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ABSTRACT

Atoms interacting with standing light waves are a model system for the propagation of waves in static and
time varying periodic media. We present here experiments studying the coherent motion of atomic deBroglie
waves in periodic potentials made from on and off resonant light. We observe anomalous transmission of atoms
through resonant standing light waves and experimentally confirm that atoms fulfilling the Bragg condition form
a standing matter wave pattern. We furthermore demonstrate how Bragg diffraction of atomic matter waves at a
time-modulated thick standing light wave can be used to coherently shift the deBroglie frequency of the diffracted
atoms. Our frequency shifter for atomic matter waves is similar to an acousto-optic frequency shifter for photons.
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1 Introduction

The interaction of waves with periodic media provides a plethora of beautiful coherent wave phenomena® which
are particularly striking for deBroglie waves of massive particles. Many of these have wide applications in neutron
optics, electron optics and solid state physics. Atoms interacting with standing light waves now provide a model
system to study some of these phenomena in a clean and controlled way? and open up new possibilities in studying
propagation in time dependent periodic potentials®*

This analogy is based on the fact that a light field can model a complex potential for atoms: The interaction
between a light field and a two level atom with an additional decay channel of the excited state to a third non
interacting state, can be described by the complex optical potential®

dE(z,y)®

A+iy/2° @)

U(:l:, y) =h
Here E(z,y) is the electric field connected to the light, d is the dipole matrix element of the transition, A represents
the difference between the driving light frequency and the eigenfrequency of the transition, and v is the loss rate
from the excited level to the non interacting state. In matter wave optics any potential is equivalent to an index
of refraction n ~ 1 — 5 EI{;.. for the propagating matter wave (Eg, is the kinetic energy of the particle). Hence
any light field structure can be regarded as a potential (refractive index structure like a hologram) for atomic
deBroglie waves.
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Atoms propagating in light crystals have now some distinct advantages in studying propagation in periodic media:

o Using diffractive optics and holography one can, in principle, build a large variety of different light structures,
and therefore many different potentials for the atoms.

o The light intensity and frequency can easily be manipulated using laser technology. One can easily design
and change the periodic medium. We may consider (a) very weak, elastic interactions such as those in
dynamical diffraction,® (b) very strong interactions as in channelling and” (c) those interactions which are
dominated by dissipative processes using on-resonant light; or any combinations thereof.

e The potential can be changed on a timescale much faster than the spatial evolution of the atomic wave-
function in the medium. This allows to study a large variety of phenomena in time dependent quantum
mechanics.

e In addition light fields can be easily superposed, and translated within each other. This allows many
interesting studies of the propagation of the atomic deBroglie wave inside the light potential

In the following we will give a brief description of our experimental apparatus, turn to recalling the basic regimes
of coherent propagation in periodic media and will then describe our first experiments demonstrating some basic
phenomena for matter waves propagating in static and dynamic potentials.

2 Experimental setup

Our experiments were performed using a beam of metastable Argon atoms® propagating in an atomic beam
apparatus designed to resolve the tiny deflection of atoms when diffracted at the periodic potential of a standing
light wave (J4i55 = 32 prad for 800 m/s atoms and Ajigrs = 801 nm). A detailed description of our experimental
apparatus can be found in a recent review.!® We give here only a brief overview:

The vacuum envelope of the atomic beam consists of five components arranged in three differentially pumped
sections: (1) the source chamber, (2) a first collimator to define a well defined beam, and in (3) the multi-purpose
chamber for the atom-light interaction, a second collimator to select one outgoing propagation direction, and the
detector. The high angular resolution for transverse deflections (about 7 urad FWHM) is obtained with the two
separate collimation sections, each of them formed by two narrow slits (typically 5 pm or 10 pm wide) separated
by about 1 m. Scanning the final slit (10 um) of the last collimator in front of the channeltron detector also
provides the fine spatial resolution for measuring diffraction patterns. In our collimated atomic beam we detect
typically 5000 atoms/sec.

Choosing metastable “°Ar* has many advantages for our experiments. It has a simple but very interesting level
scheme (see Fig. 1) which provides us with the required open transitions to realise the complex optical potentials
(Eq. 1). Starting from the 1s5 metastable state there is a closed transition (1s5 — 2pg) at 811nm (J =2 — J = 3)
and an open transition (1ss5 — 2ps) at 801 nm (J = 2 — J = 2) where the decay proceeds with 72% to the Ar
ground state. Starting from the other metastable state (1s3) there are no closed transitions but the transition
(1ss — 2p4) at 795 nm (J =0 — J = 1) can be used again as an open transition with a branching ration of 42%
to the Ar ground state. In addition the transition across the 2p4 excited state allows coherent transfer between
the two metastable states from 1ss to 1s3. The transition (1ss = 2p4) at 715 nm (J = 2 = J = 1) is very weak
and has a probability of only 1.9% to fall back to the 1s; state but 56% probability to decay to the 1s3 metastable
state or 42% to decay to the ground state via the 1s; state.

In addition the metastable atoms can be easily detected using a channeltron, whereas the ground state Ar atoms
remain undetected. Therefore in the open transitions metastable Ar atoms pumped to the ground state and are
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Figure 1: Figure showing the level scheme of metastable Ar, including the branching ratios of the various open
decay channels. In our experiments we used the 1s; metastable state and there the closed transition (1s5 — 2pg)
at 811 nm (J = 2 — J = 3) and the open transition (1s5 — 2pg) at 801 nm (J =2 — J = 2).

lost for the detection, they look as being absorbed by the complex potential (Eq. 1). This offers the interesting
possibility of realising amplitude gratings (absorptive structures) with light fields.

In the experiments described here we mainly used the 811 nm and the 801 nm transitions. Varying the detuning
of an 801 nm standing light wave, we could thus realise real, complex, or pure imaginary potentials for the
metastable Argon atoms.

3 Atoms in Light Crystals

Before we proceed to the description of our recent experiments we will present first an overview on the general
regimes and parameters relevant for the propagation of atoms in periodic light structures as adapted from crystal
physics.

Generally in optics one distinguishes between thin and thick optical elements depending whether the transverse
motion of the wave inside the optical element is significant. A grating with period dg and thickness Dg can
be regarded as thin when the separation between different diffracted orders at the back face of the grating is
smaller than the grating period. Quantitatively, this implies that Dg << d%/X\ag = %LTau,ot where Lraibot
is the Talbot length of near-field diffraction.!? If the periodic potential extends for longer then a Talbot length



(D >> d%/Aap) then diffraction orders cross the lattice planes and we will call it a crystal. For atomic deBroglie
waves passing through such a light crystal one has to consider the interference of all the different scattered waves
and a plethora of multi path interference phenomena arise.

If one discusses atomic motion in such a thick crystal a second distinction becomes important: whether the motion
transverse to the incoming beam direction is free or bound. Depending on these characteristic one can distinguish
between two regimes:

¢ Quantum Channelling of particles can be observed if the light shift potential U represented by the planes
of the three-dimensional grating is high enough that the particle is confined to one row or plane. This can
be formulated either by requiring that there is at least one bound state in a row or plane, or by requesting

h2 éZ
2M

U>> ()
where G is the reciprocal grating vector and M is the mass of the particle. €pec = A? G? / 2M is also referred
to as the recoil energy when transferring one momentum AG to the particle.

e Dynamical Diffraction describes the motion of particles if the potential is much smaller than e,..:

R2G?

i ©)

U <<

Then the motion transverse to the lattice planes is quasi free and all the waves scattered at many lattice
planes interfere and, typical for dynamical diffraction, multi beam interference phenomena arise.

Many of the basic phenomena arising in the propagation of waves in periodic media utilise only diffraction at one
set of crystal planes. A standing light wave can model such a set of crystal planes with adjustable ratio of refractive
and absorptive modulation. Therefore we started our first experiments?® with these simple three dimensional
structures periodic in one dimension (standing light waves) which we call a ‘Jight crystal”. Generalisation to light
structures periodic in two or three dimensions is then straightforward.

Experimentally the standing light wave was realised by retroreflecting a parallel laser beam from a mirror (/10
flatness) arranged close to the atomic beam inside the vacuum chamber. The surface of the mirror defines a node
of the standing light wave and hence the lattice planes of the light crystal which are then parallel to the mirror
surface. Rotating the mirror around a vertical axis results in a change of the angle of incidence of the atoms at
the light crystal. Measuring the angular dependence!? of the transmitted or diffracted intensity (a rocking curve)
provides an experimentally simple and robust way to study the diffraction processes in the crystal. The mirror
could also be translated in a direction perpendicular to the atom beam with a resolution of 0.5 um.

To build the optical potentials we used diode lasers: One laser diode tuned to the 1s; — 2ps transition at
801.7nm provided the light for realisation of the absorption crystal. A second laser diode tuned close to the
1ss — 2pg transition at 811.8 nm could be used to make a phase crystal. Finally, a laser diode tuned to 795.0 nm
(1s3 — 2p4) served to pump the 1s3 metastable state to the ground state to reduce our background. The standing
light waves where realised by expanding the laser beam to up to 4 cm with a Keplerian telescope.

In the next sections we will give an outlook into this new area of atom optics and atomic interference and

present experiments illustrating the fascinating new possibilities arising from dynamical diffraction and multi
beam interferences.
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4 Amplitude gratings made from on resonant light

One straightforward application of the interaction between a light field and a two level atom with an additional
decay channel of the excited state to a third non interacting state, is to build amplitude structures with on
resonant light.

Let us consider such an atom crossing a thin standing light field tuned ezactly on resonance. Atoms crossing
the standing light wave near the antinodes of the field will scatter many photons and will consequently be
pumped to the undetected state. Atoms near the nodes of the light field will have a small probability to scatter
light. For sufficiently long interaction times t only atoms crossing near the nodes of the light field will survive.
The atomic transmission can therefore (neglecting saturation effects) be written in the form I = I, T with
T = exp(—«cos(kz)?). For sufficient high light intensities (x >> 1 amplitude structures with open slits < A\/10
can easily be obtained).

To demonstrate that ezactly on resonant light can be used to build an absorption structure, we measured the
total transmission through two such gratings. Translating them with respect to each other allows to estimate
the transmission functions of the grating. Figure 2 shows data from such an experiment. The full width at half
maximum of the transmission peaks measures ~ 90nm. Consequently, using on resonant light, we could realise
an optical mask for neutral atoms with nanometer size, resolution, and accuracy. These masks are a very useful
tool to probe small atomic matter wave patterns, as we will show in the following experiments.
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Figure 2: Total transmission through two on resonant light gratings as a function of their relative transversal
position. The line is a fit with an exponential attenuation law as given in the text.



5 Coherent atomic motion in periodic structures made from
on and off resonant light

*

In our first set of experiments we studied the coherent motion of atoms in static crystals made from on and off
resonant light.2 The basic phenomenon for atoms propagating in thick far off resonant standing light waves is
Bragg scattering which was observed first by Martin et al.!® and later studied by other groups.'*

We started our investigations by investigating the propagation of atoms in on resonant standing light wave,
equivalent to a purely imaginary (absorptive) periodic potential. We experimentally observe that the total
number of atoms transmitted through the standing light wave increases if the angle of incidence is the Bragg
angle (see Fig. 3). This observation is similar to anomalous transmission discovered for X-rays by Borrmann in
1941.15

This observed anomalous transmission can be interpreted as Bragg diffraction from a purely imaginary potential.
Bragg diffraction implies that inside the crystal, the incident wave gives rise to a coherent diffracted wave, which
interferes with the forward propagating wave to form a standing atomic wave field. The difference between these
two atomic wave vectors, kr and kg = kr + é, is equal to the lattice vector G which implies a standing atomic
wave field with the same periodicity as the standing light wave. The eigenfunctions of the atomic wave field
inside the standing light wave can be obtained by applying the principle of extremal interaction!® analogous to
dynamical diffraction of neutrons at perfect crystals. The interaction is maximal if the anti-nodes of the atomic
wave field coincide with the planes of maximal light intensity (we will call this state ¥,,,.) and it is minimal when
the anti-nodes of atomic wave fields are at the nodes of the standing light wave (¥,,iy,). The total atomic wave
function inside the crystal is then a superposition of ¥,,4, and ¥,,;, satisfying the initial boundary condition.
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Figure 3: Total intensity of the metastable Ar* beam after transmission through a standing light wave tuned
exactly on resonance to an open transition (see insert) as a function of incidence angle. The transmission increases
anomalously for Bragg incidence from either side relative to the planes of the standing light field. The solid line
is a fit curve with two Gaussian curves.
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Because of the different interaction energies ¥4, and ¥,,,;, accumulate different phase shifts propagating through
the crystal, which gives rise to the Pendellosung phenomena of Bragg diffraction.

The above picture leads to a clear intuitive interpretation of the anomalous transmission effect shown in Fig. 3.
The rate of depopulation of the metastable state is proportional to the overlap between the atom wave field with
the standing light field. It is reduced for ¥,,;, while it is increased for ¥,,,, as compared to the average absorption
observed for oblique incidence. If the interaction length is sufficiently long, ¥, is strongly attenuated and the
outgoing state is mainly the less attenuated ¥,,;, resulting in an increase of transmission as compared to an
off-Bragg beam interacting with a light crystal of equal length.

We now turn to the question of observing the atomic wave fields inside the light crystal which are a superposition
Of Wmin a-lld Wmaz:

The coherence and the relative phase of the two outgoing beams, (the forward and the Bragg diffracted beam) can
be measured by recombining them and observing their interference. Experimentally we realised this by placing
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Figure 4: Measurement of the standing atomic wave fields in the light crystal. The anomalously transmitted
wave field (middle trace) has its maxima at the nodes of the standing light field. If the 801 nm standing wave
is detuned far off resonance, the standing atomic wave is shifted by 7/2 to the left for blue detuning (positive
potential) and to the right for red detuning (negative potential).



an additional phase Bragg crystal behind the absorptive respectively phase crystal made with 801 nm light (see
Fig. 4). The new phase crystal was realised with a laser tuned far off resonance to the closed transition at 811 nm
(red detuned). Since the two standing light waves have different wavelength the relative phase A¢ between both
crystals varies as a function of the distance Az from the mirror (A = 2(k; — k2)Az) resulting in a spatial beat
period of 32.4 ym. Moving the mirror one can translate the two crystals relative to each other. The interference
is observed as an intensity variation in the two outgoing Bragg diffracted beams with the beating period.

For the absorptive crystal, we expect the atomic wavefield at the exit face to be ¥,,;,, that is shifted by +x
relative to the light field. For phase crystals, which can be realised by detuning the laser from resonance, the
outgoing wave field is a superposition of ¥, and ¥,,,,. For Bragg incidence (¥;, = e2%¥) the total wave
function inside the crystal is ¥ = cos(1G - ) + ie**(*) sin(1G - £) which fulfills the boundary condition at the
entrance face for ¢(z = 0) = 0. The resulting total wave function has its maxima at the steepest gradient of the
optical potential, shifted by £/2 relative to the light field.!” This has to be compared to the case of absorptive
crystals where the wave field is shifted by + relative to the light field. Equivalently the relative phase between
the Bragg and forward diffracted beam in the case of a phase crystal is /2 while for the absorption crystal it
is m.

The data from an experimental study in this two crystal geometry? is shown in Fig. 4. The top (bottom) curve
shows the interference pattern for a far blue (red) detuned light crystal made from the 801 nm laser light. We
observed the expected 7 phase shift which arises from the fact that the light shift potential switches sign for red
and blue detuning. The curve in the middle was observed for the first crystal exactly on resonance at 801 nm.
First off all the interference confirms the coherence of the observed two beams emerging from the first crystal,
even on resonance. Secondly we observe the expected phase shift of w/2 relative to the far off resonance cases.

In a separate experiment we determined the absolute position of the standing matter wave pattern at the exit of
a far off red detuned 811 nm light crystal by masking it by a thin on resonant 801 nm amplitude grating. The
gold surface of the retroreflecting mirror defined the nodes of the electric fields for both frequencies. Measuring
the transmitted intensity as a function of the distance of the atomic beam from the mirror surface allows then
to determine the absolute position of the standing atomic wave field. We found, for incidence angle exactly
on Bragg, the maximum of the atomic wave field in the off resonant light crystal to be located at the steepest
gradient of the optical potential, in accordance with the above description. The position scale in Fig. 4 reflects
this measurement.

6 Atomic motion in time dependent periodic potentials

One advantage of studying the coherent motion of atomic deBroglie waves in light crystals is that the potential
can be changed on a timescale much faster than characteristic for spatial evolution of the atomic wavefunction.
This allows to study a large variety of time dependent phenomena in quantum theory.

Experiments using time dependent interactions were performed in neutron optics!? and in recent years using cold
Cs atoms.?° In all these experiments the interaction time was much smaller then the modulation period, this
is analogous to the Raman-Nath (”thin-grating”) regime in spatial diffraction. In our experiments®* we studied
Bragg scattering at a time dependent potential in a regime where the interaction time is much longer than the
typical modulation period.

A detailed study of this time-dependent Bragg-scattering is shown in Fig. 5. In these experiments we measure the
intensity of the diffracted atoms as a function of the mirror angle (rocking curves). The top graph of the series
shows the rocking curve for Bragg scattering off a static (unmodulated) light crystal. Only one peak at the static
Bragg angle is observed. The next curves show the same experiment, but with intensity modulation frequencies
in the range from 25kH z to 250k H z in steps of 25kH z. In contrast to the static case two pronounced side peaks
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Figure 5: Diffracted atoms as a function of their incidence angle at the amplitude modulated standing light wave
(see inset), at different modulation frequencies. The detection slit is located such that only diffracted atoms are
registered. The top graph of the series shows the result for an unmodulated light crystal and only one peak at
the static Bragg angle is observed. The next curves show the same experiment, but with intensity modulation
frequencies in the range from 25kH z to 250k H z in steps of 25k H z. In contrast to the static case two pronounced
side peaks appear in each curve. They are located symmetrically around the central Bragg angle. Their angular
separation from the central peak increases linearly with the modulation frequency. The deBroglie wave frequency
of the atoms in the new Bragg peaks is shifted by + the modulation frequency.

appear in each rocking curve, indicating two additional Bragg resonances. They are located symmetrically around
the central Bragg angle, and their angular separation from the central peak increases linearly with the modulation
frequency.

For an explanation of the observed Bragg scattering at a time dependent potential we first examine the usual
case of static Bragg diffraction. In the time independent case Bragg diffraction conserves the kinetic energy of
the atoms IkBl = |kF| (elastlc scattering) but changes the direction of the atomic momentum by one reciprocal
grating vector kp = Er + G. First order diffraction can occur only at a specific incidence angle, 8, which fulfils
the Bragg condition: sin(fg) = ki /ka.

The Bragg condition can alternatively be interpreted in a different way: Bragg diffraction can be seen, in the rest
frame of the incident atom, as a transition in a two state system consisting of a diffracted and an undiffracted state



separated by the energy hwg = hzéz/ 2m corresponding to a momentum transfer of hG. We call wg ” grating
recoil frequency”. In static Bragg-diffraction the excitation frequency wg in the restframe of the atom is created
by the atomic trajectory crossing the spatially modulated light intensity grating (wspa: = 27/7 = RG? /2m) which
is exactly wg.

The new Bragg resonances in the diffraction from an time modulated light crystal can then be interpreted using
both viewpoints.

The modulated light field exhibits, besides the carrier frequency w,, also sidebands with frequencies w, + wp,
These sidebands in the light field form moving light crystals with a velocity of v = +¢/2wp, /w.. Atoms can now
Bragg diffract from these moving crystals.* The incident angle for satisfying the Bragg condition is now defined
in the moving frame and will be different in the laboratory frame of the experiment, and the energy of the Bragg
diffracted beam will be shifted by *fiwy,

Analogously one can explain the appearance of new Bragg resonances in amplitude modulated light crystals by
the second viewpoint. For atoms incident at an angle § = 6 + A6 detuned from the static Bragg angle the
intensity modulation frequency wgpe: = 2kLh—,':;4- tan(fp + Af) = wgrec + 2ka‘;-ﬁ4A0 experienced by the atoms
due to their passage through the spatially periodic light grating is not the grating recoil frequency required for a
Bragg transition. However an additional intensity modulation of the light wave with frequency wy, results in a
sum and a difference frequency wpeat = Wm + Wspat €xperienced by the atoms. Thus, two new resonances appear
when wpeqt €quals the two-photon recoil frequency required for Bragg diffraction. Momentum conservation then
requires that in the laboratory frame the frequency of the de Broglie wave diffracted at the temporally modulated
intensity grating is shifted by the intensity modulation frequency, wp,.

The absolute position of the diffracted peaks in Fig. 5 agrees, within our measurement accuracy, with the positions
expected from the above considerations. The width of the side peaks broadens with larger angular detuning,
because the spatial frequency distribution, Awspgt, €xperienced by the atoms on their trajectories through the
light crystal broadens due to the longitudinal atomic velocity distribution. This increases the range of incidence
angles at which diffraction is possible.

In the next part of our experiment we directly demonstrated the coherent frequency shift of the diffracted atoms
by interferometric superposition with the transmitted beam. The two outgoing beams form an atomic interference
pattern behind the modulated crystal (see inset of Fig. 6). This density modulation can again be probed by a thin
absorptive grating (801 nm on resonant) with the same periodicity. If the de Broglie frequency of the diffracted
atoms is shifted by w,, the atomic interference pattern should travel in the direction of its grating vector. This
results in a temporally oscillating total atomic transmission through the absorption grating.

Fig. 6 shows the result of an experiment where the intensity of the light crystal is modulated with a frequency of
wm = 2w X 100kH z. The mirror angle is adjusted to one of the dynamic Bragg angles for the 100k H z modulation.
Transmitted atoms are measured as a function of their arrival time, keeping a rigid relation between intensity
modulation phase and triggering of each detection scan. The lower curve of Fig. 6 shows the total transmission
through the two-grating set. As expected, the transmission oscillates with the light intensity modulation frequency
(27 x 100kH z). The top curve of Fig. 6 shows such a measurement with the position of the Bragg-mirror shifted
by 16.5 um (one half of the spatial beating period) with respect to the previous experiment. Now, the phase of
the atomic transmission shifts by w as expected. Both curves together confirm the existence of a travelling atomic
interference pattern behind the light crystal, and thus a coherent frequency shift of w,, between diffracted and
transmitted atoms.

Our device utilising Bragg diffraction of atoms from a time modulated light crystal acts as a frequency shifter for
atomic matter waves similar to an acousto-optic frequency shifter for photons.
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Figure 6: A thin stationary absorptive grating (801nm focused standing light wave) probes the travelling atomic
interference pattern behind the modulated (100kHz) 811nm light crystal. The total atomic transmission is
detected as a function of time showing the interference between matter waves of different frequencies. A relative
phase shift of = between the two light waves is introduced by shifting the common retro-reflection mirror by 16.4
pm. This results in a corresponding w-phase shift of the atomic transmission oscillations between upper and lower
data graphs.

7 Conclusion

Concluding we want to emphasise that the possibility to build complex light potentials of a wide variety leads
to a new tool for creating, manipulating and investigating matter wave fields. We expect that the experimental
possibilities opened up here will lead to detailed and clean investigations of many wave propagation phenomena
in periodic media. This will include model systems for similar effects in other areas of physics.

This work was supported by the Austrian Science Foundation (FWF), project S06504,and P10216 by the US
National Science Foundation, Grant Nu. PHY92 - 13964, and by of the European Union, contract Nu. TMRX-
CT96-0002. J.S. is supported by an APART-fellowship of the Austrian Academy of Sciences and S.B. acknowledges
an HCM- fellowship of the European Community (Contract No. ERBCHBGCT 940664)

8 REFERENCES

[1] J.M. Cowley Diffraction Physics, North Holland (1990)
[2] M.K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, A. Zeilinger, Phys.Rev.Lett. 77, 4980 (1996)
[3] S. Bernet, M.K. Oberthaler, R. Abfalterer, J. Schmiedmayer, A. Zeilinger, Phys.Rev.Lett. 77, 5160 (1996).



[4] S. Bernet, M. K. Oberthaler, R. Abfalterer, J. Schmiedmayer, and A. Zeilinger, Quantum Semiclass. Opt. 8,
497 (1996).

[5] D.O. Chudesnikov and V.P. Yakovlev Laser Physics 1, p. 110 (1991)

[6] B.W. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964); H. Rauch and D. Petrascheck in Neutron
Diffraction, p.303, ed. H. Dachs Springer (1978)

[7] D.S. Gemmell, Rev.Mod.Phys. 46, 129 (1974).

[8] A recent overview on atom optics and interferometry can be found in: Atom Interferometry, ed. P.R. Berman,
Academic Press (1997)

[9] our experimental apparatus is described in: H. Batelaan, S. Bernet, M.K. Oberthaler, E. Rasel, J. Schmied-
mayer, A. Zeilinger, in: Atom Interferometry edited by P. R. Berman (Academic Press, Cambridge, MA,
1997) p 85-120.

[10] There are two long lived metastable states in Argon, “°Ar: [3p°4,]1ss and [3p°4,]1s; and the lifetime of
the metastable state (>> 1 s) is much longer than the flight time of the atoms (<10 ms) and hence can be
regarded as a stable state for all our experiments

[11] Philos. Mag. 9, 401 (1836); L. Rayleigh, Philos. Mag. 11, 196 (1881); J. Cowley, A. Moodie, Proc. Phys.
Soc. B 70, 486 (1957); 70, 497 (1957); 70, 505 (1957).

[12] In our experiments the angular dependence could ne measured with accuracy and reproducibility of +1prad
using a PZT

[13] Bragg scattering of atoms from a far detuned standing light wave was observed by: P.J. Martin, B.G. Oldaker,
A K. Miklich and D.E. Pritchard Phys.Rev.Lett. 60, p.515 (1988)

[14] D.M. Giltner, R.W. McGowan, Siu Au Lee, Phys. Rev. A 52, 3966 (1995). S. Diirr, S. Kunze, and G. Rempe,
Quantum Semiclass. Opt. 8, 531 (1996).

[15] G. Borrmann Z. Physik 42, 157 (1942); anomalous transmission was also observed for neutrons: S. Sh.
Shilshtein, V.J. Marichkin, M. Kalanov, V.A. Somenkov, L.A. Sysoev Zh. ETF Pis. Red. 12, p.80 (1970);
and electrons: A. Mazel and R. Ayroles J. Microscopie 7, p.793 (1968).

[16] M.A. Horne, K.D. Finkelstein, C.G. Shull, A. Zeilinger and H.J. Bernstein in Matter Wave Interferometry,
p.189, ed. G. Badurek, H. Rauch, A. Zeilinger North Holland (1988)

[17] If the interaction length is N*PendelGsung/2, the maxima are at the negative gradient for N odd, and at the
positive gradient for N even.

[18] B.W. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964).

[19] Neutrons were slowed by diffraction at moving gratings and mirrors: A. Steyerl, W. Drexel, S. S. Malik, and
E. Gutsmiedl, Physica B 151, 36 (1988), and references therein; sent through time-dependent potentials:
G. Badurek, H. Rauch, and D. Tuppinger, Phys. Rev. A 34, 2600 (1986); or deflected by time-dependent
mirrors: R. Gaehler, R. Golub, Z. Phys. B 56, 5 (1984), J. Felber, R. Gahler, C. Rausch, and R. Golub,
Phys. Rev. A 53, 319 (1996).

[20] Recently time dependent experiments have been performed with cold C's atoms released from a magneto-
optical trap by reflecting them from a vibrating mirror: A. Steane, P. Szriftgiser, P. Desibiolles, and J.
Dalibard, Phys. Rev. Lett. 74, 4972 (1995); P. Szriftgiser, D. Guéry-Odelin, M. Arndt, and J. Dalibard,
Phys. Rev. Lett. 77, 4 (1996).

67



