging started to shift again.  The impetus this 
time could be traced to developments in the mathematics of image reconstruction.  Certainly in the area of MRI, parallel 
imaging1-3 had already necessitated substantial changes to image reconstruction algorithms.  However, more recent 
developments had their root in a new appreciation of the role of sparsity and incoherence in the solution of inverse 
problems like image reconstruction.  Modified acquisition approaches were soon being proposed to take advantage of the 
new reconstruction methods, which tended to be grouped under the label of compressed (or compressive) sensing.  Many 
would argue that we now occupy the era of sparsity in rapid imaging.  It is a “post-Nyquist” era, somewhat unsettling to 
those raised on linear inverse problems, but extraordinarily rich in possibilities for innovation.  The outcome in terms of 
raw acceleration of MR image acquisition is already striking: appropriate combinations of compressed sensing with 
parallel imaging have, in many cases, been shown to yield order-of-magnitude accelerations as compared with parallel 
imaging alone.  Meanwhile, compressed sensing and related approaches have begun to change the way we view the 
problem of image formation.  Let us now discuss in more detail this disruptive new kid on the block. 

3. SPARSITY AND INCOHERENCE: THE RISE OF COMPRESSED SENSING 
Compressed sensing may be argued to have arisen out of at least two central observations: 1) that most signals 

(including images) are simpler than they might at first appear, if they are viewed from the right perspective, and 2) that 
we can generally control how we encode and decode signals or images, such that undersampling does not necessarily 
lead to irretrievable loss of information.  Over time, numerous particular reconstruction algorithms, taking advantage of 
various kinds of prior information to reconstruct undersampled datasets, had previously been proposed.  However, it is 
the work of Candès4, Tao4, and Donoho5 that is generally credited with establishing the rigorous theoretical 
underpinnings of sparse signal recovery from incoherent acquisitions – or, in other words, compressed sensing.  Very 
soon thereafter, Lustig6 demonstrated concrete applications of compressed sensing for rapid MRI, and in the process 
created a new subfield of biomedical imaging research.   

The fact that we can represent images with less than the usual data is not in itself surprising.  It is well known that 
most images are at least somewhat sparse, in the sense that they may be represented accurately by a number of 
parameters smaller than the number of voxels.  The prevalence of image compression – an essential tool for modern data 
storage and transmission – serves as concrete evidence of this fact.  Image compression algorithms exploit correlations 
between pixels to reduce the number of bits required for storage.  Knowing as we do that most medical images are 
highly compressible, we are faced with a nagging question: why do we need to exert Herculean effort to acquire fully-
sampled data, if in the end we are going to throw most of those data away?  Until compressed sensing appeared on the 
scene, the prevailing answer was that accurate compression requires prior knowledge of image content, so that we can 
decide which components to discard and which to keep.  By definition, however, the content of a new medical image is 
unknown, and it is in fact the unpredictable abnormalities that represent the most critical information for physicians and 
their patients.  In medical imaging circles, use of prior knowledge is viewed with legitimate caution.   

How, then, does compressed sensing effectively accomplish pre-compression without assuming particular image 
content?  It simply asserts that the correct image (or image series) is sparse in a known domain.  This domain may be the 
image domain itself, or it may be defined by transforming the image using Fourier transforms, wavelet transforms, or 
other operations often used in image compression. Compressed sensing makes no assumption about which coefficients 
in particular are significant or insignificant – it only assumes that a suitably sparse solution is likely to be correct.  Such 
an assumption does carry risks, but the risks are rather more modest than the risk of corrupting the true image with 
features of a specific image model.   

In practice, successful compressed sensing requires three principal ingredients: 1) sparsity of true image content, 2) 
incoherent sampling (with incoherence, in this case, assessed between the acquisition basis and the sparse basis), and 3) 
non-linear reconstruction.  The basic principles of compressed sensing are elucidated quite well in the literature, and for 
particular demonstrations of key concepts as applied to imaging, readers are referred to some of the seminal publications 
by Lustig et al 6, 7.  A simple and compelling graphical example may be found in Figure 2 of Ref 6 or Figure 5 of Ref 7.  
The gist of this example is as follows.  The Nyquist theorem dictates that regular undersampling cannot be untangled.  
When undersampling is performed in an irregular pattern, however, significant components may remain above the 
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pseudonoise associated with irregular aliasing.  Successive thresholding operations, followed by removal of clearly 
significant components along with their associated irregular aliasing artifacts, can then reveal other previously “buried” 
components, until the list of significant components is complete.   

Mathematically, the compressed sensing image reconstruction problem is often written as follows: 

 { }2

2 1
ˆ arg min λ= − +

x
x Ex y Tx   (1) 

Here, x  represents the true image content, x̂  is the image estimate resulting from reconstruction, y  is the acquired 
raw data, E  represents the “encoding” operation that converts x  into y  during data acquisition, λ  is a regularization 
parameter, and T  is a sparsifying transform.  The first term on the right hand side of Eq. (1) enforces data consistency 
using a traditional L2 norm, whereas the second term is a sparsity-enforcing regularization term.  Note that the use of an 
L1 norm in the regularization term, substituting for the more computationally challenging L0 norm that would simply 
count nonvanishing components, enables robust iterative solution using a variety of well-defined numerical methods.     

By now, some of the limits of compressed sensing have been well documented.  Unlike for many other rapid 
imaging methods, the maximum acceleration depends upon the underlying degree of sparsity, which may be estimated 
from experience but which is not known rigorously a priori.  For a single detector channel, a number of incoherent 
samples on the order of 3 to 5 times the number of sparse coefficients has been shown to result in statistically reliable 
information recovery.  For multiple detector channels (e.g. when compressed sensing is used together with parallel 
imaging), the minimum number of samples in each channel approaches the number of sparse coefficients.  Meanwhile, 
there are many practical tradeoffs associated with nonlinear reconstructions of the sort shown in Eq. (1).   Simple 
measures of signal-to-noise ratio (SNR) may no longer be accurate or even sensible, and subtle artifacts may appear 
when acceleration is excessive or reconstruction is over-regularized.  As a result, quantitative image quality evaluation in 
the presence of compressed sensing may be challenging.   

In addition to these potential problematic features, however, there are a number of salutary consequences of 
adopting a compressed sensing perspective.  First of all, one begins to focus less on the number of voxels in an image 
and more on information content.  Second, one is confronted with what might be called a paradox of dimensionality: in 
the era of sparsity, bigger, more diverse datasets tend to result in better reconstruction performance.  Multidimensional 
datasets tend to demonstrate more sparsity, and enable more incoherence, than datasets with fewer dimensions, and this 
has led to a new rule of thumb for data acquisition.  Whereas in a traditional setting of ordered acquisition and linear 
reconstruction, simple repeatable sequences are often preferred, in a setting of compressed sensing it behooves one not to 
repeat oneself.  Whenever possible, one should take advantage of temporal coherence and sampling-pattern incoherence.  
Taken together, these observations connect rapid imaging, more than ever, not just with raw acceleration but also with 
enhanced information content.  The examples that follow, taken largely though not exclusively from experience at our 
institution, represent only a very cursory sampling of the rich evolving literature in modern rapid imaging. 

4. THE MANY GUISES OF SPARSITY IN IMAGING 
Since the advent of compressed sensing, applications in imaging have burgeoned, particularly in MRI, but 

increasingly in other modalities.  A few illustrative examples are provided here, from MR, CT, and combined MR-PET 
studies.   

4.1 Magnetic Resonance (MR) 

Video 1 shows an early example of accelerated multislice first-pass cardiac perfusion MRI8, taking advantage of a 
largely synergistic combination of compressed sensing with parallel imaging.  In this case, an eight-fold total 
acceleration enabled whole-heart coverage with 10 slices per heartbeat, temporal resolution of 60ms per slice, and in-
plane spatial resolution of 1.7mm.  Cardiac imaging, with its competing constraints of spatial and temporal resolution, 
was one of the earliest areas of implementation for compressed sensing, with numerous reports appearing in the 
literature and at scientific conferences. Other early clinically-relevant applications of compressed sensing to pediatric 
MRI were demonstrated by Vasanawala et al9.  Though scanner vendors have so far been somewhat cautious in 
introducing compressed sensing into commercial products, research applications by now abound, and various clinical 
evaluations are underway.  One approach that has seen heavy clinical use at our institution is the Golden angle Radial 
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And Sparse Parallel imaging (GRASP) method10, which combines continuous radial imaging with compressed sensing 
and parallel imaging.  We shall return to GRASP in the discussion of rapid continuous imaging paradigms to follow.    

Video 1. Accelerated cardiac perfusion MRI using a combination of compressed sensing with parallel imaging8.  The inflow 
of a gadolinium-based contrast agent is shown in ten short-axis slices acquired in a healthy adult subject. 
http://dx.doi.org/10.1117/12.2085033.1

4.2 X-ray Computed Tomography (CT) 

Radial MR sampling might very well put one in mind of the angular projections acquired using X-ray CT with a 
rotating gantry.  If we were able to undersample CT data in projection space in a fashion analogous to radial MR data 
undersampling, we would be able to deliver reduced radiation doses to patients (since fewer X-rays would need to be 
delivered for any given image acquisition).  The fact that CT images can be reconstructed from undersampled datasets 
was recognized at the very start of compressed sensing4, and proposals for CT dose reduction using compressed sensing 
appeared soon afterward11.  However, no practical means of incoherent undersampling, analogous to the methods used 
routinely in MRI, has yet been demonstrated in the challenging physical environment of a rapidly rotating CT gantry. 
Our group has recently proposed an undersampling mechanism using a moving multihole collimator12, and evaluations 
of this approach for significant radiation dose reductions in CT are underway.        

4.3 Positron Emission Tomography (PET) and combined MR-PET 

Various uses of compressed sensing may also be envisioned for PET scanning, for applications ranging from spatial 
resolution enhancement to tracer dose reduction.  We will draw our examples here, however, from multimodality image 
acquisition and reconstruction, enabled, for example, by new simultaneous MR and PET scanners.  By and large, 
multimodality data are currently reconstructed separately, accounting for differences in imaging physics and underlying 
contrast, and are then superimposed for display.   When we acquire simultaneous data on the Siemens mMR MR-PET 
scanner at our institution, however, these data not only originate from a common anatomy but also share a common 
acquisition geometry.  From a compressed sensing point of view, one might posit that differences between the image 
content in MR and PET, though substantial, will be sparse in an appropriate domain.  Our group has recently proposed a 
combined reconstruction framework taking advantage of this joint sparsity.  Unlike other approaches using MR data as 
anatomical priors for PET reconstruction, our joint reconstruction approach does not prioritize one modality over the 
other, and improvements may be seen in both the MR and the PET images, including reductions in undersampling 
artifacts in MR and improvements in spatial resolution in PET13.  This form of joint reconstruction may be seen as one 
example of multi-sensor compressed sensing approaches that are being explored in a range of fields14-16.   

4.4 Hints of a new paradigm 

Just as our retinas are enviable models of parallel imaging systems, so we may look to our brains as examplars of 
sparse information recovery systems.  Human neural processes are highly efficient at data compression and information 
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extraction.  As we make our ways through any typical day, our brains are constantly distilling complex inputs rapidly 
into their essences, and they routinely reconstruct essential information from incomplete input.  In considering what is 
next for biomedical imaging, we might be well served by looking once again to our day-to-day experience of the world. 
That experience is dynamic and multifaceted, with diverse information streaming in constantly along multiple sensory 
channels.  Can we design imaging strategies to match these aspects of our experience?  The next two sections are 
devoted to early attempts at such strategies.   

Whereas biomedical imaging protocols have traditionally been designed around well-defined snapshots or ordered 
series thereof, a paradigm of rapid continuous imaging and flexible image reconstruction is emerging that may be better 
suited to capture the dynamic nature of experience.  Recent continuous acquisition approaches exploit correlations along 
the time domain, and, in so doing, they may often outperform traditional intermittent acquisition protocols.  In keeping 
with the paradox of dimensionality, it has been shown that acceleration capability, just like compressibility, is much 
greater with a time series than with a single snapshot, and an incoherently sampled time series plays particularly to the 
strengths of compressed sensing.   

What about the multifaceted nature of experience?  We have already spoken of multimodality approaches, such as 
MR-PET, that can provide simultaneous and complementary information.  A more general trend towards rapid 
comprehensive imaging is now afoot, which aims explicitly to entangle multiple distinct streams of quantitative 
information, which have traditionally been encoded separately and sequentially, within single dynamic multidimensional 
datasets.  This trend represents a new form of parallelism, which promises to transform imaging devices from “scanners” 
into something more closely resembling broadband communication channels. 

Let us explore some illustrative examples. 

5. RAPID CONTINUOUS IMAGING
Lauterbur’s original MR images17 were obtained with encircling angular projections, which correspond to a radial 

sampling pattern in Fourier space, or “k-space.”  Since that time, rectangular “spin-warp” sampling has become the 
norm.  However, there has been a recent resurgence in radial imaging approaches, sparked in large part by considerations 
of sparsity.  Radial k-space patterns tend to have favorably incoherent undersampling properties, well suited to 
compressed sensing reconstruction.  Radial trajectories are also robust to motion, and they lend themselves to flexible 
angular ordering schemes such as the “golden angle” scheme (see Video 2), in which each new radial spoke fills in the 
largest remaining gap in the angular distribution and provides complementary spatial information in a continuous 
nonrepeating sequence.  The GRASP technique10 mentioned earlier exploits such a golden angle radial sequence.  Since 
this sequence has no preferred starting or ending point in time or angular distribution, and since even small sets of time-
adjacent spokes provide nearly isotropic, if highly undersampled, coverage of k-space, the same dataset may be 
reconstructed with flexible temporal resolution, at essentially any time point of interest. The limits of achievable 
temporal resolution in this case depend upon the limits of acceleration that may be attained using parallel imaging and 
compressed sensing. 

Video 2. Animation of a two-dimensional golden-angle radial acquisition sequence, with each new spoke oriented at an 
angle of 111.25 degrees from the last.  This angular pattern can continue indefinitely without repeating. 
http://dx.doi.org/10.1117/12.2085033.2 
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Video3 shows the time evolution of 20 of a total of 40 slices through a series of whole-liver image volumes 
obtained from a continuous golden-angle radial acquisition following injection of gadopentate dimeglumine18.  GRASP 
reconstruction was performed with 1 x 1 x 3 mm3 spatial resolution and 2.8 second temporal resolution per volume, 
corresponding to a nominal 20-fold acceleration compared to traditional acquisitions and reconstructions without parallel 
imaging or compressed sensing.  This level of acceleration enables detailed visualization of both contrast agent and 
respiratory dynamics.  Note that one can choose the temporal location of reconstructed time frames retrospectively, so as 
never to miss the contrast agent bolus.  One may also group larger or smaller numbers of spokes into any given time 
frame, depending upon requirements of spatiotemporal fidelity.  Note also that the entire acquisition is performed during 
free breathing, with no reliance upon the breath-hold capacity of the subject.  This flexibility and robustness tends to be 
greatly appreciated by clinicians.  Clinical GRASP studies have been performed for several thousand patients at our 
institution to date, and GRASP is now being evaluated in multicenter trials.  Applications range from head to toe, 
including abdominal18, prostate19, and breast imaging20 studies, among others.   

Video 3. Free-breathing abdominal imaging using GRASP10, 18.  Twenty slices of a forty-slice whole-liver volume are 
shown over time during free breathing following the injection of a gadolinium-based contrast agent.  
http://dx.doi.org/10.1117/12.2085033.3 

Though GRASP is sufficiently motion-robust to obviate the need for breath-holding in many applications, motion 
can still degrade image quality, either by causing intraframe blurring for low-temporal-resolution reconstructions, or by 
degrading temporal sparsity and engendering residual inter-frame blurring in high-temporal-resolution reconstructions. 
Radial trajectories, however, have the additional advantage that each spoke passes through the center of k-space, and this 
repeated central data may be used as a sensitive indicator of changing motion states.  The eXtra-Dimensional GRASP 
(XD-GRASP) reconstruction method21 uses inherent self-navigation properties to sort GRASP data into multiple distinct 
motion states.  Rather than simply grouping temporally sequential spokes, the XD-GRASP algorithm groups spokes 
within a given motion state, and organizes the data into additional temporal dimensions representing the different types 
of motion.  The reconstruction equation then takes the generalized form 

{ }2
1 1 2 22 1 1

ˆ arg min  ... λ λ= − + + +
x

x Ex y T x T x  , (2) 

in which a distinct transform nT and regularization parameter nλ  may be applied along each dimension.  Respiratory 
motion and contrast enhancement may be captured in distinct dimensions for dynamic contrast-enhanced studies; or, as 
illustrated in Videos 4 and 5, the extra dimensions may represent respiratory motion and cardiac motion for cardiac 
MRI.  (In this case, coils near the heart and the diaphragm are used to characterize the cardiac and the respiratory motion 
signals, respectively.)  Sorting the continuously-acquired data into additional dimensions has a number of advantages. 
The extra dimensionality results in improved signal sparsity, since disparate motional frequencies and other dynamic 
characteristics are no longer intermingled.  This results in improved image quality and increased acceleration capability. 
At same time, extradimensional sorting is an efficient means of motion correction, which, unlike some traditional 
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navigation methods, does not require that any data be discarded.  Finally, XD-GRASP enables not just correction for but 
also characterization of motion.  It has been shown to be useful, for example, in separating and visualizing arrhythmic 
cardiac cycles22.  It has also proven useful in characterizing respiratory dynamics.  Videos 4 and 5 illustrate some of the 
scope of new dynamical information to which XD-GRASP provides access.  Whereas Video 4 shows a traditional view 
of cardiac contraction at a particular phase of respiratory motion, in Video 5 we sit at a fixed phase of the cardiac cycle 
and watch the heart over the course of respiration.  In this view, we can easily identify septal motion associated with the 
physiologic phenomenon of left-right ventricular (LV-RV) interaction: a phenomenon which until now has been difficult 
to visualize directly.  Note that all of this information may be obtained from the same continuously acquired dataset, 
simply by adapting the reconstruction algorithm and by slicing through the resulting multidimensional image series as 
desired. 

Video 4. Results from a cardiac XD-GRASP study21, showing cardiac motion over time for each of twelve distinct 
respiratory states identified and sorted using self-navigation data from a continuous free-breathing golden-angle 
radial acquisition.  http://dx.doi.org/10.1117/12.2085033.4

Video 5. More results from a cardiac XD-GRASP study21, showing respiratory motion over time for each of thirty distinct 
cardiac phases identified and sorted using self-navigation data from the same continuous free-breathing golden-angle radial 
acquisition as for Video 4.  Note that motion of the interventricular septum during respiration is indicative of the 
physiologic phenomenon of LV-RV interaction.   http://dx.doi.org/10.1117/12.2085033.5

There is still more information to be gleaned from the same datasets.  While XD-GRASP enables visualization of 
distinct motion states, it does not directly quantify the extent of the motion.  One could, of course, attempt to coregister 
distinct frames to derive approximate motion fields.  It turns out, however, that one may derive motion fields more 
directly from within the reconstruction algorithm itself, by appealing to a domain of mathematics closely related to that 

Proc. of SPIE Vol. 9417  94170G-8



of sparse information recovery – namely, low-rank matrix completion.  Several years after formalizing compressed 
sensing, Candès identified a low rank plus sparse (L+S) matrix decomposition of potential value for robust principal 
component analysis23.  The separation of correlated low-rank background (L) from sparse innovations (S) has also 
proven to be valuable for reconstruction of dynamic image series24.  L+S reconstruction may be viewed as another form 
of extradimensional reconstruction, in which the S component is rendered sparser by the removal of the background, and 
in which robust estimation of the background L component may be valuable in itself.  Recently, our group has shown 
that quantitative motion fields may be derived directly from continuously acquired radial data, by self-discovering the 
frame-to-frame transformations which minimize the rank of the L component25.   This so-called “motion-guided L+S” 
reconstruction takes advantage of self-consistency within diverse continuously acquired datasets to derive accurate 
quantitative motion models, rather than trying to fit the data to a particular a priori model.   

6. RAPID COMPREHENSIVE IMAGING
The question of quantitation highlights certain notable differences between tomographic imaging modalities.  In 

many ways, quantitative pixel intensities come more naturally to CT and to PET than they do to MRI.  The highly 
flexible tissue contrast and rich endogenous information content associated with MRI also result in a high degree of 
potential operator- and scanner-dependence.  Therefore, whereas the interpretation of most varieties of clinical MR 
images is qualitative, specialized MR pulse sequences are usually deployed for the quantitative mapping of tissue 
parameters such as relaxation times or diffusion constants.  These specialized sequences come at a significant cost in 
scan time and, even when carefully calibrated, they suffer from residual errors and interferences which result in 
undesirable variability.   

Recently – and arguably as a partial outcome of the “compressed sensing perspective” alluded to earlier – it has 
been recognized that the multifactorial complexity of spin dynamics may represent an asset rather than a liability for 
quantitation.  In particular, there is an emerging trend towards fitting multiple physical parameters (and, as desired, 
deriving multiple contrasts) from the same acquired data.  This trend is in direct contradistinction to the traditional 
approach of designing sequences around as simple a dynamical effect as possible, then correcting for undesired effects 
though painstaking calibration. Such a trend can also be viewed as another manifestation of the paradox of 
dimensionality.  Whenever possible, the reasoning goes, mix together disparate encoding mechanisms such that the 
whole dataset is greater than the sum of its parts.   

The current archetype of this new comprehensive quantitative mapping approach is the MR Fingerprinting (MRF) 
technique, as championed by Griswold et al26.  MRF entangles the effects of multiple physical parameters (T1 and T2 
relaxation, proton density, magnetic field inhomogeneity, etc.) in long pulse sequences with irregular timing.   Spin 
evolution under the influence of these sequences results in complex temporal signals that serve as distinctive 
“fingerprints” for particular sets of parameter values.  Individual voxel fingerprints from a series of successive image 
frames are matched to a database of simulated spin dynamics with a range of known parameter values.  Since the MRF 
sequences are arranged such that undersampling artifacts are incoherent with the dynamical fingerprints, the fingerprints 
may be matched reliably to the database even for highly undersampled image sets, enabling high degrees of acceleration 
that compensate for the duration of the lengthy pulse trains. In this way, multiple quantitative parameter maps are 
derived rapidly and simultaneously from images that, on their own, would be essentially uninterpretable. 

Though the simple pattern-matching reconstruction in MRF is quite different from the iterative sparsity-enforcing 
reconstructions discussed earlier, there is nonetheless a strong connection to compressed sensing.  MRF makes liberal 
use of incoherent acquisition, and Bloch equation models serve to capture the key dynamical coherences in the data, 
effectively standing in for a sparsifying transform.  MRF also has some of the provocative effect of compressed sensing, 
spurring out-of-the-box thinking about potential new encoding or reconstruction methods.  In our group, we have found 
that, even with more highly coherent acquisitions, for example traditional multi-spin-echo sequences optimized for rapid 
T2 mapping, one can map multiple quantitative parameters, including not only T2 and proton density but also the B1

+ RF 
transmission field distribution, by fitting to Bloch equation models27.  We have also discovered that MRF pattern 
matching may be extended to map the B1

+ transmit field pattern of multiple RF coils28.  In addition to enriching the 
information content of fingerprinting sequences at no cost in acquisition time, this new “multi-illumination” 
fingerprinting approach has been shown to enable robust imaging in the presence of strong RF field inhomogeneities. 
As a result, it promises to reduce the calibration-heavy and workflow-intensive field of parallel RF transmission to a 
simple “plug and play” mode of operation28.   
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The multiparametric mapping approaches discussed so far all adhere to the general theme of allowing, or even 
embracing, inhomogeneities and signal imperfections.  Rather than employing Herculean efforts to calibrate out 
imperfections, these approaches quantify inhomogeneities along with the usual desired parameter values, based on the 
distinctive characteristics of a multifaceted acquired signal.  Like XD-GRASP or combined MR-PET, these rapid 
comprehensive imaging approaches represent a form of all-in-one acquisition.  With the example of plug and play 
parallel transmission, we have also introduced a new theme of workflow simplification, which we will now take up in 
more depth as our survey of developments in rapid imaging concludes. 

7. TOWARD RAPID, CONTINUOUS COMPREHENSIVE IMAGING:
THE RAPID IMAGING RENAISSANCE 

When it comes to workflow, MRI has much to envy about (and ideally to learn from) CT and PET.  Modern 
multidetector-row CT scanners are capable of comprehensive anatomic coverage in few-second scans.  PET 
scanners gather stochastic 3D radial projections continuously at any given bed position, with minimal user 
interaction required once appropriate tracers have been injected.  By comparison, MR scanning is ponderous and 
complex, with a profusion of user-definable scan parameters that can, for good and ill, affect the information content 
of the resulting images.   We now offer two examples of how the advances described so far can enable dramatic 
simplifications of MR (and multimodality) workflow, while preserving and ultimately enhancing image information 
content.   

Cardiac MRI boasts some of the most complex workflow in the field.  Both cardiac and respiratory monitoring 
are routinely performed, and advanced training is required merely to orient key multi-oblique image planes correctly 
during the planning of scans aimed at characterizing diverse aspects of cardiac anatomy and function. A few-minute 
comprehensive cardiac examination has long been a holy grail for those interested in cardiac MR.  In a collaboration 
with the research group of Stuber et al., our group is now pursuing a prototype few-minute continuous 
comprehensive cardiac MR examination, using five-dimensional XD-GRASP29.   The “spiral phyllotaxis” 
trajectory30 used in this work is a generalization to three dimensions of the golden-angle radial trajectory used in 
prior XD-GRASP studies.  In 5D cardiac XD-GRASP, continuously acquired data obtained during free breathing 
are sorted into cardiac and respiratory motion dimensions, in addition to the three spatial dimensions defining the 
imaging volume.  This approach yields high-resolution isotropic whole-heart image sets in which cardiac motion, 
respiratory motion, and cardiac anatomy are all resolved.  One can obtain robust views of cardiac and great vessel 
dynamics in any desired orientation, and from the same data one can derive high-resolution depictions of coronary 
arteries throughout the cardiac and respiratory cycles.  In this early work, we have not yet incorporated myocardial 
perfusion and viability studies, but in light of experience so far using XD-GRASP for other contrast-enhanced 
studies, this seems a natural extension. 

Our second example of rapid continuous comprehensive imaging was also motivated originally by workflow 
considerations.  When we began performing simultaneous MR and PET scans on our Siemens mMR scanner, we 
quickly realized that the MR imaging protocol in many cases represented a temporal bottleneck.  By the time the 
scan operator was done with gathering the multiple contrast weightings called for in clinical protocols, the typical 
time needed for FDG-PET acquisitions had long been exceeded.  Though of course we could always continue 
averaging PET counts for the entire duration of the MR protocol, we were in a sense only biding our time.  To 
address this inefficiency, we turned to MRF, and designed a joint MRF-PET acquisition and reconstruction 
approach31.  MRF-PET combines joint MR-PET reconstruction, as described earlier, with spin dynamical pattern 
matching to derive multiple quantitative MR maps together with improved PET images.  The joint reconstruction, 
moreover, improves MR aliasing artifact removal, as a supplement to the incoherence effects in MRF alone.  The 
net result is a diverse, quantitative multimodality image volume obtained in the time normally occupied by a single 
PET “bed position.”  Figure 2 illustrates the range of information which may be obtained from a single six-minute 
continuous radial MR-PET acquisition.  In the figure, only three representative slices are shown out of a total of 30 
slices covering the whole head. In addition to the PET image set, matched quantitative T1 and T2 maps are 
obtained, along with relative proton density maps (not shown).  With T1 and T2 values in hand, one can use well-
known MR signal equations to generate images with the contrast weightings that would result from any MR pulse 
sequence of interest, such as the T1-, T2-, and FLAIR weightings shown in the figure. Entanglement of multiple 
streams of information in this case results not only in improved quantitation but also in marked practical 
convenience.  When all the information of interest may be obtained in a few minutes per bed position, one can begin 
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to contemplate efficient whole-body MR-PET screening.  One can also perform retrospective data mining, in which 
any suspected lesion detected on MR and/or PET can be examined after the fact with a range of potential synthetic 
contrasts, to clinch the diagnosis without need for any additional scanning. 

Figure 2. MRF-PET.  Three representative slices are shown from a 30-slice whole-brain axial image set obtained after 
surgery in a patient with a brain tumor.  The diverse information obtained from a single continuous six-minute MRF-PET 
acquisition includes quantitative T1 and T2 maps, jointly reconstructed PET images, and a variety of synthesized contrast 
weightings, including T1, T2, and FLAIR weightings.     

The limits of just how much information can be embedded robustly in sequences like MRF-PET are still being 
explored.  Meanwhile, it is natural to contemplate combining MRF or MRF-PET with approaches like XD-GRASP 
or motion-guided L+S.  Such a combination would address known challenges associated with motion in MRF.  It 
would also represent a unified approach to quantifying physiologic dynamics along with spin dynamics (not to 
mention PET tracer kinetics).  Traditionally, physiologic motion has been considered the nemesis of quantitative 
imaging, but in such a unified approach, the two would be synergistically entangled, requiring only appropriate 
reconstruction algorithms to disentangle them as needed.     

8. CONCLUSIONS, AND A LOOK TO THE FUTURE
In closing, we would argue that the future of rapid imaging lies in continuous comprehensive data acquisition 

coupled with flexible image reconstruction.  This is why we have included the final arrow shown in blue at the 
bottom of Figure 1.  We believe that the rapid continuous comprehensive paradigm has the potential to catalyze a 
new use of time in imaging, as is illustrated in Figure 3.  At the top of the figure is a schematic representation of the 
traditional MR imaging protocol, with distinct contrast weightings achieved in distinct acquisitions using tailored 
pulse sequences.  The scanner is not active during the dead time (D) between each sequence, which may become 
extended if careful planning of new scan geometries or other user input is required.  Motion between scans can 
hinder registration, and motion during scans typically leads to artifacts.  By contrast, the bottom of Figure 3 
illustrates the new paradigm of rapid continuous comprehensive imaging.  A simple-to-plan comprehensive dataset 
is acquired efficiently, with no dead time.  Patient motion during the acquisition is tracked using self-navigation or 
motion model discovery. Depending upon the clinical indication for imaging, a preset portfolio of reconstructed 
images may be presented initially to the radiologist.  If he or she detects anything in these images which raises 
suspicion, and which calls for any new views or contrasts, these may be generated on the spot from the raw data by 
appropriate reconstruction or other processing algorithms.  The acquired data, moreover, need not be limited to MR 
data.  If multiple modalities are available, then joint reconstruction may be applied to take advantage of shared 
information, to highlight noteworthy differences, and, ultimately, to generate multimodality “fingerprints” of 
pathology.   
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Figure 3. Towards a new use of time in imaging.  Top: schematic illustration of a traditional (“old”) MR imaging protocol. 
(D = dead time between distinct contrast-weighted sequences.)  Bottom: illustration of the new paradigm of rapid 
continuous comprehensive imaging. 

Despite the technological and computational complexity underlying such a continuous comprehensive imaging 
paradigm, its net effect will be a marked operational simplicity.  One can envision a future scanner operator’s tasks being 
distilled down to a) positioning the subject within the scanner, and b) pressing the “go” button.   The key challenge then 
will lie in navigating the resulting multifaceted datasets.  This is a worthy challenge, which is already being taken up 
across a broad range of disciplines in our increasingly information-saturated age.  In the meantime, much work remains 
to be done before the current rapid imaging renaissance reaches its peak.  We encourage students of imaging to embrace 
the disruption and the opportunity that will ensue.  The result may be nothing less than a change in the way we see the 
world around us. 
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